Functional Analysis, PS1 15, 751 VER: 5. 11.2020 (A1) · C[0,1] - yes • $C(0,1) - no, \frac{1}{x} \in ((0,1))$ but $\left\| \frac{1}{x} \right\|_{\infty} = \infty$ so II-II, is not a norm on ((011). • $C(IR) - N \circ I \times E(IR)$ but $|| \times ||_{\infty} = \infty$. (A2) No, $x \in ([0,1])$, $x \neq 0$ but $|x|_{c1} = 0$. Use this with E=1. If k ≥ Ne we have $\|x_{k}\| \leq \|x_{N_{1}}\| + \|x_{N_{1}} - x_{k}\| \leq 1 + \|x_{N_{1}}\| < \infty$ Ofherwise, $\|x_k\| \leq \sup_{\substack{\substack{i \leq i \leq N_c}}} \|x_i\| < \infty$ which is finite because supremum is taken over finitely vous terms. (6) We used to simple low of Topology: if {Xn} is Couldy and it has convergent subsequence then the whole sequence converges. Indeed, Let \mathcal{E} \mathcal{H} , $X_{m_{k}} \rightarrow X$ be consequent subsequence. There is N s.t. \mathcal{H} $\|X_{m}-X_{m}\| \leq \frac{\mathcal{E}}{2}$. There is also M s.t. $m_{k} \geq M$ $\|X_{m_{k}}-X\| \leq \frac{\mathcal{E}}{2}$. Take also M s.t. $m_{k} \geq \max(N, \mathcal{E})$. Then, $\| \mathbf{x} - \mathbf{x}_n \| \leq \| \mathbf{x} - \mathbf{x}_{n_k} \| + \| \mathbf{x}_{n_k} - \mathbf{x}_n \| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \forall \quad \mathbf{x} \geq \mathbf{v} \cdot \mathbf{v} - \mathbf{v}_{n_k} \| + \| \mathbf{x}_{n_k} - \mathbf{x}_n \| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \forall \quad \mathbf{x} \geq \mathbf{v} \cdot \mathbf{v} - \mathbf{v}_{n_k} \| + \| \mathbf{x}_{n_k} - \mathbf{x}_n \| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \forall \quad \mathbf{x} \geq \mathbf{v} \cdot \mathbf{v} - \mathbf{v}_{n_k} \| + \| \mathbf{x}_{n_k} - \mathbf{x}_n \| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \forall \quad \mathbf{x} \geq \mathbf{v} \cdot \mathbf{v} - \mathbf{v}_{n_k} \| + \| \mathbf{x}_{n_k} - \mathbf{x}_n \| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \forall \quad \mathbf{x} \geq \mathbf{v} \cdot \mathbf{v} - \mathbf{v}_{n_k} \| + \| \mathbf{x}_{n_k} - \mathbf{x}_n \| \leq \frac{\varepsilon}{2} + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \forall \quad \mathbf{x} \geq \mathbf{v} \cdot \mathbf{v} + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} + \frac{\varepsilon}{2} = \varepsilon \quad \forall \quad \mathbf{x} \in \mathbf{v} + \frac{\varepsilon}{2} + \frac{\varepsilon$

(exercise in Topology) 4=X, (X, II-IX) Banach space (Y, 11-1/x) is Banach (>> Y is closed in (X, 11.1/x). (€) let (ym) = Y be Couchy sequence. Then, since YCX, it is also Cauchy in X and since it is Banach space, it has limt in X. Call it KEX. By closedness of Y, XE Yound assertion follows, (=>) Let (ym) CY be converging sequence, i.e. yn-> X in ||. ||x for some X+X. Since any converging sequence is Couchy, X+Y. This fact is quite simple but allows to houdle many Banach spaces X Banalh space $\iff \sum_{k=1}^{\infty} ||x_k|| < \infty \implies \sum_{k=1}^{\infty} x_k$ converges in X. (F) Let (x_k) be a Couchy sequence in X. We only need to check that it has convergent subsequence ((hoose subsequence s.t. $\|X_{k_{n+1}} - X_{k_m}\| \leq 2^{-k} \implies \sum \||X_{k_m} - X_{k_m}\| \leq 2^{-k}$ => $\sum X_{k_{n+1}} - X_{k_n}$ converges in $X \Rightarrow \{X_{k_n}\}$ converges in $X \Rightarrow$ 2× m ? converges in X. (as this is lauchy sequence). (=>) it is easy as $(\sum_{k=1}^{\infty} \chi_k)_{m \in \mathbb{N}}$ is a loudy sequence 口.

Recall $L^{p}(X, \mathcal{F}, g_{n}), L^{p}(\mathcal{I}), L^{p}(a, b),$ Recall why $L^{p}(a, e) = L^{p}[a, b].$ (standard application of Holder) let $p \ge q$. Then (standard application of Holder) let $p \ge q$. Then (B1) $\|f\|_q^q = \int |f|^q = \int |f|^q \cdot 1 \le (\int |f|^p)^{q/p} (\int 1)^{p/q/p}$ Hölder with $\frac{p}{q} > 1 = \frac{1}{(\frac{p}{q})} + \frac{1}{2} \Rightarrow \overline{1} = \frac{p-q}{p}$ $\Rightarrow \|H\|_{q} \leq \|H\|_{p} \cdot \left[\mu(X)\right]^{p-q} pq$ Note that $\frac{1}{x} \in L^2(1,\infty)$ but $\frac{1}{x} \in L^1(1,\infty)$. (standard opp. of L4) (B2) Obsence that by L3, set L2(0,1) is subset of L1(0,1). Therefore, The point is that there are fins f in L¹ but not in L², for instance $1 \in L^{1}(0,1)$ but $\frac{1}{12} \notin L^{2}(0,1)$. To be more precise, let $f_{n} = main \left(\frac{1}{\sqrt{x}}, m \right)$ $\frac{(\text{Laim}: f_m \rightarrow \frac{1}{V_X} \text{ in } L^7, \iff \int |f_m - \frac{1}{V_X}| \rightarrow 0 \quad \text{by olominated} } \\ \text{convergence}, \quad \text{This contradicts closedness of } L^2 \text{ in } (L^7, \|\cdot\|_1),$ In general case, we consider $\frac{1}{X^{1/p}}$ instead of $\frac{1}{x^{1/2}}$.

(B3) ~> HOMELJORK

(B4) $1 \leq p_0 , fel,$ $f_{0} = f_{1} |f_{1}| \ge 1 \qquad f_{1} = f_{1} |f_{1}| \le 4 \qquad f_{1} \le \int |f_{1}|^{p_{1}} (\frac{1}{1+1})^{p_{1}} = \int |f_{1}|^{p_{1}} (\frac{1}{1+1})^{p_{1}} (\frac$ $= \int |f|^{r} < \infty \qquad f < |f|^{r_{o}} = \int |f|^{r_{o}} |f|^{r_{o}} |f|^{r_{o}} = \int |f|^{r_{o}} |f|^{r_{o}} |f|^{r_{o}} |f|^{r_{o}} = \int |f|^{r_{o}} |f|^{r$ $\leq \int |\mathbf{r}|^{p} < \infty$ (1) Let for be Coundry sequence in C'[0,1]. Then for, for eve Candry in ([0,1] so by completeness, there are f, g s.t. for \$f, fm -> & uniformly. Ue have to check that g =f'. Indeed, for nell, $f_m(t) = f_n(o) + \int_{a}^{t} f_m'(s) ds$ using invitorm convergence, $f(t) = f(0) + \int_{0}^{t} g(t) dt \implies f' = g$ as desired. (2) Suppose that (P, 11.11,) is a banach grace. Note that $\sum \frac{x^k}{k!}$ converges absolutely $\left(\sum \frac{1|x^k|}{k!} \leq \sum \frac{1}{k!} = e^{1}\right)$ By AS Sike converges in P wort II-II But we know $\Sigma_{kl}^{*} = \mathcal{E}$ and $\mathcal{E}_{kl}^{*} = \mathcal{P}$.

Detailed solution to CI

H can be checked that this is normed space. To prove it is a Banach space, he need to demonstrate it is complete.

Let 2 fm 2 be a Caudy sequence in $(C^{1}EqIJ, ||f||_{t} + ||f'||_{t})$. We need to prove that it converges in this space, i.e. there is $f \in C^{1}[OIT]$ such that (*) $\|f_n - f\|_{\infty} + \|f_n - f\|_{\infty} \to 0$ when $n \to \infty$. First, we note that $\forall \varepsilon > 0 \quad \exists N(\varepsilon) \quad \forall n, m \ge N(\varepsilon) \quad \|f_n - f_n\|_{\infty} + \|f_n - f_n\|_{\infty} \le \varepsilon$ In particular, Therefore, Efm?, Efm? are Caudry sequences in (CtaiJ, II-1100). As this space is complete, there are g, h e ([o1] such that (*). $f_n \rightarrow g$ in $(t_0, 1)$, i.e. $\|f_n - g\|_{\infty} \rightarrow 0$ as (*). $f_{n} \rightarrow h$ in (t_0) , i.e. $\|f_n - h\|_{s} \rightarrow 0$ as If we knew that $g \in C^1 [G]$ and g' = h, we could deduce (*).

To see this, we note that

$$f_m(t) = f_m(0) + \int_0^t f_m(s) ds$$

By convergence (*), we have
$$f_m(t) \rightarrow g(t)$$
, $f_m(0) \rightarrow g(0)$.
Noveover, by (*), we also have $\int_{m}^{t} f_m(s) ds \rightarrow \int_{m}^{t} h(s) ds$.
(Indeed: $\left|\int_{m}^{t} f_m(s) ds - \int_{m}^{t} h(s) ds\right| \leq \int_{m}^{t} |f_m'(s) - h(s)| ds \leq 1 \cdot ||f_m' - h||_{ab} \rightarrow 0$).

We conclude $g(t) = g(0) + \int_{-\infty}^{+\infty} h(s) ds$ which implies $g \in C^{1}[0,1]$ and $g^{1} = h$.

Remark to C1 (venark 16.10.2020). The following result is discussed in Analysis I: THEOREM Let {fn } c C [Orl] such that · fru(0) converges to some a GIR. · fn' converges uniformly to some g = ([0,1]. then there is $f \in C^2[O_1]$ such that $f_m \rightarrow f$ coniformly errol f' = g. $\frac{PROOF}{f_{n}(t)} = f_{n}(0) + \int_{0}^{t} f_{n}(s) ds$ => \forall lim $f_n(L) = o_{L+1} \int_0^{+} g(L) dS$. Let $f(t) := a + \int_0^t g(s) ds$. This function is $C^1(0, 1]$. Noveover $\|f_n - f\|_{\infty} \leq \|f_n(0) - a\| + 1 \cdot \|f_n - g\| \longrightarrow 0$ Remark: The proof presented in Analysis I is much more complicated as it is performed anthout notion of integral.

(2)Then, $C^{1}[0,1]$ is doset in $(C[0,1], [l: lb_{0})$. • II FII, is a morm on C'EEO, D as it is a norm on the bigger space ([0,1]. Suppose ((1(0,1], 11-11) is Banach. Let f be 1 (i.e. $|x-\frac{1}{2}|\cdot 2$). Let pu be a cet of polynomials i.t. $||f-p_{m}||_{\infty}^{2} \rightarrow 0$ Note that pac (1 [0,1]) so we get contradiction. (Cy ~ HOMEWORK ((5) First, ((o(IR), ||. ||) is a normed spore: the proof is similar as for ([0,1], ||. ||_{so}, we only need to check that IIFII < x for f ((R). But this follows from vanishing at infinity. Indeed, there is R such that $|F(x)| \leq 1$ for |x| > R. To prove that ((o(IR), II. II,) we need to establish completeness. Let ?fm? be a Country sequence.

(ANDIDATE FOR THE LIMIT: We use completeness of CC-RIRJ for each R>O. We have that Sfind is olso Cauchy in ((C-R,R], II. II,) so it converges in ([-R,R] to some fre ([-R,R] + RGIN. By uniqueness of the limit $f^{R+1}(x) = f'(x)$ $[f_{XGER,R}]$. Hence, we can define $f(x) = f^{R}(x) \quad \forall x \in [-R,R]$ and f E ((IR). To conclude, ve need to prove that $f \in (O(\mathbb{R}) \text{ oud } \|f_m - f\|_{\infty} \longrightarrow O.$ To see $\|f_m - f\|_{\infty} \to 0$, we write to shift $\|f_m(x) - f(x)\| = \lim_{m \to \infty} \|f_m(x) - f_m(x)\| \frac{1}{2} don + know}{ 1 - know}$ (had to shitch to liminf as if limexists. $= \liminf_{m \to \infty} |f_n(x) - f_m(x)| \leq \liminf_{m \to \infty} ||f_n - f_m|_{\mathcal{B}}$ Hence, $\|f_n - f\|_{\infty} \leq \liminf_{m \to \infty} \|f_n - f_m\|_{\infty}$. let E>O. Since EFn? is Cauchy, there is N(E) such that $\forall h, m ||f_n - f_m || \leq \varepsilon.$ If $n \geq N$, $\lim_{m \to \infty} \|f_n - f_m\|_{\infty} \leq \varepsilon.$

It follows that $\|f_n - f\|_{\mathcal{B}} \leq \mathcal{E}$ $h \geq N(\mathcal{E})$ so that $\|f_n - f\|_{\mathcal{B}} = 0$ as $n \rightarrow \infty$. To see that f(x)->0 as x-> we write $|f(x)| \leq |f(x) - f_m(x)| + |f_n(x)| \leq ||f - f_n|| + |f_n(x)|.$ Fix E > 0. Choose n so that $\|f - f_n\|_{\infty} \leq \frac{E}{2}$. Since $f_n \in C_0(\mathbb{R})$, choose $\mathbb{R} > 0$ so that $|f_n(\omega)| \leq \frac{1}{2}$ for $|x| \ge R$. Hence, for such $R |f(x)| \le E$, whenever $|\times| > R$. (6) (A) ((LIP [0,1],]- LIP) is not a Bonoch grace es $1 \in C_{LIP}[0, 1]$ but $|1|_{LIP} = 0$. (B) (CLIP [0,1], ||. ||.») is not a Banach space because norm does not contain information on Lipschitz constant Suppose it is. Let $f(x) = \sqrt{x}$. Define f_n as: $f_{m}(x) = \begin{cases} \sqrt{x} & |x| \ge 1 \\ \sqrt{1} & |x| < 1 \\ n \end{cases}$ 11m 1

for is Lipschilt 2 continuus on
$$to_1 A$$
:
• if $x_1 q \in [0, \frac{1}{4}]$ $|f_1(x) - f_1(y)| = 0 \le |x-q|$.
• if $x_1 q \in [\frac{1}{4}, 1]$ $|f_1(x) - f_1(y)| \le ||f_1^{n}||_{\infty} |x-q|$
by mean value theorem. The supremum is compated
on $[\frac{1}{4}, \frac{1}{4}]$. $f_{11}'(x) = \frac{-1}{2\sqrt{x}} \Rightarrow ||f_{11}'|_{\infty} = \frac{1}{2}$.
• if $x \in [0, \frac{1}{4}]$, $q \in (\frac{1}{4}, 1)$
 $||f(x) - f(q)| \le ||f(x) - f(\frac{1}{4})| + ||f(\frac{1}{4}) - f(y)| \le$
 $\le \frac{1}{2} ||q - \frac{1}{4}| \le \frac{1}{2} ||q - x|$ \checkmark .
Noveover, $f_{21} \to f$ wort $||\cdot||_{\infty}$. (nolved,
 $\sup_{x \in [0, \frac{1}{4}]} ||f_{11}(x) - f(x)| = \sup_{x \in [0, \frac{1}{4}]} ||f_{11} - \sqrt{x}| \le \frac{2}{\sqrt{h}} \to 0$
 $x \in [0, \frac{1}{4}]$ $x = 0$
 $||f(x) - f(x)| = \sup_{x \in [0, \frac{1}{4}]} ||f_{11} - \sqrt{x}| \le \frac{2}{\sqrt{h}} \to 0$
 $x \in [0, \frac{1}{4}]$ $x = 0$
 $||f(x) - f(y)| = \frac{\sqrt{q}}{y} \to \infty$ as $q \to 0$ so
 $||f_{1}|_{11} = \infty$.

(C) let {fm} be Coundry in (LIP [Q], ||-1|, + (-) LIP). $\forall \neq \forall$ $\|f_n - f_m\|_{\infty} + \|f_n - f_m\|_{ip} \leq \varepsilon$. $\varepsilon_{10} \ N \ N, N \geq N$ ([0,1) Baroh => f_n->f v ([91], fe([01]. So f is our condidate for the limit in CLIP. 1: is fe-CLIP TOUD? It means $\exists |f(x) - f(y)| \leq C(x-y).$ But we have $|f_n(x) - f_n(y)| \leq |f_n|_{U^p} |x-y|$ $\leq (\sup | f_n|_{UP}) | x - y |$ since Couchy sequence is always bounded cf. (A3). We send u->00 on the LHS to get $|f(x) - f(y)| \leq (\sup |f_n|_{Lip}) |x - y|.$

2. Daes
$$\|\|f_{n} - f\|_{\infty} + \|f_{n} - f\|_{UP} \rightarrow 0$$
 as $n \rightarrow \infty$.
Ue know that $\|f_{n} - f\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$ (this is the way
we chose f) so we only need to show $\|f_{n} - f\|_{UP} \rightarrow 0$.
So we have to prove
history sup $\frac{\|f_{n}(x) - f(x) - (f_{n}(y) - f(y))\|^{2}}{\|x - y\|}$
We can write it as
(*) linkeep and linker $\frac{\|f_{n}(x) - f_{n}(x) - (f_{n}(x) - f_{m}(y))\|^{2}}{\|x - y\|}$
However sup linker $\dots \leq \lim_{n \rightarrow \infty} x \pm y$
 $x \pm y$ $\dots \rightarrow \infty$ $x \pm y$
 $f(h(x) - f_{m}(x)) - (f_{n}(y) - f_{m}(y))\|^{2}$
So $(x) \leq \lim_{n \rightarrow \infty} \sup_{x \pm y} \frac{\|(f_{n}(x) - f_{m}(x)) - (f_{n}(y) - f_{m}(y))\|}{\|x - y\|}$
 $= \|f_{n} - f_{m}\|_{UP}$
 $= \|f_{n} - f_{m}\|_{UP}$
 $= \|f_{n} - f_{m}\|_{UP}$
 $= \lim_{n \rightarrow \infty} |f_{n} - f_{m}\|_{UP} = 0$ as f_{n}^{2} is
how f_{n}
Coucly writ $[\cdot]_{LP}$.

This is applied to a freshelts for L^P with Counting neasure. Indeed,
then
(IFI' dµ =
$$\sum |f_i|^p$$
 (for $f = (f_n, f_{2_1,...})$). (μ -countag)[I].
(important!!!) \rightarrow this exercise allows to deduce many properties from
considering finite sequences For $1 \leq p \leq \infty$:
 $x - \sum_{i=1}^{n} x_i e_i = (0, 0, ..., 0, x_{i+1}, x_{i+2,1}...)$
 $\|x - \sum_{i=1}^{n} x_i e_i = (0, 0, ..., 0, x_{i+1}, x_{i+2,1}...)$
 $\|x - \sum_{i=1}^{n} x_i e_i = \sum_{k=n+1}^{n} |x_k|^p \rightarrow 0$ as $n \rightarrow \infty$ since the serves
 $\sum_{i=1}^{n} |x_k|^r$ is convergent (\sum thrie is tail of convergent serves).
 $k=1$
(ase $p = \infty$ is NOT true. Take for instance $x=(1, 1, 1, ..., 1, ..., 1, ...) \in L^\infty$.
(sequence of 1). Then $x - \sum_{i=1}^{n} x_i e_i = (0, 0, 0, ..., 0, 1, 4, ...)$
so its norm in l^∞ is 4 for all n .

(E1 (E1 ||· ||E) - BS, CCE S.t. Cisconvex, Cisopen and OEC. $\forall x \in E$ $g(x) = \inf\{d > 0; \frac{x}{d} \in C\}$ • X g is called Minkowski functional (a) $g(\delta x) = \xi g(x)$ $\forall r > 0$ \downarrow^{I} $\inf \{ d > 0; \frac{\delta x}{d} \in C \} = \inf \{ d > 0; \frac{x}{\sqrt{\delta}} \in C \}$ $= \inf \{ \xi p \cdot r : \frac{x}{p} \in C, p \cdot r > 0 \}$ $= \nabla \cdot \inf \{ p > 0; \frac{x}{p} \in C \} = \gamma \cdot g(x).$

(6) $g(x+y) \leq g(x) + g(y)$. $x_{iy} \in E$ $\inf \{\frac{2}{2} \right\} > 0: \frac{x+y}{2} \in C \{\frac{2}{3} \leq g(x) + g(y) \}$ It would be sufficient to have $\frac{x+y}{g(x)+g(y)} \in \mathbb{C}$. $\begin{array}{c} \underset{()}{()} \\ \underset{()}{()} \\ \underset{()}{()} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{()}{()} \\ \underset{()}{()} \\ \underset{()}{()} \\ \underset{()}{()} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \underset{()}{()} \\ \underset{()}{()}{()} \\ \underset{()}{()} \\ \underset{()}{()} \\ \underset{()}{()} \\ \underset{()}{()} \\ \underset{()}{()} \\ \underset{()$ We need $\frac{x}{p(x)}$, $\frac{y}{p(y)} \in C \longrightarrow$ this is NOT true in general But there is a sequence $d_n \ge g(x)$, $B_n \ge g(y)$ s.t. $\frac{\chi}{d_n} : \frac{y}{B_n} \in \mathbb{C}$. => $=) \frac{\chi}{dn} \cdot \frac{dn}{dn^{+} \beta n} + \frac{y}{\beta n} \cdot \frac{\beta n}{dn^{+} \beta n} \in C \Rightarrow \frac{\chi + y}{dn^{+} \beta n} \in C.$ $=) g(x+y) \leq d_{n} + \beta_{n} - \sum g(x) + g(y) / ,$ $\wedge \neg \sim$

(c) There is a constant M s.t. $g(x) \in M \|x\|_{E^{-1}}$ $O \in C$, C is open =) $\mathcal{F} = \mathcal{B}(O_1 r) = C$. $\begin{array}{cccc} H & \frac{x}{1|x|l_{E}} \cdot \frac{x}{2} \in C \implies \frac{x}{1|x|l_{E}^{2}/r} \in C \\ \end{array}$ $\Rightarrow q(x) \leq \frac{2\|x\|_{\tilde{E}}}{v} = C \|x\|_{\tilde{E}}. \quad (C = \frac{2}{v}).$ (d) $C = \{x \in E: g(x) < 1\}$. $(\Longrightarrow) \quad x \in C, \quad 0 \in C, \quad C \text{ is open}, \quad (1+E) \times E \subset \overline{B_{E}}.$ $\Rightarrow \quad \frac{X}{1+E} \in C \quad \Rightarrow \quad g(x) \leq \frac{1}{1+E} \leq 1.$ x x ly $(f) \times : g(x) < 1 \rightarrow J_{d < 1} \xrightarrow{X} \in C$ Ω. By convexity, XEC.