Functional Analysis, PS 1
GER:
(A1) - $([0,1]$-yes
5. 11.2020

- $C(0,1)-n_{0}, \frac{1}{x} \in C(0,1)$ but $\left\|\frac{1}{x}\right\|_{\infty}=\infty$. so $\|-H_{\infty}$ is not a norm on $((0,1)$.
- $c(\mathbb{R})-n_{0}, x \in C(\mathbb{R})$ but $\|x\|_{\infty}=\infty$.
(A2) No, $x \in C[0,1], x \neq 0$ but $|x|_{C^{1}}=0$.
(43) (a) $\underset{\varepsilon \geqslant 0}{\forall} \quad \exists \quad \underset{N_{\varepsilon}}{ } \quad \forall \quad, m \geq N_{\varepsilon} \quad\left\|x_{n}-x_{m}\right\| \leqslant \varepsilon$.

Use this with $\varepsilon=1$. If $k \geq N_{\varepsilon}$ we have

$$
\left\|x_{k}\right\| \leq\left\|x_{N_{1}}\right\|+\left\|x_{N_{1}}-x_{k}\right\| \leq 1+\left\|x_{N_{1}}\right\|<\infty
$$

Other wise, $\left\|x_{k}\right\| \leqslant \sup _{1 \leqslant i \leqslant N_{\varepsilon}}\left\|x_{i}\right\|<\infty$ which is finite
because supremum is taken over finitely wary terms.
(6) We Ind rand if $\left\{x_{n}\right\}$ is lowly ant it hes convergent subsequence then the whole sequence converges. Indexed, let $\varepsilon>0, x_{n_{k}} \rightarrow x$ he convergent subergunce. There is N s.t. $\underset{n, m \geq N}{\nvdash}$ $\left\|x_{m}-x_{m}\right\| \leqslant \frac{\varepsilon}{2}$. There is also M s.t. $\forall n_{k} \geq M$

Take any $n_{k} \geq \max (N, \varepsilon)$. Then,

$$
\left\|x-x_{n}\right\| \leqslant\left\|x-x_{n_{k}}\right\|+\left\|x_{n_{k}}-x_{n}\right\| \leqslant \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon \quad \forall \quad \forall>N .
$$

(AC)
(exercise in Topology) $\quad 4<X,\left(X,\|\cdot\|_{X}\right)$ Banach space
$\left(Y, \|-H_{x}\right)$ is Banach $\Leftrightarrow Y_{\text {is closed }}$ in $\left(X,\|\cdot\|_{x}\right)$.
(\Leftrightarrow) Let $\left(y_{n}\right) \subset Y$ be Cauchy sequence. Then, since $Y \subset X$, it is ils cauchy in X and since it is Banach space, it has lime in X. Call it $x \in X$. By closedness of $Y, x \in Y$ and assertion follows,
(\Rightarrow) Let $\left(y_{n}\right) \subset Y$ be converging sequence, ice. $y_{n} \rightarrow X$ in $\|\cdot\|_{x}$ for some $x \in X$. Since any converging sequence is Cauchy, $X \in Y$.

This fact is quite simple but allows to handle mong Banach spaces.
(45)
X Banach space $\Leftrightarrow\left\{\sum_{k=1}^{\infty}\left\|x_{k}\right\|<\infty \Rightarrow \sum_{k=1}^{\infty} x_{k}\right.$ converges in $\left.X\right\}$
(\Leftrightarrow) Let $\left(X_{k}\right)$ be a Couch y sequence in X. We only need to check then it has convergent subsequence.
(nose subsequence sit. $\left\|x_{k_{n+1}}-x_{k_{n}}\right\| \leqslant 2^{-k} \Rightarrow \sum\left\|x_{\substack{k_{n+1}}}-x_{k_{n}}\right\|<\infty$
$\Rightarrow \sum x_{k_{n+1}}-x_{k_{n}}$ converges in $X \Rightarrow\left\{x_{k_{n}}\right\}$ converges in $X \Rightarrow$ $\left\{x_{n}\right\}$ converges in X. (as this is blandly sequence).
(\Rightarrow) it is easy as $\left(\sum_{k=1}^{n} x_{k}\right)_{n \in \mathbb{N}}$ is a cauchy sequence...

Recall $L^{p}(X, f, q), L^{p}(\Omega), L^{p}(a, b)$.
Recall why $L^{p}(a, b)=L^{p}[a, b]$.
(standard application of Hoister) Let $p \geq q$. Then
(BA)

$$
\begin{aligned}
& \| \text { stendend application of Hider } \\
& \|f\|_{q}^{q}=\int|f|^{q}=\int|f|^{q} \cdot 1 \leqslant\left(\int|f|^{p}\right)^{q / p}\left(\int 1\right)^{p-q / p} \\
& \text { Holder with } \frac{p}{q}>1=\frac{1}{\left(\frac{p}{q}\right)}+\frac{1}{2} \Rightarrow ?=\frac{1}{p} \frac{p-q}{p} \\
& \Rightarrow\|f\|_{q} \leqslant\|f\|_{p} \cdot[\mu(x)]^{p-q / p q}
\end{aligned}
$$

Note that $\frac{1}{x} \in L^{2}(1, \infty)$ but $\frac{1}{x} \& L^{1}(1, \infty)$.
(standonal app. of 14)
(B2) 66 serve that by $L 3$, set $L^{2}(0,1)$ is subset of $L^{1}(0,1)$. Therefore, if $\left(L^{2}(0,1),\|\cdot\|_{1}\right)$ were Banach space, $L^{2}(0,1)$ would be closed in $\left(L^{1}(0,1),\|\cdot\|_{1}\right)$.
The point is that there are fins f in L^{1} but not in L^{2}, for instance $\frac{1}{\sqrt{x}} \in L^{1}(0,1)$ but $\frac{1}{\sqrt{x}} \in L^{2}(0,1)$. To be more precise, let

$$
f_{n}(x)=\max \left(\frac{1}{\sqrt{x}}, n\right)
$$

Claim: $f_{n} \rightarrow \frac{1}{\sqrt{x}}$ in $L^{1} \Leftrightarrow \int\left|f_{n}-\frac{1}{\sqrt{x}}\right| \rightarrow 0$ by olominated convergence. This contradicts chlosedness of l^{2} in $\left(L^{1},\|,\|_{1}\right)$.
In general case, we consider $\frac{1}{x^{1 / p}}$ instead of $\frac{1}{x^{1 / 2}}$.
(BB) \leadsto HOMEWORK
(BU)

$$
\begin{aligned}
& \text { 44 } \begin{aligned}
1 & \leqslant p_{0}<p
\end{aligned} \leqslant p_{1}<\infty ., f \in L^{p}, \\
& f_{0}=f\left\|_{|f| \geq 1} \quad f_{1}=f\right\|_{|f| \leqslant 4} \\
& f_{1} \in L^{p_{4}} \text { since } \int\left|f_{1}\right|^{p_{1}}=\int|f|^{p_{1}} \|_{|f| \leqslant 1} \leqslant \int|f|^{p_{1}} \cdot\left(\frac{1}{|f|}\right)^{p_{1}-p} \\
& \\
& =\int|f|^{p}<\infty \\
& f_{0} \in L^{p_{0}} \text { since } \int\left|f_{0}\right|^{p_{0}}=\int|f|^{p_{0}} \|_{|f|>1}^{1<|f|} \leqslant \int|f|^{p_{0}}|f|^{p-p_{0}} \\
&
\end{aligned}
$$

(1)

Let f_{m} be Curly sequence in $C^{1}[0,1]$. Then f_{n}, f_{n}^{\prime} ave Country in ($[0,1]$ so by complateress, there are f, g s.t. $f_{m} \rightarrow f$, $f_{n}^{\prime} \rightarrow g$ uniformly. We have to check that $g=f^{\prime}$.
Indeed, for $n \in \mathbb{N}, \quad f_{n}(t)=f_{m}(0)+\int_{0}^{t} f_{n}^{\prime}(s)$ as and using inform convergence, $f(t)=f(0)+\int_{0}^{t} g(t) d s \Rightarrow f^{\prime}=g$ as desired
(C2) Suppose that $\left(P_{1}\|\cdot\|_{\infty}\right)$ is a Banach space. Note that $\sum \frac{x^{k}}{k!}$ converges absolutely $\left(\sum \frac{\left\|x^{k}\right\|}{k!} \leqslant \sum \frac{1}{k!}=e^{1}\right)$, By AS $\sum \frac{x^{k}}{k!}$ converges in l wat $\|-\|_{\infty}$. But we l(wol) $\sum \frac{x^{k}}{k!}=e^{x}$ and $e^{x} \& P$.

Detailed solution to CD
It can be cheesed that this is normed space. To prove the is a Banach piece, we need to demonstrate it is complete.
Let $\left\{f_{x}\right\}$ be a Cauchy sequence in $\left(C^{\wedge}[0,1],\|f\|+\left\|f^{\prime}\right\|\right)$. We need to prove that it converges in this space, i.e. There is $f \in C^{n}[0,1]$ such that
(*) $\left\|f_{n}-f\right\|_{\infty}+\left\|f_{n}^{\prime}-f^{\prime}\right\|_{\infty} \rightarrow 0$ when $n \rightarrow \infty$.
First, we note that

$$
\forall_{\varepsilon>0} \exists_{N(\varepsilon)} \forall_{n, m \geq N(\varepsilon)}\left\|f_{u}-f_{m}\right\|_{\infty}+\left\|f_{m}^{\prime}-f_{m}^{\prime}\right\|_{\infty} \leqslant \varepsilon
$$

in particular,

$$
\underset{\varepsilon>0}{\forall} \underset{N(\varepsilon)}{\exists} \underset{n, m \geq N(\varepsilon)}{\forall}\left\|f_{n}-f_{m}\right\|_{\infty} \leqslant \varepsilon,\left\|f_{n}^{\prime}-f_{m}^{\prime}\right\|_{\infty} \leqslant \varepsilon \text {. }
$$

Therefore, $\left\{f_{w}\right\},\left\{f_{w}^{\prime}\right\}$ are Cauchy sequences in $\left(C[0,1],\|-\|_{\infty}\right)$. As this space is complete, there are g, h $\in([0,1]$ such that
$(*)$. $f_{n} \rightarrow g$ in $\left([0,1)\right.$, i.e. $\left\|f_{n}-g\right\|_{\infty} \rightarrow 0$ as $_{n \rightarrow \infty}$
$(*) \cdot f_{x}^{\prime} \rightarrow h$ in $\left([0,1]\right.$, i.e. $\left\|f_{n}^{\prime}-h\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$. If we knew that $g \in C^{1}[0,1]$ and $g^{\prime}=h$, we could deduce (*).

To see this, we note that

$$
f_{x}(t)=f_{n}(0)+\int_{0}^{t} f_{n}^{\prime}(s) d s
$$

By convergence $(*)$; we have $f_{n}(t) \rightarrow g(t), f_{n}(0) \rightarrow g(0)$.
Moreover, by $(*)$, we also have $\int_{0}^{+} f_{n}^{\prime}(s) d s \rightarrow \int_{0}^{+} h(s) d s$.
(Indeed: $\left|\int_{0}^{t} f_{m}^{\prime}(s) d s-\int_{0}^{t} h(s) d s\right| \leqslant \int_{0}^{+}\left|f_{m}^{\prime}(s)-h(s)\right| d s \leqslant$

$$
\left.\leqslant 1 \cdot\left\|f_{n}^{\prime}-h\right\|_{\infty} \rightarrow 0\right)
$$

We conclude $g(t)=g(0)+\int_{0}^{t} h(s) d s$ which implies $g \in C^{1}[0,1]$ and $g^{\prime}=h$.

Rework to (1
(remark 16.10.2020).
The following verult is discussed in Andes is I:
THEOREM Let $\left\{f_{n}\right\} \subset C^{n}[0,1]$ such that

- $f_{m}(0)$ converges to some $a \in \mathbb{R}$.
- f_{n}^{\prime} converges uniformly to some $g \in([0,1]$.

Them there is $f \in C^{2}[0,1]$ such that $f_{x} \rightarrow f$ cmiformily and $f^{\prime}=g$.
PROOF: $f_{n}(t)=f_{n}(0)+\int_{0}^{t} f_{n}^{\prime}(s) d s$

$$
\Rightarrow \underset{t a[0,1]}{\forall} \lim _{n \rightarrow \infty} f_{n}(L)=a+\int_{0}^{t} g(s) d s .
$$

Let $f(t):=a+\int_{0}^{t} g(s) d s$. This function is $C^{1}[0,1]$.
Moreover

$$
\left\|f_{n}-f\right\|_{\infty} \leqslant\left|f_{n}(0)-a\right|+1 \cdot\left\|f_{n}^{\prime}-g\right\| \rightarrow 0
$$

Remark: The proof presented in Analysis I is much move complicated os it is performed without wotion of integral.
(3)

Then, $C^{1}[0,1]$ is dosed in

- $\|f\|_{A}$ is a norm on $C^{1}\{[0,1]$ as it is a norm
$\left([0,1]\right.$. Suppose $\left(C^{1}[0,1],\|-\|_{A}\right)$ is Banach! Let ($\left.C[0,1],\|\cdot\|_{\infty}\right)$.
$\left([0,1]\right.$. Suppose $\left(C^{1}[0, \mid],\|\cdot\|_{A}\right)$ is Banach! Let f be ${ }_{n}$
(i.e. $\left.\left|x-\frac{1}{2}\right| \cdot 2\right)$. Let p_{n} be a self of polynomids it. $\left\|f-p_{m}\right\|_{\infty}^{2} \rightarrow 0$. No te that $P_{n} \in C^{1}([0,1])$ so we get contradiction.
(4) \leadsto HOMEWORK
(5)

First, $\left(C_{0}(\mathbb{R}),\|\cdot\|_{\infty}\right)$ is a normed space: the proof is similar as for $\left([0,1],\|\cdot\|_{\infty}\right.$, we only need to check that $\|f\|_{\infty}<\infty$ for $f \in C_{0}(\mathbb{R})$. But this follows from varnishing at infinity. Indeed, there is R such that $|f(x)| \leqslant 1$ for $|x|>R$.
Then $\|f\|_{\infty} \leqslant \underbrace{\sup _{|x| \leqslant R}|f(x)|+1}_{<\infty \text { by contiminity }}+\underbrace{\sup ^{|x|}|f(x)|}_{|x|\rangle_{R}}<\infty$.
To prove that $\left(C_{0}(\mathbb{R}),\|\cdot\|_{\infty}\right)$ we need to establish completeness. Let $\left\{f_{n}\right\}$ be a Cauchy seopence.
(ANDIDATE FOR THE LIMIT: We use completeness of $\left[\left[-R_{1} R\right]\right.$ for each $R>0$. We have that $\left\{f_{n}\right\}$ is also Cauchy in $\left(C[-R, R),\|\cdot\|_{\infty}\right)$ so it converges in $\left([-R, R)\right.$ to some $f^{R} \in([-R, R] \quad \forall R \in \mathbb{N}$. By uniqueness of the limit $f^{R+1}(x)=f^{R}(x) \quad \forall_{x \in[-R, R]}$.
Hence, we can define $f(x)=f^{R}(x) \quad \forall x \in[-R, R]$ aud $f \in C(\mathbb{R})$. To conclude, we need to prove that $f \in C_{0}(\mathbb{R})$ oud $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$.

To see $\left\|f_{n}-f\right\|_{\infty} \rightarrow 0$, we unite

$$
\begin{aligned}
& \left|f_{n}(x)-f(x)\right|=\lim _{m \rightarrow \infty}\left|f_{n}(x)-f_{m}(x)\right| \text { Idon'tknow } \\
& \text { \& lime exists. }
\end{aligned}
$$

Hence, $\left\|f_{n}-f\right\|_{\infty} \leqslant \liminf _{m \rightarrow \infty}\left\|f_{n}-f_{m}\right\|_{\infty}$.
Let $\varepsilon>0$. Since $\left\{f_{n}\right\}_{n}$ is Cauchy, there is $N(\varepsilon)$ such that $\forall \forall_{n_{4} N(\varepsilon)}\left\|f_{n}-f_{m}\right\| \leqslant \varepsilon$. If $n \geq N, \liminf _{m \rightarrow \infty}\left\|f_{n}-f_{m}\right\|_{\infty} \leqslant \varepsilon$.

It follows that $\left\|f_{n}-f\right\|_{\infty} \leqslant \varepsilon \quad \forall \quad n \geqslant N(\varepsilon)$ so that $\left\|f_{n}-f\right\|_{\infty} 0$ ass $n \rightarrow \infty$.

To see that $f(x) \rightarrow 0$ 0.5 $x \rightarrow \infty$ we write

$$
|f(x)| \leqslant\left|f(x)-f_{n}(x)\right|+\left|f_{n}(x)\right| \leqslant\left\|f-f_{n}\right\|_{\infty}+\left|f_{n}(x)\right|
$$

Fix $\varepsilon>0$. Choose n so that $\left\|f-f_{n}\right\|_{\infty} \leqslant \frac{\varepsilon}{2}$. Since $f_{n} \in C_{0}(\mathbb{R})$, choose $R>0$ so that $\left|f_{n}(x)\right| \leqslant \frac{\xi}{2}$ for $|x|>R$. Hence, for such $R \quad|f(x)| \leq \varepsilon$, whenever $|x|>R$.
(6) (A) $\left(C_{\text {LIP }}[0,1), \|_{\text {LIP }}\right)$ is not a Banach pace as $1 \in C_{L, P}[0,1]$ but $|1|_{L, P}=0$.
(B) $\left(C_{L L p}[0,1],\|\cdot\|_{\infty}\right)$ is not a bewach space because noun oles not contain information on Lipschitz constant.
Suppose it is. Let $f(x)=\sqrt{x}$. Define f_{n} as:

$$
f_{n}(x)= \begin{cases}\sqrt{x} & |x| \geq \frac{1}{n} \\ \sqrt{\frac{1}{n}} & |x|<\frac{1}{n}\end{cases}
$$

f_{n} is Lipschilt z contimus on $[0,1]$:

- if $x, y \in\left[0, \frac{1}{n}\right] \quad\left|f_{n}(x)-f_{n}(y)\right|=0 \leqslant|x-y|$.
- if $x, y \in\left[\frac{1}{n}, 1\right] \quad\left|f_{n}(x)-f_{n}(y)\right| \leqslant\left\|f_{n}^{\prime}\right\|_{\infty}|x-y|$ by mean value theorem. The supve mum is compated on $\left[\frac{1}{n}, 1\right] . f_{n}^{\prime}(x)=\frac{-1}{2 \sqrt{x}} \Rightarrow\left\|f_{n}^{\prime}\right\|_{\infty}=\frac{\sqrt{n}}{2}$.

$$
\begin{aligned}
& \text { - if } x \in\left[0, \frac{1}{n}\right], y \in\left[\frac{1}{4}, 1\right] \\
& \begin{aligned}
|f(x)-f(y)| & \leqslant \underbrace{\left|f(x)-f\left(\frac{1}{n}\right)\right|}_{=0}+\left|f\left(\frac{1}{n}\right)-f(y)\right| \leqslant \\
& \leqslant \frac{\sqrt{n}}{2}\left|y-\frac{1}{n}\right| \leqslant \frac{\sqrt{n}}{2}|y-x| \quad \vee .
\end{aligned}
\end{aligned}
$$

Moveover, $f_{n} \rightarrow f$ wort $\|\cdot\|_{\infty}$. Inoleed,

$$
\sup _{x \in\left[Q_{1} 1\right]}\left|f_{n}(x)-f(x)\right|=\sup _{v \in\left[0, \frac{1}{n}\right]}\left|\frac{1}{\sqrt{n}}-\sqrt{x}\right| \leqslant \frac{2}{\sqrt{n}} .
$$ as $n \rightarrow \infty$.

It followr that $f \in C_{L_{1 P}}\left[O_{1} 1\right]$ which is controdiction!

$$
\begin{aligned}
& \left.\frac{|f(x)-f(y)|}{|x-y|}\right|_{x=0}=\frac{\sqrt{4}}{4} \rightarrow \infty \text { as } y \rightarrow 0 \text { so } \\
& |f|_{\text {LIP }}=\infty
\end{aligned}
$$

(C) Let $\left\{f_{n}\right\}$ be Country in $\left(\mathcal{C}_{L, P}[0,1],\|\cdot\|_{\infty}+\left.|\cdot|\right|_{L P}\right)$.

$$
\begin{aligned}
& \begin{array}{lll}
\forall & \forall & \forall \\
\varepsilon>0, n \geq N
\end{array}\left\|f_{n}-f_{m}\right\|_{\infty}+\left|f_{m}-f_{m}\right|_{\text {Lip }} \leqslant \varepsilon . \\
& \Rightarrow \forall_{\varepsilon 70}^{\forall} \quad \ni \quad \forall \quad \forall, n \geq N \quad\left\|f_{n}-f_{m}\right\|_{\infty} \leq \varepsilon \Rightarrow \\
& \left([0,1) \text { Banols } \Rightarrow f_{u} \rightarrow f \sim C[0,1]\right. \text {, } \\
& f \in([0,1] \text {. }
\end{aligned}
$$

So f is our candidate for the limit in C CIP.
1: is $f \in C_{C \mid P}[O, D]$?
It means ${ }_{C}|f(x)-f(y)| \leqslant C|x-y|$.
But we have

$$
\begin{aligned}
\left|f_{n}(x)-f_{n}(y)\right| & \leqslant\left|f_{n}\right|_{L p}|x-y| \\
& \leqslant\left(\sup _{n}\left|f_{n}\right|_{L \mathbb{P}}\right)|x-y|
\end{aligned}
$$

since Cauchy sequence is always bounded ct. (A3). We send $u \rightarrow \infty$ on the LHS to get

$$
|f(x)-f(y)| \leqslant\left(\sup \left|f_{u}\right|_{\text {ip }}\right)|x-y|
$$

2. Dies $\left\|f_{n}-f\right\|_{\infty}+\left|f_{n}-f\right|_{\text {LIP }} \rightarrow 0$ as $n \rightarrow \infty$.

We know that $\left\|f_{4}-f\right\|_{\infty} \rightarrow 0$ as $n \rightarrow \infty$ ((this is the way we chose f iso we only need to show $\left|f_{n}-f\right|_{\text {Lip }} \rightarrow 0$. So we have to prove

$$
\limsup _{n \rightarrow \infty} \sup _{x \neq y} \frac{\left.\mid f_{n}(x)-f(x)\right)-\left(f_{n}(y)-f(y)\right) \mid}{|x-y|} \stackrel{?}{=} 0 .
$$

We can unite it as
(x) $\operatorname{limsep}_{n \rightarrow \infty} \operatorname{cup}_{x \neq y} \limsup _{n \rightarrow \infty} \frac{\left|\left(f_{n}(x)-f_{m}(x)\right)-\left(f_{n}(y)-f_{m}(y)\right)\right|}{|x-y|}=?$?

However
$\sup _{x \neq y} \limsup _{m \rightarrow \infty} \ldots \leq \limsup _{m-\infty} \sup _{x \neq y} \ldots$

$$
\begin{aligned}
& \text { so }(x) \leqslant \limsup _{n, m \rightarrow \infty} \underbrace{\sup _{x \neq y} \frac{\left|\left(f_{n}(x)-f_{m}(x)\right)-\left(f_{u}(y)-f_{m}(y)\right)\right|}{(x-y \mid}} \\
&=\left|f_{n}-f_{m}\right| \\
&=\limsup _{n \rightarrow \infty}\left|f_{u}-f_{m}\right|_{L P}=0 \text { as }\left\{f_{n}\right\} \text { is }
\end{aligned}
$$

Couclyy wort $\mid \cdot I_{\text {LIP }}$.
(7) \leadsto Home work.
(3) This is application of results for L^{P} with Counting neasme. Indeed,
$\int|f|^{p} d \mu=\sum\left|f_{i}\right|^{p} \quad\left(\right.$ for $\left.f=\left(f_{1}, f_{2}, \ldots\right)\right) .\binom{\mu$ counting }{ nearme }\square.
(D2) important!!!) \rightarrow this exercise allows to decree many properties from considering finite sequences ... For $1 \leqslant p<\infty$:

$$
x-\sum_{i=1}^{m} x_{i} e_{i}=\left(0,0, \ldots, 0, x_{\text {int }}, x_{\text {in e }}, \cdots\right)
$$

$\left\|x-\sum_{i=1}^{M} x_{i} e_{i}\right\|_{p}^{p}=\sum_{k=n+1}^{\infty}\left|x_{k}\right|^{p} \rightarrow 0$ as $n \rightarrow \infty$ since the series $\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}$ is convergent ($N_{\text {this is tail of convergent series). }}^{k=n+1}$.
Case $p=\infty$ is NOT true. Take for instance $x=(1,1,1, \ldots, 1, \ldots) \in l^{\infty}$. (sequence of 1). Then $x-\sum_{i=1}^{n} x_{i} e_{i}=(0,0,0, \ldots, 0,1,1, \ldots)$
Se its norm in l^{∞} is 1 for isl n.
(E1) $\left(E,\|\cdot\|_{E}\right)-B S, \quad C \subset E$ s.t. C is convex, C is open and $O \in C$.

$$
\forall x \in E \quad \rho(x)=\inf \left\{\alpha>0 ; \frac{x}{\alpha} \in C\right\}
$$

ρ is called Minkouski functionel
(a)

$$
\begin{aligned}
& \quad \rho(\gamma x)=\gamma \rho(x) \quad \forall \gamma>0 \\
& \quad \text { II } \\
& \inf \left\{\alpha>0: \frac{\gamma x}{\alpha} \in C\right\}=\inf \left\{\alpha>0: \frac{x}{\gamma^{\beta / \gamma}} \in C\right\} \\
& = \\
& \inf \left\{\beta \cdot \gamma: \frac{x}{\beta} \in C, \beta \cdot \gamma>0\right\} \\
& = \\
& \gamma \cdot \inf \left\{\beta>0 ; \frac{x}{\beta} \in C\right\}=\gamma \cdot \rho(x) .
\end{aligned}
$$

(6)

$$
\begin{aligned}
& \underbrace{\rho(x+y)} \leqslant \rho(x)+\rho(y) . \quad \forall_{x, y \in E} \\
& \inf \left\{\alpha>0: \frac{x+y}{\alpha} \in C\right\} \leqslant \rho(x)+\rho(y)
\end{aligned}
$$

It would be sufficient to have $\frac{x+y}{g(x)+g(y)} \in C$.

$$
\Leftrightarrow \frac{x}{\rho(x)} \cdot \frac{\rho(x)}{\rho(x)+f(y)}+\frac{y}{\rho(y)} \cdot \frac{\rho(y)}{\rho(x)+g(y)} \in C
$$

We need $\frac{x}{\rho(x)}, \frac{y}{\rho(y)} \in C \rightarrow$ this is NOT true in general
But there is a sequence $\alpha_{n} \searrow \rho(x), \beta_{n} \searrow \varphi(y)$ s.t.

$$
\begin{aligned}
& \frac{x}{\alpha_{m}}, \frac{y}{\beta_{n}} \in C . \Rightarrow \\
& \Rightarrow \frac{x}{\alpha_{m}} \cdot \frac{\alpha_{n}}{\alpha_{m}+\beta_{m}}+\frac{y}{\beta_{n}} \cdot \frac{\beta_{m}}{\alpha_{m}+\beta_{m}} \in C \Rightarrow \frac{x+y}{\alpha_{m}+\beta_{n}} \in C . \\
& \Rightarrow \rho(x+y) \leq \alpha_{m}+\beta_{n} \xrightarrow[n]{\longrightarrow} \rho(x)+\rho(y)
\end{aligned}
$$

(c) There is a constant M s.t. $\varphi(x) \leq M\|x\|_{E}$.

$$
\begin{aligned}
& 0 \in C, \quad C \text { is open } \Rightarrow \exists_{r} B(0, r) \subset C . \\
& \forall \quad \frac{x}{\|x\|_{E}} \cdot \frac{r}{2} \in C \Rightarrow \frac{x}{\|x\|_{E} / r} \in C \\
& \Rightarrow \rho(x) \leq \frac{2\|x\|_{E}}{r}=C\|x\|_{E} \quad\left(C=\frac{2}{v}\right)
\end{aligned}
$$

(d) $C=\{x \in E: \rho(x)<1\}$.
$\left(\Rightarrow x \in C, O \in C, C\right.$ is open, $(1+\varepsilon) x \in C \nexists_{\varepsilon}$.

$$
\Rightarrow \frac{x}{\frac{1}{1+\varepsilon}} \in C \Rightarrow \rho(x) \leqslant \frac{1}{1+\varepsilon}<1
$$

(F) $x: \rho(x)<1 \Rightarrow \exists_{\alpha<1} \quad \frac{x}{\alpha} \in C$

$$
\int_{0}^{x^{x} / 2}
$$

By converity, $x \in C$.

