Functional Analysis (WS 20/21), Problem Set 1 (normed and Banach spaces, examples (L^{p}, C^{k}, sequences))

Compiled on $15 / 10 / 2020$ at $3: 46 \mathrm{pm}$

normed spaces, Banach spaes

A1. Example 1. Is $C[0,1]$ (space of continuous functions on $[0,1]$) with supremum norm a normed space? What about $C(\mathbb{R})$? What about $C(0,1)$ (i.e. space of continuous functions on $(0,1))$?

A2. Example 2. Let $|f|_{C^{1}}:=\left\|f^{\prime}\right\|_{\infty}$. Is $\left(C^{1}[0,1],|\cdot|_{C^{1}}\right)$ (space of continuously differentiable functions on $[0,1]$) a normed space?

A3. Let $\left(X,\|\cdot\|_{X}\right)$ be a normed space and suppose that $\left\{x_{n}\right\}_{n \in \mathbb{N}} \subset X$ is a Cauchy sequence.

- Prove that the sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ is bounded: $\sup _{n \in \mathbb{N}}\left\|x_{n}\right\|<\infty$.
- Assume that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ has a subsequence $\left\{x_{n_{k}}\right\}_{n_{k} \in \mathbb{N}}$ such that $x_{n_{k}} \rightarrow x$ in X. Prove that $x_{n} \rightarrow x$ in X.

A4. Let $\left(X,\|\cdot\|_{X}\right)$ be a Banach space and $Y \subset X$ a subset of X. Prove that $\left(Y,\|\cdot\|_{X}\right)$ is a Banach space if and only if Y is closed in X.

A5. Prove that a normed space $\left(X,\|\cdot\|_{X}\right)$ is a Banach space if and only if every absolutely convergent series (i.e. $\sum_{k=1}^{\infty}\left\|x_{k}\right\|_{X}<\infty$) is convergent in X (i.e. sequence of partial sums is convergent in X).

L^{p} spaces

We write L^{p} for $L^{p}(X, \mathcal{F}, \mu)$ where \mathcal{F} is a σ-algebra and μ is a σ-finite measure on (X, \mathcal{F}). We write $\|\cdot\|_{p}$ for L^{p} norm. We know that ($L^{p},\|\cdot\|_{p}$) is a Banach space (for $1 \leq p \leq \infty$).

B1. Suppose $\mu(X)<\infty$. Check that $L^{p} \subset L^{q}$ whenever $q \leq p$ and

$$
\|f\|_{q} \leq \mu(X)^{\frac{1}{q}-\frac{1}{p}}\|f\|_{p}
$$

Prove that (in general) assumption $\mu(X)<\infty$ is necessary.
B2. Consider linear space $L^{2}(0,1)$ equipped with $\|\cdot\|_{1}$ norm. Is $\left(L^{2}(0,1),\|\cdot\|_{1}\right)$ a normed space? Is it a Banach space?

B3. (Littlewood's interpolation inequality) Let $f \in L^{p} \cap L^{q}$ for some $1 \leq p, q \leq \infty$. Prove that for $r \in[p, q]$ we have $f \in L^{r}$ and $\|f\|_{r} \leq\|f\|_{p}^{\alpha}\|f\|_{q}^{1-\alpha}$. for some $\alpha \in[0,1]$. Hint: let $\alpha \in[0,1]$ and write $\frac{1}{r}=\frac{\alpha}{p}+\frac{1-\alpha}{q}$.
B4. Let $f \in L^{p}$. Prove that for any p_{0} and p_{1} such that $1 \leq p_{0}<p$ and $p<p_{1}<\infty$ there are $f_{0} \in L^{p_{0}}$ and $f_{1} \in L^{p_{1}}$ such that $f=f_{0}+f_{1}$. Thus, f can be always decomposed for "better" and "worse" part. Hint: truncate f at your favourite level.
$\underline{\text { Spaces of continuous and differentiable functions }\left(C, C^{1}, C^{k}, C_{0}, \ldots\right)}$
C1. Prove that space $C^{1}[0,1]$ of functions continuously differentiable on $[0,1]$, equipped with the norm $\|f\|_{C^{1}}=\|f\|_{\infty}+\left\|f^{\prime}\right\|_{\infty}$ is a Banach space.

C 2 . Let \mathcal{P} be the space of all polynomials on $[0,1]$ equipped with supremum norm. Prove that \mathcal{P} is a normed space but it is not a Banach space. Is \mathcal{P} closed in $C[0,1]$? Hint: Use Problem A5.

C3. Let $\|f\|_{A}:=\sup _{x \in[0,1]}|f(x)|$. Is $\left(C^{1}[0,1],\|\cdot\|_{A}\right)$ a normed space? Is it a Banach spaces?
C4. Let $\|f\|_{B}:=|f(0)|+\sup _{x \in[0,1]}\left|f^{\prime}(x)\right|$. Prove that $\left(C^{1}[0,1],\|\cdot\|_{B}\right)$ is a normed space. Is it a Banach spaces?

C5. Prove that the space $C_{0}(\mathbb{R})$ of continuous functions "vanishing at infinity" (i.e. $f(x) \rightarrow 0$ whenever $|x| \rightarrow \infty)$ equipped with the supremum norm is a Banach space.

C6. Consider space $C_{L I P}[0,1]$ of Lipschitz continuous functions on [0, 1], i.e. of functions $f \in$ $C[0,1]$ such that

$$
|f|_{L I P}:=\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|}<\infty .
$$

a. Is $\left(C_{L I P}[0,1],|\cdot|_{L I P}\right)$ a normed space? Is it a Banach space?
b. Is $\left(C_{L I P}[0,1],\|\cdot\|_{\infty}\right)$ a normed space? Is it a Banach space?
c. Is $\left(C_{L I P}[0,1],\|\cdot\|_{\infty}+|\cdot|_{L I P}\right)$ a normed space? Is it a Banach space?

C7. For $\alpha \in(0,1)$ we define space $C^{\alpha}[0,1]$ of Hölder continuous functions with exponent α, i.e. of functions $f \in C[0,1]$ such that

$$
|f|_{\alpha}:=\sup _{x \neq y} \frac{|f(x)-f(y)|}{|x-y|^{\alpha}}<\infty .
$$

In this problem we take (for simplicity) $\alpha=\frac{1}{2}$. Are the following pairs normed spaces? Are they Banach spaces? Justify your answer.
a. $\left(C^{1 / 2}[0,1],\left.|\cdot|\right|_{L I P}\right)$
b. $\left(C^{1 / 2}[0,1],|\cdot|_{1 / 2}\right)$
c. $\left(C^{1 / 2}[0,1],\|\cdot\|_{\infty}+|\cdot|_{L I P}\right)$
d. $\left(C^{1 / 2}[0,1],\|\cdot\|_{\infty}+|\cdot|_{1 / 2}\right)$
e. $\left(C^{1 / 2}[0,1],\|\cdot\|_{\infty}+\left.|\cdot|\right|_{L I P}+|\cdot|_{1 / 2}\right)$
$\underline{\text { Spaces of sequences } l^{p}, c, c_{0}}$
D1. For $1 \leq p<\infty$ we define l^{p} as the space of sequences summable with p-th power and equipped with the norm

$$
\left\|\left(x_{k}\right)_{k=1}^{\infty}\right\|_{p}=\left(\sum_{k=1}^{\infty}\left|x_{k}\right|^{p}\right)^{1 / p}
$$

For $p=\infty$, we define l^{∞} as complex-valued bounded sequences with the norm

$$
\left\|\left(x_{k}\right)_{k=1}^{\infty}\right\|_{p}=\sup _{k \in \mathbb{N}}\left|x_{k}\right| .
$$

Justify briefly that l^{p} is a Banach space.

D2. (Schauder basis for $\left.l^{p}\right)$ Consider l^{p} where $1 \leq p<\infty$ and unit vectors $e_{i}=(0,0, \ldots, 0,1,0, \ldots)$ where 1 is on the i-th coordinate. Prove that for any $x=\left(x_{1}, x_{2}, \ldots\right) \in l_{p}, \sum_{i=1}^{n} x_{i} e_{i} \rightarrow x$ converges in l_{p}, i.e. that

$$
\left\|\sum_{i=1}^{n} x_{i} e_{i}-x\right\|_{p} \rightarrow 0
$$

We say that system $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ is a Schauder basis of l_{p}. How the situation changes for $p=\infty$?
D3. Consider space of real-valued sequences $\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ such that $\lim _{k \rightarrow \infty} x_{k}$ exists and equip it with a supremum norm, i.e. $\left\|\left(x_{k}\right)_{k=1}^{\infty}\right\|_{\infty}=\sup _{k}\left|x_{k}\right|$. Prove that this is a Banach space (it is usually denoted with c).

D4. Similarly, consider subspace of c of sequences $\left(x_{0}, x_{1}, x_{2}, \ldots\right)$ converging to 0 equipped with supremum norm (it is usually denoted with c_{0}). Prove that it is a Banach space.

D5. (Schauder basis for c_{0}) Consider problem D2. with space c. More precisely, given unit vectors $e_{i}=(0,0, \ldots, 0,1,0, \ldots)$ where 1 is on the i-th coordinate, prove that for any $x=$ $\left(x_{1}, x_{2}, \ldots\right) \in c_{0}, \sum_{i=1}^{n} x_{i} e_{i} \rightarrow x$ converges in c_{0}, i.e. that

$$
\left\|\sum_{i=1}^{n} x_{i} e_{i}-x\right\|_{\infty} \rightarrow 0
$$

Note once again, that according to Exercise D2., this is not the case for l^{∞} but c_{0} is a closed subset of l^{∞}.

D6. Consider subset of c of sequences converging to 1 . Can this subset be a normed space (no matter how the norm is defined)?

D7. Consider set l^{1} with l^{∞} norm. Is it a normed space? Is it a Banach space?

Additional problems

E1. (Minkowski functional) Let $\left(E,\|\cdot\|_{E}\right)$ be a normed space and $C \subset E$ be an open and convex subset with $0 \in C$. For every $x \in E$ we define:

$$
\rho(x)=\inf \left\{\alpha>0: \frac{x}{\alpha} \in C\right\}
$$

Prove the following properties of ρ which is called Minkowski functional of C :
(a) $\rho(\lambda x)=\lambda \rho(x)$ for any $\lambda>0$ and $x \in E$,
(b) $\rho(x+y) \leq \rho(x)+\rho(y)$ for any $x, y \in E$,
(c) there is a constant M so that $0 \leq \rho(x) \leq M\|x\|_{E}$ for all $x \in E$,
(d) $C=\{x \in E: \rho(x)<1\}$.

E2. (Minkowski functional as a norm) Under assumptions of Problem E1., suppose additionally that C is symmetric i.e. $C=-C$ and bounded. Prove that ρ defines a norm on E which is equivalent to the norm $\|\cdot\|_{E}$.
E3. (generalized Hölder inequality) Let $f_{i} \in L^{p_{i}}$ for $i=1, \ldots, n$ where $\sum_{i=1}^{n} \frac{1}{p_{i}}=\frac{1}{p}$. Prove that $f_{1} f_{2} \ldots f_{n} \in L^{p}$. More precisely, prove the bound

$$
\left\|f_{1} f_{2} \ldots f_{n}\right\|_{p} \leq\left\|f_{1}\right\|_{p_{1}}\left\|f_{2}\right\|_{p_{2}} \ldots\left\|f_{n}\right\|_{p_{n}}
$$

Hint: one can simplify to the case $p=1$, then proceed by induction.

E4. (generalized Minkowski inequality) Let (X, \mathcal{F}, μ) and (Y, \mathcal{G}, ν) be two measure spaces. Let $F: X \times Y \rightarrow \mathbb{R}$ be a measurable and nonnegative map. Prove that

$$
\left.\left.\left|\int_{Y}\right| \int_{X} F(x, y) d \mu(x)\right|^{p} d \nu(y)\right|^{\frac{1}{p}} \leq\left.\left.\int_{X}\left|\int_{Y}\right| F(x, y)\right|^{p} d \nu(y)\right|^{\frac{1}{p}} d \mu(x) .
$$

Deduce from this standard Minkowski inequality.

