Functional Analysis (WS 20/21), Problem Set 2

(operators and their norms)

Compiled on 01/11/2020 at 2:07pm

For the linear map $T: X \to Y$ where $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ are normed spaces, we define norm of the operator T as

$$||T|| = \sup_{x:||x||_X \le 1} ||Tx||_Y.$$

If $||T|| < \infty$ we say T is a bounded linear operator. We write $\mathcal{L}(X, Y)$ for the space of all bounded linear operators between X and Y. We write $X^* = \mathcal{L}(X, \mathbb{R})$ for the dual space of X i.e. space of bounded and linear operators $X : E \to \mathbb{R}$ (or $X : E \to \mathbb{C}$ in the case of complex linear spaces) called bounded functionals.

In case $(Y, \|\cdot\|_Y)$ is additionally assumed to be a Banach space, $\mathcal{L}(X, Y)$ equipped with the operator norm turns out to be a Banach space too.

Basic facts on operator norm and $\mathcal{L}(X,Y)$

A1. Check that

$$\sup_{x:\|x\|_X \le 1} \|Tx\|_Y = \sup_{x:\|x\|_X = 1} \|Tx\|_Y = \sup_{x \ne 0} \frac{\|Tx\|_Y}{\|x\|_X}$$

so that there are three equivalent definition of the operator norm.

- A2. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces. Let $T: X \to Y$ be a linear map. Check that the following conditions are equivalent:
 - (a) T is a bounded linear operator,
 - (b) T is continuous at 0,
 - (c) T is continuous,
 - (d) T is Lipschitz continuous (i.e. $||Tx_1 Tx_2||_Y \le C ||x_1 x_2||_X$ for some constant C).
- A3. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces. Justify briefly that $\mathcal{L}(X, Y)$ equipped with operator norm is a normed space.
- A4. (bound on composition) Let $(X, \|\cdot\|_X)$, $(Y, \|\cdot\|_Y)$ and $(Z, \|\cdot\|_Z)$ be normed spaces. Let $T: X \to Y$ and $S: Y \to Z$ be bounded linear operators. Check that $\|S \circ T\| \le \|S\| \|T\|$.

Computation of the operator/functional norms

- B1. Let $E = \{u \in C([0,1]) : u(0) = 0\}$. Justify briefly that E with a supremum norm is a Banach space. Consider a linear functional $\varphi : E \to \mathbb{R}$ defined with $\varphi(u) = \int_0^1 u(t) dt$. Prove that $\varphi \in E^*$ and compute norm $\|\varphi\|$ of this functional. Is there $u \in E$ such that $\|u\|_{\infty} \leq 1$ and $\varphi(u) = \|\varphi\|$?
- B2. Consider a linear functional $\varphi : C[0,1] \to \mathbb{R}$ defined with $\varphi(u) = \int_0^{\frac{1}{2}} u(t) dt \int_{\frac{1}{2}}^1 u(t) dt$. Prove that $\varphi \in (C[0,1])^*$ and compute norm $\|\varphi\|$ of this functional. Is there $u \in C[0,1]$ such that $\|u\|_{\infty} \leq 1$ and $\varphi(u) = \|\varphi\|$?

- B3. Consider functional $\varphi : l_1 \to \mathbb{R}$ defined with $\varphi(u) = \sum_{i=1}^{\infty} \frac{1}{2^n} u_n$ where $u = (u_1, u_2, u_3, ...)$. Prove that $\varphi \in (l_1)^*$ and compute its norm $\|\varphi\|$.
- B4. More generally, fix $v \in l^{\infty}$ where $v = (v_1, v_2, v_3, ...)$. Let $\varphi_v(u) = \sum_{i=1}^{\infty} v_n u_n$ where $u = (u_1, u_2, u_3, ...)$. Prove that $\varphi_v \in (l_1)^*$ and compute its norm $\|\varphi_v\|$ in terms of v.
- B5. Consider functional $\varphi : c_0 \to \mathbb{R}$ defined with $\varphi(u) = \sum_{i=1}^{\infty} \frac{1}{2^n} u_n$ where $u = (u_1, u_2, u_3, ...)$. Compute norm $\|\varphi\|$ of this functional (i.e. $\sup_{u:\|u\|_{\infty} \leq 1} |\varphi(u)|$) and prove that $\varphi \in (c_0)^*$. Is there $u \in c_0$ such that $\|u\|_{\infty} \leq 1$ and $\varphi(u) = \|\varphi\|$?
- B6. For $u \in C[0,1]$ we set $\varphi(u) = f\left(\frac{1}{2}\right)$. Prove that $\varphi \in (C[0,1])^*$ and compute its norm.
- B7. Let μ be a Borel measure on [0,1] and $\varphi_{\mu}(f) = \int_0^1 f(x) d\mu(x)$. Prove that $\varphi \in (C[0,1])^*$ and compute its norm in terms of μ . Compare with Problem B6.
- B8. Let $\varphi : C[0,1] \to \mathbb{R}$ be a linear functional such that $\varphi(f) \ge 0$ whenever $f \ge 0$. Prove that $\varphi \in (C[0,1])^*$ and compute its norm. Compare with Problems B6. and B7.
- B9. (averaging operators) Let $1 \le p \le \infty$ and $T: L^p(\mathbb{R}^d) \to L^p(\mathbb{R}^d)$ be defined with

$$T(f)(y) = \frac{1}{\lambda_n(B(y,1))} \int_{B(y,1)} f(x) \,\mathrm{d}x$$

where B(y, 1) denotes a unit ball with center $y \in \mathbb{R}^d$. Check that T is well - defined (i.e. it is L^p -valued), prove that it is a bounded linear operator and compute its norm.

B10. (discrete derivative) Let $1 \le p \le \infty$ and $T: l^p \to l^p$ be defined with

$$T((a_n)_{n\geq 1}) = (a_{n+1} - a_n)_{n\geq 1}.$$

Check that T is well - defined (i.e. it is l^p -valued), prove that it is a bounded linear operator and compute its norm.

- B11. Let $1 \le p \le \infty$ and consider operator $T : l^p \to l^p$ defined with $T((a_n)_{n\ge 1}) = \left(\frac{a_n}{n+1}\right)_{n\ge 1}$. Decide whether T is a well-defined bounded operator and if yes, compute its norm.
- B12. Let $1 \le p \le \infty$ and consider operator $T: L^p(0,1) \to L^p(0,1)$ defined with $(Tf)(x) = f(x^2)$. Prove that $T \in \mathcal{L}(L^p(0,1), L^p(0,1))$ and compute its norm.
- B13. (multiplication operator) Let $1 \leq p \leq \infty$, $g \in L^{\infty}(X, \mathcal{F}, \mu)$ and consider operator $T : L^{p}(X, \mathcal{F}, \mu) \to L^{p}(X, \mathcal{F}, \mu)$ defined with (Tf)(x) = f(x)g(x). Prove that $T \in \mathcal{L}(L^{p}, L^{p})$ and compute its norm.
- B14. Let $T: (C^1[0,1], \|\cdot\|_{\infty}) \to (C[0,1], \|\cdot\|_{\infty})$ be defined with Tf = f'. Is T a bounded operator from $(C^1[0,1], \|\cdot\|_{\infty})$ to $(C[0,1], \|\cdot\|_{\infty})$?

More on linear functionals

- C1. Let $(X, \|\cdot\|)$ be a finite dimensional normed space. Prove that any linear functional on X is bounded.
- C2. Let $(X, \|\cdot\|)$ be an infinite dimensional normed space. Prove that there is a linear functional on X that is not bounded.

- C3. In infinite dimensional spaces even "projections" can be discontinuous. To see this consider space of polynomials $\mathcal{P}[0, 1]$ equipped with L^1 norm on [0, 1].
 - a. Let φ_0 be a functional defined on $\mathcal{P}[0,1]$ with

$$\varphi_0(a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n) = a_0.$$

Is $\varphi_0 \in (\mathcal{P}[0,1], \|\cdot\|_1)^*$? *Hint*: consider $\varphi_0((x-1)^n)$.

b. More generally, let φ_k be a functional defined on $\mathcal{P}[0,1]$ with

$$\varphi_k(a_0 + a_1 x + a_2 x^2 + \dots + a_k x^k + \dots + a_n x^n) = a_k.$$

Is $\varphi_k \in (\mathcal{P}[0,1], \|\cdot\|_1)^*$?

Remark: This pathology will not happen in Hilbert spaces.

- C4. Let $(E, \|\cdot\|_E)$ be a normed space and $\varphi: E \to \mathbb{R}$ be a linear functional on E.
 - (a) Prove that if $\varphi \neq 0$, then there is a one dimensional subspace $F \subset E$ such that

 $E = \mathrm{ker}\varphi \oplus F$

i.e. for all x ∈ E, there are uniquely determined y ∈ kerφ and z ∈ F such that x = y + z.
(b) Prove that φ ∈ E* (i.e. it is bounded) if and only if its kernel is closed in E.

Completeness of $\mathcal{L}(X, Y)$

- D1. (dual spaces are always Banach) Let $(X, \|\cdot\|_X)$ be a normed space. Justify briefly that the dual space X^* of bounded linear functionals on X is a Banach space.
- D2. (extension from dense subset) Let $(X, \|\cdot\|_X)$ be a normed space and $(Y, \|\cdot\|_Y)$ be a Banach space. Suppose that D is a dense linear subspace of X and $T: (D, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$ is a bounded linear operator. Prove that T has a unique bounded extension

$$\widetilde{T}: (X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$$

such that

$$Tx = Tx$$
 for $x \in D$ and $||T||_{\mathcal{L}(D,Y)} = ||T||_{\mathcal{L}(X,Y)}$.

Hint: If $x \in X \setminus D$, there is a sequence $(x_n)_{n \in \mathbb{N}} \subset D$ such that $||x_n - x||_X \to 0$ as $n \to \infty$.

- D3. (exponential of the operator) Let $(X, \|\cdot\|_X)$ be a normed space and $(Y, \|\cdot\|_Y)$ be a Banach space. Let $T: X \to Y$ be a bounded operator. Check that the series $\sum_{k=0}^{\infty} \frac{T^k}{k!}$ converges in $\mathcal{L}(X, Y)$. This is usually definition of e^T . Note that this generalizes e^A for $A \in \mathbb{R}^{n \times n}$.
- D4. (inverse operator) Let $(X, \|\cdot\|_X)$ be a normed space and $(Y, \|\cdot\|_Y)$ be a Banach space. Let $T: X \to Y$ be a bounded operator such that $\|T\| < 1$. Check that the series $\sum_{k=0}^{\infty} T^k$ converges in $\mathcal{L}(X, Y)$.