Functional Analysis (WS 20/21), Problem Set 5 (Introduction to Hilbert Spaces)

Compiled on 26/11/2020 at 12:02 Noon

Basic properties of Hilbert spaces

- A1. Define a scalar product on:
 - $L^2(0,1)$ over \mathbb{R} and over \mathbb{C} .
 - l^2 over \mathbb{R} and over \mathbb{C} .
- A2. Verify that $\langle f, g \rangle = \int_0^1 f(x) g(x) dx$ defines an inner product on C[0, 1] over \mathbb{R} . Is $(C[0, 1], \langle \cdot, \cdot \rangle)$ a Hilbert space?
- A3. (Pythagorean Theorem) Let $(H, \langle \cdot, \cdot \rangle)$ be a Hilbert space and $x, y \in H$ such that x is perpendicular to y. Prove that

$$||x + y||^2 = ||x||^2 + ||y||^2.$$

- A4. Is the space of measurable functions $f: (0,1) \to \mathbb{R}$ such that $\int_0^1 |f(t)|^2 e^t dt$ a Hilbert space? What is the inner product?
- A5. We say that a Banach space $(X, \|\cdot\|)$ is <u>uniformly convex</u> if for any $\epsilon > 0$, there is $\delta > 0$ such that for any $x, y \in E$:

if
$$||x|| = ||y|| = 1$$
 and $||x - y|| \ge \epsilon$ then $\left\|\frac{x + y}{2}\right\| \le 1 - \delta$.

Prove that any Hilbert space is uniformly convex.¹

A6. (Bessel's inequality) Let $\{e_i\}_{i\in\mathbb{N}}$ be an orthonormal sequence in Hilbert space $(H, \langle \cdot, \cdot \rangle)$. Prove that for any $x \in H$

$$\sum_{i=1}^{\infty} |\langle x, e_i \rangle|^2 \le ||x||^2.$$

A7. For $1 \le p \le \infty$ consider space $L^p(0,1)$. Prove that norm $\|\cdot\|_p$ satisfies parallelogram identity:

$$2 \|x\|_p^2 + 2 \|y\|_p^2 = \|x+y\|_p^2 + \|x-y\|_p^2$$

if and only if p = 2. *Hint*: Consider functions with disjoint supports.

¹A deep result due to Milman and Pettis asserts than any uniformly convex Banach space E is reflexive, i.e. $E^{**} = E$ up to an isometric isomorphism. This somehow connects geometric and analytical properties of Banach spaces. Note that this is still weaker than Riesz Representation Theorem asserting that for any Hilber space H we have $H = H^*$.

1. Let $K \subset H$ be non-empty, convex and closed subset of Hilbert space $(H, \langle \cdot, \cdot \rangle_H)$. We know that for every $f \in H$, there exists a unique $P_K(f) \in K$ called **projection onto** K such that

$$\inf_{g \in K} \|f - g\| = \|f - P_K(f)\|.$$

The map $P_K: H \to H$ is a bounded linear operator with $||P_K|| = 1$.

2. For an arbitrary subset $K \subset H$ we define its orthogonal complement

 $K^{\perp} = \{ x \in H : \langle x, v \rangle = 0 \text{ for all } v \in K \}.$

3. Let $M \subset H$ a closed subspace. There is a decomposition

$$H = M \oplus M^{\perp}$$

i.e. for any $f \in H$ we can write $f = f_M + f_{M^{\perp}}$ where $f_M \in M$ and $f_{M^{\perp}} \in M^{\perp}$ are uniquely determined^{*a*}. More precisely,

$$f_M = P_M f, \qquad f_{M^\perp} = f - P_M f = P_{M^\perp} f.$$

^aThis is no longer true in Banach spaces. See example with $c_0 \subset l^{\infty}$ where c_0 (which is closed linear subspace of l^{∞}) has no complement in l^{∞} : https://math.stackexchange.com/questions/132520/complement-of-c-0-in-ell-infty

All Hilbert spaces below are assumed (for simplicity) to be real.

B1. Let $K \subset H$. Prove that K^{\perp} is a closed linear subspace of H.

B2. Consider

$$X = \{ f \in L^2(0,1) : f(x) = 0 \text{ for all } x \in [0,1/2] \}$$

as a subspace of $L^2(0,1)$ (over \mathbb{R}).

- (a) Is X closed in $L^{2}(0,1)$?
- (b) Find X^{\perp} .
- (c) Find decomposition $f = P_X f + P_{X^{\perp}} f$.
- B3. Consider

$$X = \{ f \in L^2(-1,1) : f(x) = f(-x) \}$$

as a subspace of $L^2(-1,1)$ (over \mathbb{R}).

- (a) Is X closed in $L^{2}(-1, 1)$?
- (b) Find X^{\perp} .
- (c) Find decomposition $f = P_X f + P_{X^{\perp}} f$.

B4. Find a real polynomial w(t) of degree at most 2 such that $\int_0^1 |w(t) - t^4|^2 dt$ is the smallest.

B5. Find a real polynomial w(t) of degree at most 1 such that $\int_0^1 |w(t) - \sqrt{t}|^2 dt$ is the smallest.

B6. Let

$$E = \left\{ f \in L^2(0,1) : \int_0^1 f(t) \, \mathrm{d}t = \int_0^1 f(t) \, t \, \mathrm{d}t = 0 \right\}$$

Compute

$$\inf_{f \in E} \int_0^1 |t^3 - f(t)|^2$$

B7. Let

$$E = \left\{ f \in L^2(0,1) : \int_{-1}^1 f(t) \, \mathrm{d}t = \int_{-1}^1 f(t) \, t \, \mathrm{d}t = 0 \right\}$$

Let $g(x) = \frac{1}{1+x^2}$. Find $P_E g$, $P_{E^{\perp}} g$ and distance of g from E.

Riesz Representation Theorem

- C1. Prove that there exists a function $f \in L^2(0,1)$ such that $\int_0^1 t^2 f(t) dt = \int_0^1 e^t f(t) dt$. Is this function uniquely determined (say, up to some scalings)?
- C2. Let $(H, \langle \cdot, \cdot \rangle_H)$ be a Hilbert space. Suppose that $a : H \times H \to \mathbb{R}$ is a symmetric bilinear continuous form that is coercive, i.e. there is a constant β such that $a(u, u) \ge \beta ||u||^2$. Prove that $(H, a(\cdot, \cdot))$ is a Hilbert space with the same topology as $(H, \langle \cdot, \cdot \rangle_H)$ (i.e. norms are equivalent).
- C3. (Lax-Milgram Lemma, simplified version) Let $(H, \langle \cdot, \cdot \rangle_H)$ be a Hilbert space. Suppose that $a : H \times H \to \mathbb{R}$ is a symmetric bilinear continuous form that is coercive, i.e. there is a constant β such that $a(u, u) \ge \beta ||u||^2$. Let $l \in H^*$. Prove that there is a unique $u \in H$ such that

$$a(u, v) = l(v)$$
 for all $v \in H$.

C4. Let *H* be a Hilbert space, $\varphi \in H^*$ and $T \in \mathcal{L}(H, H)$. Prove or disprove: there exists uniquely determined $y \in H$ such that for all $x \in H$ we have $\varphi(Tx) = \langle x, y \rangle$.