Functional Analysis (WS 20/21), Problem Set 10

(adjoint and self-adjoint operators on Hilbert spaces)^{\perp}

Compiled on 06/01/2021 at 9:06pm

In what follows, let H be a **complex** Hilbert space.

Let $T: H \to H$ be a bounded linear operator. We write $T^*: H \to H$ for adjoint of T defined with

 $\langle Tx, y \rangle = \langle x, T^*y \rangle.$

This operator exists and is uniquely determined by Riesz Representation Theorem.

Basic facts on adjoint operators

Properties A1, A2, A3, A7, A9 were discussed in the lecture.

- A1. Adjoint T^* exists and is uniquely determined.
- A2. Adjoint T^* is a bounded linear operator and $||T^*|| = ||T||$.
- A3. Taking adjoints is an involution: $(T^*)^* = T$.
- A4. Adjoints commute with the sum: $(T_1 + T_2)^* = T_1^* + T_2^*$.
- A5. For $\lambda \in \mathbb{C}$ we have $(\lambda T)^* = \overline{\lambda} T^*$.
- A6. Let T be a bounded invertible operator. Then, $(T^*)^{-1} = (T^{-1})^*$.
- A7. Let T_1, T_2 be bounded operators. Then, $(T_1 T_2)^* = T_2^* T_1^*$.
- A8. We have relationship between kernel and image of T and T^* :

$$\ker T^* = (\operatorname{im} T)^{\perp}, \qquad (\ker T^*)^{\perp} = \overline{\operatorname{im} T}$$

It will be helpful to recall that if $M \subset H$ is a linear subspace, then $\overline{M} = (M^{\perp})^{\perp}$.

A9. Spectrum $\sigma(A^*) = \{\lambda \in \mathbb{C} : \overline{\lambda} \in \sigma(A)\}.$

Computation of adjoints

- B1. Let $A : \mathbb{R}^n \to \mathbb{R}^n$ be a complex matrix. Find A^* .
- B2. Let $H = l^2(\mathbb{Z})$. For $x = (..., x_{-2}, x_{-1}, x_0, x_1, x_2, ...) \in H$ we define the right shift operator with $(Rx)_k = x_{k-1}$. Find ||R||, R^{-1} and R^* . Similarly, one can consider the left shift operator L. Find ||L||, L^{-1} and L^*
- B3. Let $K : L^2(0,1) \to L^2(0,1)$ be defined with $Kf(x) = \int_0^x f(y)$. Prove that K is a bounded linear operator and compute K^* .
- B4. Let $M \subset H$ be a closed subspace and P_M be an orthogonal projection on M. Find $(P_M)^*$.

¹A useful reference for this topic is Chapter 9 of the book *Applied Analysis* by John Hunter and Bruno Nachtergaele available online at https://www.math.ucdavis.edu/ hunter/book/pdfbook.html. It may be helpful to read Wikipedia articles: "Hermitian adjoint".

- B5. Let $A: H \to H$ be a bounded operator. Recall that e^A exists as a series $\sum_{k=0}^{\infty} \frac{A^k}{k!}$ converging in the operator norm. Compute $(e^A)^*$.
- B6. Let $T: L^2(0,1) \to L^2(0,1)$ be defined with

$$Tf(x) = \int_0^1 k(x, y) f(y) dy$$

for some bounded and measurable function k(x, y). Find the adjoint of T. Remark: This operator is called Hilbert-Schmidt operator.

B7. Let $T: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ be defined with $Tf(x) = \operatorname{sgn}(x)f(x+1)$. Prove that T is well - defined and find T^* .

Self-adjoint operators

The following properties were discussed in the lecture:

- If $T: H \to H$ is self-adjoint then $\sigma(T)$ is real.
- If $T: H \to H$ is self-adjoint then its eigenvectors corresponding to different eigenvalues are orthogonal.
- C1. Prove that if $T: H \to H$ satisfies $\langle Tx, y \rangle = \langle x, Ty \rangle$ then T is bounded.
- C2. Prove that $T: H \to H$ is self-adjoint if and only if $\langle Tx, x \rangle$ is real for all $x \in H$.
- C3. Let $M \subset H$ be a closed subspace. Recall what is the adjoint of the orthogonal projection on M denoted with P_M ? What is $\sigma(P_M)$ and what are components of this spectrum (point, continuous, residual)?
- C4. Let $M: L^2(0,1) \to L^2(0,1)$ be a multiplication operator defined with Mf(x) = xf(x). Prove that M is self-adjoint. Recall what is the spectrum of M.
- C5. More generally, let g be a bounded, continuous function and consider multiplication operator $G: L^2(\mathbb{R}) \to L^2(\mathbb{R})$ defined with Gf(x) = g(x)f(x). Recall what is the spectrum of G. Find sufficient and necessary condition on g so that G is a self-adjoint operator.