Functional Analysis (WS 20/21), Problem Set 5

(Introduction to Hilbert Spaces)

Compiled on 26/11/2020 at 12:02 Noon

Basic properties of Hilbert spaces

A1. Define a scalar product on:

- $L^{2}(0,1)$ over \mathbb{R} and over \mathbb{C}.
- l^{2} over \mathbb{R} and over \mathbb{C}.

A2. Verify that $\langle f, g\rangle=\int_{0}^{1} f(x) g(x) d x$ defines an inner product on $C[0,1]$ over \mathbb{R}. Is $(C[0,1],\langle\cdot, \cdot\rangle)$ a Hilbert space?

A3. (Pythagorean Theorem) Let $(H,\langle\cdot, \cdot\rangle)$ be a Hilbert space and $x, y \in H$ such that x is perpendicular to y. Prove that

$$
\|x+y\|^{2}=\|x\|^{2}+\|y\|^{2} .
$$

A4. Is the space of measurable functions $f:(0,1) \rightarrow \mathbb{R}$ such that $\int_{0}^{1}|f(t)|^{2} e^{t} d t$ a Hilbert space? What is the inner product?

A5. We say that a Banach space $(X,\|\cdot\|)$ is uniformly convex if for any $\epsilon>0$, there is $\delta>0$ such that for any $x, y \in E$:

$$
\text { if }\|x\|=\|y\|=1 \text { and }\|x-y\| \geq \epsilon \text { then }\left\|\frac{x+y}{2}\right\| \leq 1-\delta .
$$

Prove that any Hilbert space is uniformly convex. ${ }^{1}$
A6. (Bessel's inequality) Let $\left\{e_{i}\right\}_{i \in \mathbb{N}}$ be an orthonormal sequence in Hilbert space $(H,\langle\cdot, \cdot\rangle)$. Prove that for any $x \in H$

$$
\sum_{i=1}^{\infty}\left|\left\langle x, e_{i}\right\rangle\right|^{2} \leq\|x\|^{2}
$$

A7. For $1 \leq p \leq \infty$ consider space $L^{p}(0,1)$. Prove that norm $\|\cdot\|_{p}$ satisfies parallelogram identity:

$$
2\|x\|_{p}^{2}+2\|y\|_{p}^{2}=\|x+y\|_{p}^{2}+\|x-y\|_{p}^{2}
$$

if and only if $p=2$. Hint: Consider functions with disjoint supports.

[^0]
Orthogonal complements and projections

1. Let $K \subset H$ be non-empty, convex and closed subset of Hilbert space $\left(H,\langle\cdot, \cdot\rangle_{H}\right)$. We know that for every $f \in H$, there exists a unique $P_{K}(f) \in K$ called projection onto K such that

$$
\inf _{g \in K}\|f-g\|=\left\|f-P_{K}(f)\right\| .
$$

The map $P_{K}: H \rightarrow H$ is a bounded linear operator with $\left\|P_{K}\right\|=1$.
2. For an arbitrary subset $K \subset H$ we define its orthogonal complement

$$
K^{\perp}=\{x \in H:\langle x, v\rangle=0 \text { for all } v \in K\} .
$$

3. Let $M \subset H$ a closed subspace. There is a decomposition

$$
H=M \oplus M^{\perp}
$$

i.e. for any $f \in H$ we can write $f=f_{M}+f_{M^{\perp}}$ where $f_{M} \in M$ and $f_{M^{\perp}} \in M^{\perp}$ are uniquely determined ${ }^{a}$. More precisely,

$$
f_{M}=P_{M} f, \quad f_{M^{\perp}}=f-P_{M} f=P_{M^{\perp}} f .
$$

[^1]All Hilbert spaces below are assumed (for simplicity) to be real.
B1. Let $K \subset H$. Prove that K^{\perp} is a closed linear subspace of H.
B2. Consider

$$
X=\left\{f \in L^{2}(0,1): f(x)=0 \text { for all } x \in[0,1 / 2]\right\}
$$

as a subspace of $L^{2}(0,1)$ (over $\left.\mathbb{R}\right)$.
(a) Is X closed in $L^{2}(0,1)$?
(b) Find X^{\perp}.
(c) Find decomposition $f=P_{X} f+P_{X^{\perp}} f$.

B3. Consider

$$
X=\left\{f \in L^{2}(-1,1): f(x)=f(-x)\right\}
$$

as a subspace of $L^{2}(-1,1)$ (over \mathbb{R}).
(a) Is X closed in $L^{2}(-1,1)$?
(b) Find X^{\perp}.
(c) Find decomposition $f=P_{X} f+P_{X^{\perp}} f$.

B4. Find a real polynomial $w(t)$ of degree at most 2 such that $\int_{0}^{1}\left|w(t)-t^{4}\right|^{2} d t$ is the smallest.
B5. Find a real polynomial $w(t)$ of degree at most 1 such that $\int_{0}^{1}|w(t)-\sqrt{t}|^{2} d t$ is the smallest.

B6. Let

$$
E=\left\{f \in L^{2}(0,1): \int_{0}^{1} f(t) \mathrm{d} t=\int_{0}^{1} f(t) t \mathrm{~d} t=0\right\}
$$

Compute

$$
\inf _{f \in E} \int_{0}^{1}\left|t^{3}-f(t)\right|^{2}
$$

B7. Let

$$
E=\left\{f \in L^{2}(0,1): \int_{-1}^{1} f(t) \mathrm{d} t=\int_{-1}^{1} f(t) t \mathrm{~d} t=0\right\}
$$

Let $g(x)=\frac{1}{1+x^{2}}$. Find $P_{E} g, P_{E^{\perp}} g$ and distance of g from E.

Riesz Representation Theorem

C1. Prove that there exists a function $f \in L^{2}(0,1)$ such that $\int_{0}^{1} t^{2} f(t) d t=\int_{0}^{1} e^{t} f(t) d t$. Is this function uniquely determined (say, up to some scalings)?

C2. Let $\left(H,\langle\cdot, \cdot\rangle_{H}\right)$ be a Hilbert space. Suppose that $a: H \times H \rightarrow \mathbb{R}$ is a symmetric bilinear continuous form that is coercive, i.e. there is a constant β such that $a(u, u) \geq \beta\|u\|^{2}$. Prove that $(H, a(\cdot, \cdot))$ is a Hilbert space with the same topology as $\left(H,\langle\cdot, \cdot\rangle_{H}\right)$ (i.e. norms are equivalent).

C3. (Lax-Milgram Lemma, simplified version) Let $\left(H,\langle\cdot, \cdot\rangle_{H}\right)$ be a Hilbert space. Suppose that $a: H \times H \rightarrow \mathbb{R}$ is a symmetric bilinear continuous form that is coercive, i.e. there is a constant β such that $a(u, u) \geq \beta\|u\|^{2}$. Let $l \in H^{*}$. Prove that there is a unique $u \in H$ such that

$$
a(u, v)=l(v) \text { for all } v \in H .
$$

C4. Let H be a Hilbert space, $\varphi \in H^{*}$ and $T \in \mathcal{L}(H, H)$. Prove or disprove: there exists uniquely determined $y \in H$ such that for all $x \in H$ we have $\varphi(T x)=\langle x, y\rangle$.

[^0]: ${ }^{1}$ A deep result due to Milman and Pettis asserts than any uniformly convex Banach space E is reflexive, i.e. $E^{* *}=E$ up to an isometric isomorphism. This somehow connects geometric and analytical properties of Banach spaces. Note that this is still weaker than Riesz Representation Theorem asserting that for any Hilber space H we have $H=H^{*}$.

[^1]: ${ }^{a}$ This is no longer true in Banach spaces. See example with $c_{0} \subset l^{\infty}$ where c_{0} (which is closed linear subspace of l^{∞}) has no complement in $l^{\infty}:$ https://math.stackexchange.com/questions/132520/complement-of-c-0-in-ell-infty

