Functional Analysis (WS 20/21), Problem Set 1

(normed and Banach spaces, examples $(L^p, C^k, \text{sequences})$)

Compiled on 15/10/2020 at 3:46pm

normed spaces, Banach spaes

- A1. Example 1. Is C[0,1] (space of continuous functions on [0,1]) with supremum norm a normed space? What about $C(\mathbb{R})$? What about C(0,1) (i.e. space of continuous functions on (0,1))?
- A2. Example 2. Let $|f|_{C^1} := ||f'||_{\infty}$. Is $(C^1[0,1], |\cdot|_{C^1})$ (space of continuously differentiable functions on [0,1]) a normed space?
- A3. Let $(X, \|\cdot\|_X)$ be a normed space and suppose that $\{x_n\}_{n\in\mathbb{N}}\subset X$ is a Cauchy sequence.
 - Prove that the sequence $\{x_n\}_{n\in\mathbb{N}}$ is bounded: $\sup_{n\in\mathbb{N}} ||x_n|| < \infty$.
 - Assume that $\{x_n\}_{n\in\mathbb{N}}$ has a subsequence $\{x_{n_k}\}_{n_k\in\mathbb{N}}$ such that $x_{n_k}\to x$ in X. Prove that $x_n\to x$ in X.
- A4. Let $(X, \|\cdot\|_X)$ be a Banach space and $Y \subset X$ a subset of X. Prove that $(Y, \|\cdot\|_X)$ is a Banach space if and only if Y is closed in X.
- A5. Prove that a normed space $(X, \|\cdot\|_X)$ is a Banach space if and only if every absolutely convergent series (i.e. $\sum_{k=1}^{\infty} \|x_k\|_X < \infty$) is convergent in X (i.e. sequence of partial sums is convergent in X).

L^p spaces

We write L^p for $L^p(X, \mathcal{F}, \mu)$ where \mathcal{F} is a σ -algebra and μ is a σ -finite measure on (X, \mathcal{F}) . We write $\|\cdot\|_p$ for L^p norm. We know that $(L^p, \|\cdot\|_p)$ is a Banach space (for $1 \le p \le \infty$).

B1. Suppose $\mu(X) < \infty$. Check that $L^p \subset L^q$ whenever $q \leq p$ and

$$||f||_q \le \mu(X)^{\frac{1}{q} - \frac{1}{p}} ||f||_p.$$

Prove that (in general) assumption $\mu(X) < \infty$ is necessary.

- B2. Consider linear space $L^2(0,1)$ equipped with $\|\cdot\|_1$ norm. Is $(L^2(0,1), \|\cdot\|_1)$ a normed space? Is it a Banach space?
- B3. (Littlewood's interpolation inequality) Let $f \in L^p \cap L^q$ for some $1 \leq p, q \leq \infty$. Prove that for $r \in [p,q]$ we have $f \in L^r$ and $||f||_r \leq ||f||_p^{\alpha} ||f||_q^{1-\alpha}$. for some $\alpha \in [0,1]$. *Hint:* let $\alpha \in [0,1]$ and write $\frac{1}{r} = \frac{\alpha}{p} + \frac{1-\alpha}{q}$.
- B4. Let $f \in L^p$. Prove that for any p_0 and p_1 such that $1 \leq p_0 < p$ and $p < p_1 < \infty$ there are $f_0 \in L^{p_0}$ and $f_1 \in L^{p_1}$ such that $f = f_0 + f_1$. Thus, f can be always decomposed for "better" and "worse" part. *Hint:* truncate f at your favourite level.

Spaces of continuous and differentiable functions $(C, C^1, C^k, C_0, ...)$

C1. Prove that space $C^1[0,1]$ of functions continuously differentiable on [0,1], equipped with the norm $||f||_{C^1} = ||f||_{\infty} + ||f'||_{\infty}$ is a Banach space.

- C2. Let \mathcal{P} be the space of all polynomials on [0, 1] equipped with supremum norm. Prove that \mathcal{P} is a normed space but it is not a Banach space. Is \mathcal{P} closed in C[0, 1]? *Hint*: Use Problem A5.
- C3. Let $||f||_A := \sup_{x \in [0,1]} |f(x)|$. Is $(C^1[0,1], ||\cdot||_A)$ a normed space? Is it a Banach spaces?
- C4. Let $||f||_B := |f(0)| + \sup_{x \in [0,1]} |f'(x)|$. Prove that $(C^1[0,1], ||\cdot||_B)$ is a normed space. Is it a Banach spaces?
- C5. Prove that the space $C_0(\mathbb{R})$ of continuous functions "vanishing at infinity" (i.e. $f(x) \to 0$ whenever $|x| \to \infty$) equipped with the supremum norm is a Banach space.
- C6. Consider space $C_{LIP}[0,1]$ of Lipschitz continuous functions on [0,1], i.e. of functions $f \in C[0,1]$ such that

$$|f|_{LIP} := \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|} < \infty.$$

- a. Is $(C_{LIP}[0,1], |\cdot|_{LIP})$ a normed space? Is it a Banach space?
- b. Is $(C_{LIP}[0,1], \|\cdot\|_{\infty})$ a normed space? Is it a Banach space?
- c. Is $(C_{LIP}[0,1], \|\cdot\|_{\infty} + |\cdot|_{LIP})$ a normed space? Is it a Banach space?
- C7. For $\alpha \in (0, 1)$ we define space $C^{\alpha}[0, 1]$ of Hölder continuous functions with exponent α , i.e. of functions $f \in C[0, 1]$ such that

$$|f|_{\alpha} := \sup_{x \neq y} \frac{|f(x) - f(y)|}{|x - y|^{\alpha}} < \infty.$$

In this problem we take (for simplicity) $\alpha = \frac{1}{2}$. Are the following pairs normed spaces? Are they Banach spaces? Justify your answer.

a. $(C^{1/2}[0,1], |\cdot|_{LIP})$ b. $(C^{1/2}[0,1], |\cdot|_{1/2})$ c. $(C^{1/2}[0,1], ||\cdot||_{\infty} + |\cdot|_{LIP})$ d. $(C^{1/2}[0,1], ||\cdot||_{\infty} + |\cdot|_{1/2})$ e. $(C^{1/2}[0,1], ||\cdot||_{\infty} + |\cdot|_{LIP} + |\cdot|_{1/2})$

Spaces of sequences l^p , c, c_0

D1. For $1 \le p < \infty$ we define l^p as the space of sequences summable with *p*-th power and equipped with the norm $(\infty)^{1/p}$

$$\left\| (x_k)_{k=1}^{\infty} \right\|_p = \left(\sum_{k=1}^{\infty} |x_k|^p \right)^{1/p}$$

For $p = \infty$, we define l^{∞} as complex-valued bounded sequences with the norm

$$\left\| (x_k)_{k=1}^{\infty} \right\|_p = \sup_{k \in \mathbb{N}} |x_k|.$$

Justify briefly that l^p is a Banach space.

D2. (Schauder basis for l^p) Consider l^p where $1 \le p < \infty$ and unit vectors $e_i = (0, 0, ..., 0, 1, 0, ...)$ where 1 is on the *i*-th coordinate. Prove that for any $x = (x_1, x_2, ...) \in l_p$, $\sum_{i=1}^n x_i e_i \to x$ converges in l_p , i.e. that

$$\left\|\sum_{i=1}^n x_i e_i - x\right\|_p \to 0.$$

We say that system $\{e_i\}_{i\in\mathbb{N}}$ is a Schauder basis of l_p . How the situation changes for $p=\infty$?

- D3. Consider space of real-valued sequences $(x_0, x_1, x_2, ...)$ such that $\lim_{k\to\infty} x_k$ exists and equip it with a supremum norm, i.e. $\|(x_k)_{k=1}^{\infty}\|_{\infty} = \sup_k |x_k|$. Prove that this is a Banach space (it is usually denoted with c).
- D4. Similarly, consider subspace of c of sequences $(x_0, x_1, x_2, ...)$ converging to 0 equipped with supremum norm (it is usually denoted with c_0). Prove that it is a Banach space.
- D5. (Schauder basis for c_0) Consider problem D2. with space c. More precisely, given unit vectors $e_i = (0, 0, ..., 0, 1, 0, ...)$ where 1 is on the *i*-th coordinate, prove that for any $x = (x_1, x_2, ...) \in c_0, \sum_{i=1}^n x_i e_i \to x$ converges in c_0 , i.e. that

$$\left\|\sum_{i=1}^n x_i e_i - x\right\|_{\infty} \to 0$$

Note once again, that according to Exercise D2., this is not the case for l^{∞} but c_0 is a closed subset of l^{∞} .

- D6. Consider subset of c of sequences converging to 1. Can this subset be a normed space (no matter how the norm is defined)?
- D7. Consider set l^1 with l^{∞} norm. Is it a normed space? Is it a Banach space?

Additional problems

E1. (Minkowski functional) Let $(E, \|\cdot\|_E)$ be a normed space and $C \subset E$ be an open and convex subset with $0 \in C$. For every $x \in E$ we define:

$$\rho(x) = \inf \left\{ \alpha > 0 : \frac{x}{\alpha} \in C \right\}.$$

Prove the following properties of ρ which is called Minkowski functional of C:

- (a) $\rho(\lambda x) = \lambda \rho(x)$ for any $\lambda > 0$ and $x \in E$,
- (b) $\rho(x+y) \le \rho(x) + \rho(y)$ for any $x, y \in E$,
- (c) there is a constant M so that $0 \le \rho(x) \le M \|x\|_E$ for all $x \in E$,
- (d) $C = \{x \in E : \rho(x) < 1\}.$
- E2. (Minkowski functional as a norm) Under assumptions of Problem E1., suppose additionally that C is symmetric i.e. C = -C and bounded. Prove that ρ defines a norm on E which is equivalent to the norm $\|\cdot\|_{E}$.
- E3. (generalized Hölder inequality) Let $f_i \in L^{p_i}$ for i = 1, ..., n where $\sum_{i=1}^n \frac{1}{p_i} = \frac{1}{p}$. Prove that $f_1 f_2 ... f_n \in L^p$. More precisely, prove the bound

$$||f_1 f_2 \dots f_n||_p \le ||f_1||_{p_1} ||f_2||_{p_2} \dots ||f_n||_{p_n}.$$

Hint: one can simplify to the case p = 1, then proceed by induction.

E4. (generalized Minkowski inequality) Let (X, \mathcal{F}, μ) and (Y, \mathcal{G}, ν) be two measure spaces. Let $F: X \times Y \to \mathbb{R}$ be a measurable and nonnegative map. Prove that

$$\left|\int_{Y}\left|\int_{X}F(x,y)d\mu(x)\right|^{p}d\nu(y)\right|^{\frac{1}{p}} \leq \int_{X}\left|\int_{Y}|F(x,y)|^{p}d\nu(y)\right|^{\frac{1}{p}}d\mu(x).$$

Deduce from this standard Minkowski inequality.