Functional Analysis, PS11
20.01. 2021
(A1) $T_{i} E \rightarrow F$ compact
$\Rightarrow \overline{T\left(B_{1}(0)\right)}$ is coupact

$$
\Rightarrow \sup _{\|x\| \leqslant 1}\left\|T_{x}\right\|_{F} \leqslant C \Rightarrow\|T\| \leqslant C .
$$

ars coupact sets are bounded.
(A2) (A) $\overline{T\left(B_{1}(O)\right)}$ is compact
(B) $\left\{x_{n}\right\}$ Gdd $\Rightarrow\left\{T_{x_{n}}\right\}$ has conv. subieq.
$(4) \Rightarrow(B): M=\sup _{n}\left\|x_{n}\right\|$, then $\frac{x_{n}}{M} \in B_{1}(0)$

$$
\begin{aligned}
& \Rightarrow \frac{T\left(x_{n}\right)}{M} \in \overline{T\left(B_{1}(0)\right)} \Rightarrow \frac{T\left(x_{n_{k}}\right)}{M} \rightarrow a \\
& \Rightarrow T\left(x_{n_{k}}\right) \rightarrow a M .
\end{aligned}
$$

$(B) \Rightarrow(A):$
Let $\left\{y_{n}\right\} \in \widehat{T(B(0,1))}$. We want to find a subreq. $4 x_{k}$ convergent in F.

Choose $z_{n} \in T(B(0,1))$, $\left\|z_{n}-y_{n}\right\| \leqslant \frac{1}{n}$.
By (B) z_{n} has a converging subsequence $z_{n_{k}} \rightarrow z$. But then $y_{n_{k}} \rightarrow z$ too since

$$
\left\|y_{n_{k}}-z\right\| \leqslant \frac{1}{n_{k}}+\left\|z-z_{n_{k}}\right\| \rightarrow 0
$$

$$
\text { as } n_{k} \rightarrow \infty \text {. }
$$

(AB) $T: E \rightarrow F \quad S: E \rightarrow F$ compact
$\Rightarrow T+S$ is compact.
$\left\{x_{n}\right\}$ hold inn E. Choose subseg. s.t. $\left\{T x_{n_{k}}\right\}$ Converges.omd another one sit. $\left\{S_{x_{n k l}}\right\}$ con.
It follows that $\left\{(T+S) k_{n_{k l}}\right\}$ is convergent.
(A4)

$$
\begin{aligned}
& g \in C[0,1] \\
& T:([0,1] \rightarrow C[0,1] \\
& (T f)(x)=\int_{0}^{x} f(y) g(y) d y
\end{aligned}
$$

Let $\left\{f_{n}\right\}_{n t i N}$ be badd in $([0,1)$. Ve need to find subseq. $\left\{T f_{\text {ak }}\right\}$ convenging in $([0,1]$.
We use A-A:

$$
\begin{aligned}
(1)\left|T f_{m}(x)\right| & \leqslant\left\|f_{m}\right\|_{\infty}\left\|_{g}\right\|_{\infty} \leqslant\|g\|_{\infty} \sup _{n} \|_{n} . \\
& \leqslant C .
\end{aligned}
$$

$$
\begin{aligned}
& (2)\left|\left(T f_{m}\right)(x)-\left(T f_{n}\right)(y)\right|=\int_{x}^{y} f_{m}(y) g(y) d y \\
& \leqslant|y-x|\left\|f_{n}\right\|_{x}\left\|_{g}\right\|_{x} \leqslant C|y-x| .
\end{aligned}
$$

(A5) I is not conpact as balls are not compot in $\infty \operatorname{dim}$ HS.
(A6) Otherwise I vould be compact ois

$$
I=(I-T)+T .
$$

9 Hilbert-Schmiat operators $T f(x)=\int_{\Omega} K(x, y) f(y) d y$ If K is continuous, it was discussed in the lectermel

Now, we assume that $K \in L^{2}(\Omega \times \Omega)$. Note that this means that for are. $x \in \Omega \quad \int_{\Omega} K^{2}(x, y) d y<\infty$. (i.e. $k(x,-) \in L^{2}(\Omega)$).

Again, let f_{n} be bad in $L^{2}(\Omega)$. Choose a subsequence of $\left\{f_{n}\right\}$ converging weakly in $l^{2}(\Omega)$, by Banach-Alaoglu, i.e. $f_{r_{k}}>f_{\text {. }}$

As $K\left(x_{1}\right) \in L^{2}(\Omega)$ for are. $x \in \Omega$; for a.e. $x \in \Omega$

$$
\left.\int_{\Omega} K(x, y) f_{n_{k}}(y) d y \longrightarrow \int_{\Omega} K(x, y) f(y) d y \quad \text { (a.e. } x \in \Omega\right) .
$$

So we obtained If $f_{n_{k}} \rightarrow$ If ane. $x \in \Omega$. We need to upgrade this convergence te $L^{2}(\Omega)$. Note that

$$
\begin{aligned}
\left|T f_{n_{k}}(x)\right| & \leqslant \int_{r}|K(x, y)|\left|f_{n_{k}}(y)\right| d y \leqslant f_{n_{k}}\left\|_{2}\right\| K\left(x, y \|_{2} \leqslant\right. \\
& \leqslant C \| K\left(x, y \|_{2}=C\left(\int_{-}^{H_{i}} K^{2}(x, y) d y\right)^{1 / 2}\right.
\end{aligned}
$$

$\Rightarrow T_{m_{k}} \rightarrow$ If in $L^{2}(\Omega)$ by dominated convergence.
(B2) $(T f)(x)=\int_{0}^{x} f(y) d y$
We first prove that $T=L^{2}(0,1) \rightarrow l^{2}(0,1)$ is compact. Let $\left\{f_{n}\right\}$ geld in $L^{2}(0,1)$. we need to prove that $\left\{T f_{n}\right\}$ has converging subsequence in $L^{2}(0,1)$ - First, we find this subsequence in $(t 0,1]$.

$$
\begin{aligned}
& \left\|T f_{n}\right\|_{\infty} \leqslant \int_{0}^{1}\left|f_{x}(y)\right| d y \leqslant\left(\int_{0}^{1}\left|f_{n}(y)\right|^{2} d y\right)^{1 / 2} \\
& \leqslant\left\|f_{n}\right\|_{2} \\
& \left|T f_{n}(x)-T f_{n}(y)\right|=\int_{x}^{y}\left|f_{n}(z)\right| d z= \\
& =\int_{0}^{1}\left|f_{n}(z)\right| \|_{z \in[x, y]} d z \leqslant \\
& \leqslant\left(\int_{0}^{1}\left|f_{n}(z)\right|^{2}\right)^{1 / 2}\left(\int_{0}^{1} \|_{z \in[x, y]}^{2} d z\right)^{1 / 2} \\
& \leqslant\left\|f_{n}\right\|^{2}|x-y|^{1 / 2} \leqslant C|x-y|^{n / 2}
\end{aligned}
$$

So there is subsequence converging cut $\|\cdot\|_{\infty}$ nom so it converges also wat $\|\cdot\|_{2}$ noun.
(we use here that $[0,1]$ has finite measure).

Now, when we know that I is compact, $D \in \sigma(T)$ and any $\lambda \in \sigma(T), \lambda \neq 0$ is its eigenvalue.

$$
\text { If }=\lambda f \quad \text { i.e. } \quad \int_{0}^{x} f(y) d y=\lambda f(x)
$$

It follows that f is $c^{1}, f(0)=0$ oud

$$
\left\{\begin{array}{l}
f^{\prime}(x)=\frac{1}{\lambda} f(x) . \\
f(0)=0
\end{array}\right.
$$

There is exactly one f solving this ODE: $f=0$
(B4) First, we find $6(G)$

$$
\sigma(G)=\overline{\{g(x): x \in \mathbb{R}\}}
$$

2: If $\lambda=g(y) \exists_{y \in \mathbb{R}}$ then $(G-\Lambda I) f$

$$
=(g(x)-\lambda) f(x)=(g(x)-g(y)) f(x)
$$

g is continuous so $\underset{\varepsilon>0}{\forall} \exists_{\delta_{\varepsilon}>0} \forall|x-y| \leqslant \delta_{\varepsilon}$

$$
\begin{aligned}
& \Rightarrow|g(x)-g(y)| \leqslant \varepsilon \quad \text { y is fixed } \\
& f_{\varepsilon}:=\left.1\right|_{|x-4| \leqslant \delta_{\varepsilon}} \\
& \mid\left(G-\lambda I\left|f_{\varepsilon}\right| \leqslant \varepsilon|f|\right. \\
& \Rightarrow\left\|(G-\lambda I) f_{\varepsilon}\right\|_{2} \leqslant \varepsilon\left\|f_{\varepsilon}\right\|_{2}
\end{aligned}
$$

$\Rightarrow(G-\lambda I)$ is not invertible.
As $\sigma(G)$ is closed we have "?".
(\subseteq) Let $\lambda \in \sigma(G)$ and suppose A of $\overline{\{g(y): y G R\rangle}$.
Then G- GI has a bounded inverse def. with $(G-\lambda I))^{-1}=\frac{1}{g(x)-\lambda} f(x)$
(it is bounded as $\exists_{\varepsilon>0} \quad|g(x)-\lambda| \geqslant \varepsilon$ so that $\left.\frac{1}{|g(x)-\lambda|} \leqslant \frac{1}{\varepsilon}\right)$.
As $\sigma(G)=\overline{\{g(y): y \in \mathbb{R}\}}$ we conclude that G can be compact only in the trivial care $g=0$.
(C1) $A: H \rightarrow H:$ find B s.t. $B^{n}=A$.
A is oliagonalizable i.e. there is $\left\{e_{k}\right\}_{k \geq 0}$ $O B$ of H and $\left\{\lambda_{r}\right\}$ assos. Qigenvalues.

$$
A e_{k}=\lambda_{k} e_{k}
$$

Let $B x^{\prime}=\sum_{k \geq 1}^{\infty} \lambda_{k}^{1 / n} e_{k}\left\langle x_{1} e_{k}\right\rangle$
The series convenges \forall_{x} ais $S_{N}:=\sum_{k \geq N}^{\infty} \lambda_{k}^{1 / n} e_{k}\left\langle x, e_{k}\right\rangle$

$$
\left\|S_{N}-S_{M}\right\|_{H}^{2}=\sum_{k=N}^{M}\left\langle x_{1} e_{k}\right\rangle^{2} \lambda_{k}^{1 / n} \rightarrow 0 \text { as } N, M \rightarrow \infty
$$

Moreover $\left\|B_{x}\right\|^{2} \leqslant\left\|\lambda_{k \infty} \leqslant T_{x}\right\|^{2} \Rightarrow$ bodd op.

$$
\begin{aligned}
B_{x}^{2} & =\sum_{j \geq 1}^{\infty} \lambda_{j}^{1 / n} e_{j}\left\langle\sum_{k \geqslant 1} \lambda_{k}^{1 / n} e_{k}\left\langle x, e_{k}\right\rangle, e_{j}\right\rangle \\
& =\sum_{j \geq 1}^{\infty} \lambda_{j}^{2 / n} e_{j}\left\langle x, e_{j}\right\rangle
\end{aligned}
$$

