Functional Analysis (WS 20/21), Problem Set 10
 (adjoint and self-adjoint operators on Hilbert spaces) ${ }^{1}$

Compiled on $06 / 01 / 2021$ at $9: 06 \mathrm{pm}$
In what follows, let H be a complex Hilbert space.
Let $T: H \rightarrow H$ be a bounded linear operator. We write $T^{*}: H \rightarrow H$ for adjoint of T defined with

$$
\langle T x, y\rangle=\left\langle x, T^{*} y\right\rangle .
$$

This operator exists and is uniquely determined by Riesz Representation Theorem.

Basic facts on adjoint operators

Properties A1, A2, A3, A7, A9 were discussed in the lecture.
A1. Adjoint T^{*} exists and is uniquely determined.
A2. Adjoint T^{*} is a bounded linear operator and $\left\|T^{*}\right\|=\|T\|$.
A3. Taking adjoints is an involution: $\left(T^{*}\right)^{*}=T$.
A4. Adjoints commute with the sum: $\left(T_{1}+T_{2}\right)^{*}=T_{1}^{*}+T_{2}^{*}$.
A5. For $\lambda \in \mathbb{C}$ we have $(\lambda T)^{*}=\bar{\lambda} T^{*}$.
A6. Let T be a bounded invertible operator. Then, $\left(T^{*}\right)^{-1}=\left(T^{-1}\right)^{*}$.
A7. Let T_{1}, T_{2} be bounded operators. Then, $\left(T_{1} T_{2}\right)^{*}=T_{2}^{*} T_{1}^{*}$.
A8. We have relationship between kernel and image of T and T^{*} :

$$
\text { ker } T^{*}=(\operatorname{im} T)^{\perp}, \quad\left(\operatorname{ker} T^{*}\right)^{\perp}=\overline{\operatorname{im} T}
$$

It will be helpful to recall that if $M \subset H$ is a linear subspace, then $\bar{M}=\left(M^{\perp}\right)^{\perp}$.
A9. Spectrum $\sigma\left(A^{*}\right)=\{\lambda \in \mathbb{C}: \bar{\lambda} \in \sigma(A)\}$.

Computation of adjoints

B1. Let $A: \mathbb{R}^{n} \rightarrow \mathbb{R}^{n}$ be a complex matrix. Find A^{*}.
B2. Let $H=l^{2}(\mathbb{Z})$. For $x=\left(\ldots, x_{-2}, x_{-1}, x_{0}, x_{1}, x_{2}, \ldots\right) \in H$ we define the right shift operator with $(R x)_{k}=x_{k-1}$. Find $\|R\|, R^{-1}$ and R^{*}. Similarly, one can consider the left shift operator L. Find $\|L\|, L^{-1}$ and L^{*}

B3. Let $K: L^{2}(0,1) \rightarrow L^{2}(0,1)$ be defined with $K f(x)=\int_{0}^{x} f(y)$. Prove that K is a bounded linear operator and compute K^{*}.

B4. Let $M \subset H$ be a closed subspace and P_{M} be an orthogonal projection on M. Find $\left(P_{M}\right)^{*}$.

[^0]B5. Let $A: H \rightarrow H$ be a bounded operator. Recall that e^{A} exists as a series $\sum_{k=0}^{\infty} \frac{A^{k}}{k!}$ converging in the operator norm. Compute $\left(e^{A}\right)^{*}$.
B6. Let $T: L^{2}(0,1) \rightarrow L^{2}(0,1)$ be defined with

$$
T f(x)=\int_{0}^{1} k(x, y) f(y) d y
$$

for some bounded and measurable function $k(x, y)$. Find the adjoint of T. Remark: This operator is called Hilbert-Schmidt operator.

B7. Let $T: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ be defined with $T f(x)=\operatorname{sgn}(x) f(x+1)$. Prove that T is well defined and find T^{*}.

Self-adjoint operators

The following properties were discussed in the lecture:

- If $T: H \rightarrow H$ is self-adjoint then $\sigma(T)$ is real.
- If $T: H \rightarrow H$ is self-adjoint then its eigenvectors corresponding to different eigenvalues are orthogonal.

C1. Prove that if $T: H \rightarrow H$ satisfies $\langle T x, y\rangle=\langle x, T y\rangle$ then T is bounded.
C2. Prove that $T: H \rightarrow H$ is self-adjoint if and only if $\langle T x, x\rangle$ is real for all $x \in H$.
C3. Let $M \subset H$ be a closed subspace. Recall what is the adjoint of the orthogonal projection on M denoted with P_{M} ? What is $\sigma\left(P_{M}\right)$ and what are components of this spectrum (point, continuous, residual)?

C4. Let $M: L^{2}(0,1) \rightarrow L^{2}(0,1)$ be a multiplication operator defined with $M f(x)=x f(x)$. Prove that M is self-adjoint. Recall what is the spectrum of M.

C5. More generally, let g be a bounded, continuous function and consider multiplication operator $G: L^{2}(\mathbb{R}) \rightarrow L^{2}(\mathbb{R})$ defined with $G f(x)=g(x) f(x)$. Recall what is the spectrum of G. Find sufficient and necessary condition on g so that G is a self-adjoint operator.

[^0]: ${ }^{1}$ A useful reference for this topic is Chapter 9 of the book Applied Analysis by John Hunter and Bruno Nachtergaele available online at https://www.math.ucdavis.edu/ hunter/book/pdfbook.html. It may be helpful to read Wikipedia articles: "Hermitian adjoint".

