Functional Analysis (WS 20/21), Problem Set 12

(convolutions, density of smooth functions and Schwartz spaces)

Compiled on 21/01/2021 at 10:47am

For $f, g \in L^1(\mathbb{R}^d)$ we define convolution f * g:

$$f * g(x) = \int_{\mathbb{R}^d} f(y) g(x - y) dy = \int_{\mathbb{R}^d} f(x - y) g(y) dy.$$

Clearly f * g = g * f. Convolutions are also studied for functions defined on subsets $\Omega \subset \mathbb{R}^d$ assuming one takes care about appropriate domain of definition for f and g.

Let $\{\eta_{\varepsilon}\}_{\varepsilon>0}$ be a standard mollifier (approximate identity) i.e. for a smooth radial nonnegative function $\eta \in C^{\infty}$ supported on the ball $B_1(0)$ such that $\int_{\mathbb{R}^d} \eta(x) \, dx = 1$ we let $\eta_{\varepsilon}(x) = \varepsilon^{-d} \eta(x/\varepsilon)$. Then, for all $f \in L^p(\mathbb{R}^d)$ we have $f * \eta_{\varepsilon} \to f$ in $L^p(\mathbb{R}^d)$ and a.e. when $\varepsilon \to 0$. As $f * \eta_{\varepsilon}$ is smooth, standard truncation argument shows that $C_c^{\infty}(\mathbb{R}^d)$ is dense in $L^p(\mathbb{R}^d)$ for all $1 \leq p < \infty$ (lecture). Similar results hold for $L^p(\Omega)$ as any $f \in L^p(\Omega)$ can be extended to $f \in L^p(\mathbb{R}^n)$.

Schwartz space $\mathcal{S}(\mathbb{R}^d)$ consists of infinitely differentiable functions such that the family of seminorms

$$p_{\alpha,\beta}(f) = \sup_{x \in \mathbb{R}^d} |x^{\alpha} D^{\beta} f(x)| < \infty$$

where $\alpha, \beta \in \mathbb{N}^d$. We usually say that Schwartz space consists of functions vanishing faster than any polynomial. We say that $f_n \to f$ in $\mathcal{S}(\mathbb{R}^d)$ if $p_{\alpha,\beta}(f_n - f) \to 0$ as $n \to \infty$ for all $\alpha, \beta \in \mathbb{N}^d$.

Convolutions

- A1. Let $g \in C_c^k(\mathbb{R}^n)$ and $f \in L^1(\mathbb{R}^n)$. Prove that f * g is $C^k(\mathbb{R}^n)$. Find the formulas for the derivatives of f * g.
- A2. (Young's inequality) Prove Young's convolutional inequality: if $f \in L^p(\mathbb{R}^d)$, $g \in L^q(\mathbb{R}^d)$ then $f * g \in L^r(\mathbb{R}^d)$ where $\frac{1}{p} + \frac{1}{q} = 1 + \frac{1}{r}, 1 \leq p, q, r \leq \infty$. Moreover,

$$||f * g||_r \le ||f||_p ||g||_q.$$

- A3. Let $f \in L^1(\mathbb{R}^n)$ and g be Lipschitz bounded function. Prove that f * g is again a bounded and Lipschitz function.
- A4. Let g be a symmetric bounded function i.e. g(x) = g(-x). Prove that for $f, h \in L^1(\mathbb{R}^d)$ we have:

$$\int_{\mathbb{R}^d} f(x) g * h(x) = \int_{\mathbb{R}^d} f * g(x) h(x)$$

Density of smooth functions

B1. Let $f : \mathbb{R}^n \to \mathbb{R}$ be continuous. Prove that $f * \eta_{\varepsilon} \to f$ uniformly on compact subsets of \mathbb{R}^n .

- B2. Let $f \in L^p(\mathbb{R})$. Obtain explicit (in terms of ε) bounds for $\partial^k (f * \eta_{\varepsilon})$ in $L^p(\mathbb{R})$ and $L^{\infty}(\mathbb{R})$.
- B3. Let $f \in L^1(\Omega)$. Prove that if $\int_{\Omega} f \varphi = 0$ for all $\varphi \in C_c^{\infty}(\Omega)$ then f = 0 a.e. in Ω .

- B4. Let $f \in L^1(\Omega)$. Prove that if $\int_{\Omega} f \varphi \ge 0$ for all $\varphi \in C_c^{\infty}(\Omega), \varphi \ge 0$ then $f \ge 0$ a.e. in Ω .
- B5. Let $f \in L^1(0,1)$. Prove that if $\int_0^1 f \varphi' = 0$ for all $\varphi \in C_c^{\infty}(0,1)$ then f is constant a.e. in (0,1).
- B6. (cutoff) Let Q be a d-dimensional cube with side length 1. Prove that there is a smooth function f such that f = 1 on Q, f = 0 on $\mathbb{R}^n \setminus 2Q$ and $f \in [0, 1]$.
- B7. (smooth partition of unity) Write $\mathbb{R}^d = \bigcup_{i=1}^{\infty} Q_i$ where Q_i are *d*-dimensional cubes with side length 1. Prove that there exists f_i such that f_i is supported on $2Q_i$, $f_i \in [0, 1]$ and $\sum_{i=1}^{\infty} f_i = 1$.
- B8. Let $1 . Prove that <math>f_n \rightharpoonup f$ in $L^p(\Omega)$ if and only if

$$\int_{\Omega} f_n \varphi \to \int_{\Omega} f \varphi \text{ for all } \varphi \in C_c^{\infty}(\Omega) \text{ and } \{f_n\}_{n \in \mathbb{N}} \text{ is bounded in } L^p(\Omega)$$

B9. Are smooth functions dense in $L^{\infty}(0,1)$?

Schwartz space

- S1. $C_0^{\infty}(\mathbb{R}^d) \subset \mathcal{S}(\mathbb{R}^d)$.
- S2. For a > 0, $e^{-a||x||^2} \in \mathcal{S}(\mathbb{R}^d)$.
- S3. If $f \in \mathcal{S}(\mathbb{R}^d)$ then $f \in L^p(\mathbb{R}^d)$ for all $1 \le p \le \infty$.