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Hahn-Banach Theorem (analytic form) Let (X, ‖ · ‖) be a normed space and M ⊂ X be a linear

subspace. Let p : X → R be such that

p(x+ y) ≤ p(x) + p(y), p(tx) = tp(x)

for all x, y ∈ X and t ≥ 0. Finally, suppose that g : M → R is a linear functional and g(x) ≤ p(x)
for all x ∈ M . Then, there exists a linear functional f : X → R such that f(x) = g(x) on M and

f(x) ≤ p(x) for all x ∈ X.

See also Problem B1 for a simpler version of this result.

Hahn-Banach Theorem (geometric form) Let (X, ‖ · ‖) be a normed space. Let A,B ⊂ X be

nonempty, convex and disjoint sets.

1. If A is open, there exists ϕ ∈ X∗ and λ such that

ϕ(x) < λ ≤ ϕ(y)

for all x ∈ A and y ∈ B. We say that hyperplane {x ∈ X : ϕ(x) = λ} separates A and B.

2. If A is closed and B is compact, there exists ϕ ∈ X∗ and λ1, λ2 such that

ϕ(x) < λ1 < λ2 < ϕ(y)

for all x ∈ A and y ∈ B. Let λ = λ1+λ2
2 . We say that hyperplane {x ∈ X : ϕ(x) = λ}

separates strictly A and B.

Dual spaces characterization

A1. Let H be a Hilbert space. Recall from the lecture that H = H∗ in the sense of isometric

isomorphism. Write explicitly this isomorphism.

A2. Let (Ω,F , µ) be a σ-�nite measure space. Recall from the lecture that for 1 ≤ p < ∞,

(Lp)∗ = Lq in the sense of isometric isomorphism (here 1/p+ 1/q = 1). Write explicitly this

isomorphism.

A3. For f : R+ → R+ we de�ne

ϕ(f) =

∫
R+

f(t) e−t dt.

Find all p (1 ≤ p ≤ ∞) such that ϕ ∈ (Lp(R+))∗? For such p compute norm of ϕ as a

functional on Lp(R+).

A4. What is (Rn)∗?

A5. Let X be a normed space. What is (X × R)∗?
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A6. Let 0 < p < 1. Then, Lp(0, 1) can be still considered as a metric space equipped with metric

dp(f, g) =

∫ 1

0
|f(x)− g(x)|p dx.

Prove that there is only one continuous linear functional on this space, namely the trivial one

(we write (Lp)∗ = {0}).

A7. Here are some remarks on re�exive spaces. Let E be a normed space.

(A) Let J : E → E∗∗ be de�ned with (Jx)(ϕ) = ϕ(x). Prove that J is well-de�ned, incjective

and isometry ‖Jx‖ = ‖x‖.
(B) If J is surjective, we say that E is re�exive. Prove that any Hilbert space is re�exive.

(C) Suppose that E is re�exive. Prove that E is a Banach space.

A8. Prove that the map T : l1 → (c0)
∗ given with

(Ty)(x) =
∞∑
i=1

xiyi

is well-de�ned, injective, surjective and isometry (i.e. ‖y‖l1 = ‖Ty‖(c0)∗). Conclude that

(c0)
∗ = l1.

Hahn-Banach Theorem (analytic)

B1. (useful version) Let (X, ‖ · ‖) be a normed space and M ⊂ X be a linear subspace. Let

g ∈ M∗. Prove that there is a bounded linear functional f ∈ X∗ such that g(x) = f(x) for

x ∈M and ‖f‖X∗ = ‖g‖M∗ .

B2. (duality formula) Let (X, ‖ · ‖) be a normed space. Prove that

‖x‖ = sup
f∈X∗:‖f‖≤1

f(x)

and the supremum above is attained.

Hint: First prove that for all x0 ∈ X, there is ϕx0 ∈ X∗ such that

ϕx0(x0) = ‖x0‖2 and ‖ϕx0‖ = ‖x0‖.

B3. Let (X, ‖ · ‖) be a normed space. Prove that if ϕ(x1) = ϕ(x2) for all ϕ ∈ X∗ then x1 = x2.

B4. Let (E, ‖ · ‖) be a Banach space and A ⊂ E be its subset. Suppose that for every f ∈ E∗, the
set

f(A) = {f(x) : x ∈ A}

is bounded in R. Prove that A is a bounded set in E (i.e. one can �nd a ball B(0, R) for some

R > 0 such that A ⊂ B(0, R)).

B5. Consider Lp(Ω,F , µ) with 1 ≤ p <∞ and 1/p+ 1/q = 1. Prove that

‖f‖p = sup
g∈Lq :‖g‖q≤1

∫
X
f(x)g(x)dµ(x),
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B6. Prove that the map Φ : L1(0, 1) → (L∞(0, 1))∗ given with (Φ(f))(g) =
∫ 1
0 f(x) g(x) dx is

well-de�ned (i.e. Φ(f) ∈ (L∞(0, 1))∗ for all f ∈ L1(0, 1)) but Φ is not surjective.

Remark: Roughly speaking, we say that L1(0, 1) ⊂ (L∞(0, 1))∗ but L1(0, 1) 6= (L∞(0, 1))∗.

B7. Prove that the map Φ : l1 → (l∞)∗ given with (Φ(x))(y) =
∑∞

i=1 xi yi is well-de�ned (i.e.

Φ(x) ∈ (l∞)∗ for all x ∈ l1) but Φ is not surjective.

Remark: Roughly speaking, we say that l1 ⊂ (l∞)∗ but l1 6= (l∞)∗.

B8. (Banach limit) Prove that there is a bounded functional on l∞ denoted with ϕ such that

• ϕ((x0, x1, x2, ...)) = ϕ((x1, x2, x3, ...)), i.e. ϕ does not depend on �nitely many terms,

• for x ∈ l∞ we have lim infn→∞ xn ≤ ϕ(x) ≤ lim supn→∞ xn,

• for converging x ∈ l∞ we have ϕ(x) = limn→∞ xn.

Hint: consider subspace W = {x ∈ l∞ : limn→∞
x1+x2+...+xn

n exists}. Observe that when

xn → α, we also have x1+x2+...+xn
n → α.

Hahn-Banach Theorem (geometric)

C1. Let E be a normed space and F ⊂ E be a linear subspace such that F 6= E. Prove that there
is ϕ ∈ E∗ such that ϕ 6= 0, ‖ϕ‖ = 1 and ϕ(x) = 0 for all x ∈ F .

C2. Let E be a normed space and F ⊂ E be a linear subspace such that for all ϕ ∈ E∗

∀x∈F ϕ(x) = 0 =⇒ ϕ = 0.

Prove that F is dense in E.

C3. Let H be a Hilbert space and M ⊂ H be its linear subspace. Prove that (M⊥)⊥ = M . In

particular, when M is closed, (M⊥)⊥ = M .

C4. Let X be a vector space (not necessarily normed or Banach) over R. Let ϕ, ϕ1, ..., ϕk be

linear functionals on R (i.e. linear maps from X to R). Suppose that

(∀i=1,...,k ϕi(v) = 0) =⇒ ϕ(v) = 0.

Prove that ϕ is a linear combination of ϕ1, ..., ϕk, i.e. there are real numbers λ1, ..., λk such

that ϕ =
∑k

n=1 λnϕn. Hint: Study F (x) = (ϕ1(x), ..., ϕk(x), ϕ(x)).

C5. (Riesz Lemma) Let (X, ‖ · ‖) be a normed space and M ⊂ X a closed (strictly contained)

subspace. Prove that for any α ∈ (0, 1) there is x ∈ X such that ‖x‖ = 1 and dist(x,M) ≥ α.

C6. Prove that if X is �nite dimensional, one can obtain Riesz Lemma for α = 1. Prove that this
is not possible, in general, for in�nite dimensional X (study X = l∞).

C7. (compactness of the ball) Use Riesz Lemma to prove that if (X, ‖·‖) is in�nite dimensional

space, ball BX = {x ∈ X : ‖x‖ ≤ 1} is not compact.

C8. In the following exercise we will see that in in�nite dimensional setting, something has to

be assumed about two convex sets so that they can be separated (in �nite dimensional case,

convexity of both sets is su�cient). Let E = l1 with its usual norm and consider two subsets:

X =
{
x ∈ l1 : x2n = 0 for all n ≥ 1

}
Y =

{
y ∈ l1 : y2n =

1

2n
y2n−1 for all n ≥ 1

}
.
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(a) Check that X and Y are closed linear spaces in l1. Verify that X + Y = E.

(b) Consider sequence c de�ned with c2n−1 = 0 and c2n = 1
2n . Check that c /∈ X + Y .

(c) Set Z = X − c and check that Y ∩ Z = ∅. Can one separate Y and Z?

C9. Let I : L2(0, 1)→ R be a (nonlinear!) function de�ned with

I(u) =

∫ 1

0
|u(x)| cos2(x) dx.

(A) Prove that I is continuous on L2(0, 1).

(B) Prove that the set

{(u, λ) ∈ L2(0, 1)× R : I(u) < λ}

is open and convex.

(C) Fix u ∈ L2(0, 1). Prove that there exists vu ∈ L2(0, 1) such that for all w ∈ L2(0, 1) we

have

I(u+ w) ≥ I(u) + 〈w, vu〉.

What is vu in the language of classical calculus for convex functions?
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