On dual spaces of L[∞](q,n), L[∞]...

The following steps show that there is no bounded isomorphism between duals of ["(91), (and $L^{(q_1)}, L^{(1)}$.

STEP 1. Both $\lfloor \\ (0,1) \\ ond \\ l \\ contain uncountable subsets <math>\{x_a\}_{a \in A}$ s.t. $\|x_{a_1} - x_{a_2}\| \ge 2$. Indeed, in l one can take all binary sequences (we put 0 or 1 on each coordinate).

In $L^{\infty}(0,1)$ we can perform a similar construction Consider sequence of intervals $[\frac{1}{2}, 1], [\frac{1}{4}, \frac{1}{2}], [\frac{1}{8}, \frac{1}{4}], \cdots$ and take all functions being 0 or 1on these intervals. Two proves that $L^{\infty}, L^{\infty}(0,1)$ one not separable.

STEP 2. On the other hand, (and L'(91) are separable. Findeed, for l' take Schauder basis SeizieI and consider all finite linear combinations with national coefficients. Similarly, for L¹(0,1)

use density of ([Q]) in (^(O1) ond then, density of polynomials in (TO, 1). Firolly consider polynomials with votional coefficients_

STEP 3. Here is a general fact: for a Banach space E ve have

Et is separable =) E is separable

(the opposite is not true as Steps 1 and 2 shows). For a short and rimple proof see the book of Brezis - Theorem 3.26.

STEP 4. If $(l^{\infty})^* \simeq l^1$, $(l^{\infty})^*$ would be separable. It follows that l' would be separable vaising contradiction. Similarly, for L°(0,1).

Π_