Functional Analysis, PS8 VER: 17.12,2020 (=) If $\{e_{\lambda}\}_{AGA}$ OB, $\begin{cases} \forall x = \Sigma \langle e_{\lambda}, x \rangle e_{\lambda} \\ d \in A \end{cases}$. Suppose that $\langle e_d, \kappa \rangle = 0$ \forall_x . Then, indeed $\kappa = 0$. (€) Suppose { ez } is not OB, i.e. there is orthonormal set feaddog > feadda. Then, In particular, there is some f, 11fl = 1 and f & Ealder but f is 11 Se, 3564. It follows that (files) = 0 Lut f = 0. Contradiction.

In this way it was proved that {eikx} is an orthonormal basis of L²(0,2TT).

2) Led Zood OB (=) H= span Le: 26A3. (=>) X = Z < Xily) ly and thissenies is Guv. det in H so each X in H can be written as on element of Span (exiden 3. () For if not, there is f # {ed}ded, If 11=1. As f I fez ? => f I spon sez ? => f + span { (2 } => f + H => f=0. DdO; Ve want <F, x>=0 / x = spensez?. there is Kn Esponder }, Kn -> x. Ue have (f, xn) $=0. So \langle f_1 x \rangle = \langle f_1, \lim_{\lambda \to \infty} x_{\lambda} \rangle = \lim_{\lambda \to \infty} \langle f_1 x_{\lambda} \rangle$ = 0.

3 Using Powerel's identity (+6(0,1)) $\sum_{k=1}^{\infty} \left| \int_{0}^{t} x^{3} f_{m}(x) dx \right|^{2} = \sum_{k=1}^{\infty} \left| \int_{0}^{1} \frac{1}{x} f_{m}(x) dx \right|^{2}$ $= \sum_{h=1}^{2} \langle 1|_{k \in \{0, E\}} r^{3}, f_{n}(x) \rangle^{2} = \| 1|_{k \in \{0, E\}} r^{3} \|_{2}^{2}$ $= \left| \int_{0}^{+} \frac{1}{x} dx \right|^{2} = \left(\frac{1}{7} t^{2} \right)^{2} \cdot \frac{\partial B}{\partial t}$ 5 H-separable. Let Exe 2 contable clense set. Using Gram-Schmiolt ve construct Syk? which is orthonormal set in H and $spon(x_{1}, x_{2}, \dots) = spon(y_{2}, y_{2}, \dots)$ $= \overline{Spon}(x_{21}, x_{23}, ...) =$ We have $H = (x_{21}x_{21} \cdots)$ = <u>Span(y11 y2,...)</u>. Per Enflo. => {4i} louses of H. YEIN.

 (\mathbf{b}) $\mathbf{H} = \mathbf{L}^2$. (for H-sepanable) $T: \mathcal{H} \rightarrow \ell^2 \quad Tx = \left(\langle x_1 e_2 \rangle, \langle x_1 e_2 \rangle, \dots \right).$ • Injective : $T_X = 0 \Rightarrow \langle x_i e_i \rangle = 0 \quad \forall_i$ $\Rightarrow x = 0$ (by (2)). surjective : y ∈ l², x = ¿ y; e;. Then, we have TX = y, • ||Tx|| = ||x|| $\lambda^2 + H$ $\sqrt{}$. $\|T_X\|_2^2 = \sum \langle x_i e_i \rangle^2 = \|x\|_H^2$ (7) $v_0 = 4$ $v_m = sgn(sin(2^nT+))$ This is orthonormal set. Indeed $\int v_n^2 = 1$ Noveover, $\int_{-\infty}^{1} \frac{1}{2} \cdot \operatorname{sgn}(\operatorname{sin}(2^{n} \Pi + 1)) = 0$ ous sin spends the some time above and below zero.

Finally, $\langle v_n, v_m \rangle =$ $= \int_{0}^{1} \operatorname{sgn}(\operatorname{sin}(2^{h}\overline{1}+)) \operatorname{sgn}(\operatorname{sin}(2^{m}\overline{1}+)) \operatorname{eff}$ $\begin{array}{c}
2\pi/2m-1 \\
(-) \\
2\pi/2m-1 \\
2\pi/2n-1 \\
4
\end{array}$ $\frac{2^{n}T}{T} = 2^{n-1}$ sin (2^hTt) os villates $\frac{2^{m}T}{2T} = 2^{m-1}$ sin (2^mTt) oscillater h > n. Let $A_i = \left[(i-1) \frac{2V}{2^{m-1}}, i \frac{2IT}{2^{m-1}} \right], \bigcup A_i = \left[0_1 2II \right]$ $\int ... = \sum \int ... = \sum \left[\int ... + \int ... \right]$ $\begin{array}{rcl} \theta_i & & & \\ \theta_i^{+} & & & \\ \end{array}$ $\begin{array}{rcl} \theta_i^{+} & & & \\ \theta_i^{-} & & & \\ \end{array}$ $\begin{array}{rcl} \theta_i^{+} & & & \\ \end{array}$ $\begin{array}{rcl} \theta_i^{-} & & & \\ \end{array}$ $\begin{array}{rcl} \theta_i^{-} & & & \\ \end{array}$ $\begin{array}{rcl} \theta_i^{+} & & & \\ \end{array}$ $\begin{array}{rcl} \theta_i^{+} & & & \\ \end{array}$ $\begin{array}{rcl} \theta_i^{-} & & \\ \end{array}$ But sin (2^m IT +) on each of this subintervels spends the some time above and below. => {r; } is orthonornal system

But it is not basis. Consider $r_1 v_2$. We down that $(v_1 v_2, v_i) = O$ to but $v_1 v_2 \neq O$. For i=4, i=2 it is clear. For $i \ge 3$ $\int r_1 r_2 r_i = 0$ by the same method as obove. (3) $(\gamma_i e_i) \rightarrow 0$ $i \rightarrow \infty$. This Follows from Bessel's inequality. Th: Various applications of this fact. 13 Let H be separable HS, {x_n}_{n≥1} ⊂ H bold. Then {x_n}_{n≥1} has a subsequence converging reality to some x GH.

PROOF: We need to find subsequence cuch that <rm, y> -> <x, y> tyoH for some xeH. First, we prove it for y=ei, i=1,2,... Ue an olways find subsequence such that $\langle x_n^{(2)}, e_j \rangle$ is convergent to some a elR. Further, we can find subsequence of the found subsequence $X_m^{(2)}$ s.t. $\begin{array}{cccc} & (2) & e_2 \\ & \langle x_m & e_2 \\ & \langle x_m & e_1 \\ & & \rangle \end{array} \begin{array}{cccc} a_2 \\ & a_1 \end{array}$ N->00 $h \rightarrow \infty$. We constant formily of subsequences $X_n \supset (x_n^{(4)}) \supset (x_n^{(2)}) \supset \dots$ such that $\langle x_n^{(i)}, e_k \rangle \rightarrow a_k$ $\overset{}{k=4, \dots, \tilde{k}}$. To obtain one sequence, we define $y_n = \chi_n^{(n)}$

Then, $(y_n, e_i) \rightarrow Q_i$ $\mathcal{F}_{i \in N}$ (because starting from n=i, $y_n \in X^{(i)}$). This is called "fiagonal procedure".

We want an = <x, ei > for some XEH. Ve con take $x = \sum a_i e_i$. But this work (we don't know anything about convergence of this series).

We proceed differently. First, Consider G = = span (ez, ez,...). On G we can define

 $\{ (x) = \lim_{n \to \infty} (y_n, x)$

 $(is bounded on G: |((x)) \leq ||| ||x|| \leq \leq (\sup_{x \in U} ||y_n||) ||x|| \leq ||x||$

As H = G => & has a unique extension to H ilenoted as & ound by RRT Fz such that $\ell(x) = (3, x).$

Coming back to G we see that

 $\langle y_m, e_i \rangle \rightarrow \langle z_i e_i \rangle$ $n \rightarrow \infty$

As spon (e2, t2, ...) = H we have

 $\langle \gamma_m, x \rangle \longrightarrow \langle z, x \rangle \quad \forall_{x \in H}. (T).$

so that yn->2.