Functional Analysis (WS 20/21), Problem Set 7
 (introduction to weak convergence)

Compiled on $06 / 12 / 2020$ at 10:43pm
Let $(E,\|\cdot\|)$ be a Banach space. We say that sequence $\left(x_{n}\right)_{n \geq 1} \subset E$ converges weakly to $x \in E$ if for every $\varphi \in E^{*}$ we have $\varphi\left(x_{n}\right) \rightarrow \varphi(x)$. We write $x_{n} \rightharpoonup x$.

General properties

A1. Write explicitly, using representation theorems, what does it mean to converge weakly in L^{p} (for $1 \leq p<\infty$) and H where H is a Hilbert space.

A2. Prove that weak limits are unique: if $x_{n} \rightharpoonup x$ and $x_{n} \rightharpoonup y$ then $x=y$.
A3. Prove that sequences converging weakly are bounded, i.e. if $x_{n} \rightharpoonup x$ then there is a constant C such that $\left\|x_{n}\right\| \leq C$ where C does not depend on $n \in \mathbb{N}$. Moreover, prove the bound

$$
\|x\| \leq \liminf _{n \rightarrow \infty}\left\|x_{n}\right\| .
$$

A4. Prove that if $x_{n} \rightarrow x$ then $x_{n} \rightharpoonup x$.
A5. Prove that if $x_{n} \rightharpoonup x$ and $f_{n} \rightarrow f$ in E^{*} then $f_{n}\left(x_{n}\right) \rightarrow f(x)$ as $n \rightarrow \infty$.
A6. (Mazur Lemma) Let $C \subset E$ be a convex set. Prove that C is closed for convergence in norm if and only if C is closed for weak convergence. Hint: One implication is trivial, for another use Hahn-Banach.
C is closed for convergence in norm if for any $\left\{x_{n}\right\}_{n \geq 1}$ such that $x_{n} \rightarrow x$ it follows that $x \in C$. This is exactly the same as statement that C is closed in E. C is closed for weak convergence if for any $\left\{x_{n}\right\}_{n \geq 1}$ such that $x_{n} \rightharpoonup x$ it follows that $x \in C$.

A7. Let $(H,\langle\cdot, \cdot\rangle)$ be a separable Hilbert space. Prove that there is a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ such that $\left\|x_{n}\right\|=1$ and $x_{n} \rightharpoonup 0$.

A8. (Banach-Alaoglu-Bourbaki Theorem, special case) Let $(H,\langle\cdot, \cdot\rangle)$ be a separable Hilbert space. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a bounded sequence in H. Prove that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ has a subsequence converging weakly to some $x \in H .{ }^{1}$

Particular examples

B1. In l^{2} consider sequence of unit vectors $\left\{e_{n}\right\}$. Decide if this sequence converges strongly or weakly in l^{2}. If yes, what is the limit?

B2. Prove that $\sin (n x) \rightharpoonup 0$ but $\sin ^{2}(n x) \rightharpoonup \frac{1}{2}$ in $L^{p}(0,2 \pi)$ for $1<p<\infty$. Hence, nonlinearities do not preserve weak limits. Remark: Unfortunately, one can show much more: if F is a function such that $F\left(x_{n}\right) \rightharpoonup F(x)$ for all $x_{n} \rightharpoonup x$, then F is an affine function.

B3. Let $f_{n}(x)=\sin (n x)$. Decide if $f_{n}(x)$ converges strongly in $L^{2}(0,2 \pi)$, weakly in $L^{2}(0,2 \pi)$ or a.e. on $(0,2 \pi)$.

[^0]B4. Let H be a Hilbert space. Suppose that $x_{n} \rightharpoonup x$ in H and $\lim \sup _{n \rightarrow \infty}\left\|x_{n}\right\|^{2} \leq\|x\|^{2}$. Prove that $x_{n} \rightarrow x$ in H.

B5. (A) Let $f:(0,1) \rightarrow \mathbb{R}$ be a bounded function and extend it periodically to the function $f: \mathbb{R} \rightarrow \mathbb{R}$. Prove that $f_{n}(x)=f(n x)$ converges weakly in $L^{2}(0,1)$ to $\bar{f}=\int_{0}^{1} f(y) \mathrm{d} y$ (i.e. constant function).
(B) Find weak limits in $L^{2}(0,1)$ of sequences $\sin (2 \pi n x)$ and $\sin ^{2}(2 \pi n x)$.

[^0]: ${ }^{1}$ This result is probably the most important one in Functional Analysis and holds for more general spaces.

