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In what follows, let H be a complex Hilbert space.

Let T : H → H be a bounded linear operator. We write T ∗ : H → H for adjoint of T de�ned with

〈Tx, y〉 = 〈x, T ∗y〉.

This operator exists and is uniquely determined by Riesz Representation Theorem.

Basic facts on adjoint operators
Properties A1, A2, A3, A7, A9 were discussed in the lecture.

A1. Adjoint T ∗ exists and is uniquely determined.

A2. Adjoint T ∗ is a bounded linear operator and ‖T ∗‖ = ‖T‖.

A3. Taking adjoints is an involution: (T ∗)∗ = T .

A4. Adjoints commute with the sum: (T1 + T2)
∗ = T ∗1 + T ∗2 .

A5. For λ ∈ C we have (λT )∗ = λT ∗.

A6. Let T be a bounded invertible operator. Then, (T ∗)−1 = (T−1)∗.

A7. Let T1, T2 be bounded operators. Then, (T1 T2)
∗ = T ∗2 T

∗
1 .

A8. We have relationship between kernel and image of T and T ∗:

ker T ∗ = (im T )⊥, (ker T ∗)⊥ = im T

It will be helpful to recall that if M ⊂ H is a linear subspace, then M =
(
M⊥

)⊥
.

A9. Spectrum σ(A∗) = {λ ∈ C : λ ∈ σ(A)}.

Computation of adjoints

B1. Let A : Rn → Rn be a complex matrix. Find A∗.

B2. Let H = l2(Z). For x = (..., x−2, x−1, x0, x1, x2, ...) ∈ H we de�ne the right shift operator

with (Rx)k = xk−1. Find ‖R‖, R−1 and R∗. Similarly, one can consider the left shift operator

L. Find ‖L‖, L−1 and L∗

B3. Let K : L2(0, 1) → L2(0, 1) be de�ned with Kf(x) =
∫ x
0 f(y). Prove that K is a bounded

linear operator and compute K∗.

B4. Let M ⊂ H be a closed subspace and PM be an orthogonal projection on M . Find (PM )∗.

1A useful reference for this topic is Chapter 9 of the book Applied Analysis by John Hunter and Bruno Nachtergaele
available online at https://www.math.ucdavis.edu/ hunter/book/pdfbook.html. It may be helpful to read Wikipedia
articles: �Hermitian adjoint� '.
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B5. Let A : H → H be a bounded operator. Recall that eA exists as a series
∑∞

k=0
Ak

k! converging

in the operator norm. Compute
(
eA
)∗
.

B6. Let T : L2(0, 1)→ L2(0, 1) be de�ned with

Tf(x) =

∫ 1

0
k(x, y)f(y)dy

for some bounded and measurable function k(x, y). Find the adjoint of T . Remark: This

operator is called Hilbert-Schmidt operator.

B7. Let T : L2(R) → L2(R) be de�ned with Tf(x) = sgn(x)f(x + 1). Prove that T is well -

de�ned and �nd T ∗.

Self-adjoint operators

The following properties were discussed in the lecture:

• If T : H → H is self-adjoint then σ(T ) is real.

• If T : H → H is self-adjoint then its eigenvectors corresponding to di�erent eigenvalues are

orthogonal.

C1. Prove that if T : H → H satis�es 〈Tx, y〉 = 〈x, Ty〉 then T is bounded.

C2. Prove that T : H → H is self-adjoint if and only if 〈Tx, x〉 is real for all x ∈ H.

C3. Let M ⊂ H be a closed subspace. Recall what is the adjoint of the orthogonal projection

on M denoted with PM? What is σ(PM ) and what are components of this spectrum (point,

continuous, residual)?

C4. Let M : L2(0, 1)→ L2(0, 1) be a multiplication operator de�ned with Mf(x) = xf(x). Prove
that M is self-adjoint. Recall what is the spectrum of M .

C5. More generally, let g be a bounded, continuous function and consider multiplication operator

G : L2(R)→ L2(R) de�ned with Gf(x) = g(x)f(x). Recall what is the spectrum of G. Find
su�cient and necessary condition on g so that G is a self-adjoint operator.
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