Functional Analysis (WS 20/21), Problem Set 8 (orthonormal systems and basis in Hilbert spaces)

Compiled on $14 / 12 / 2020$ at 10:05pm
We say that the set $\left\{e_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is an orthonormal system if $\left\|e_{\alpha}\right\|=1$ and $\left\langle e_{\alpha_{1}}, e_{\alpha_{2}}\right\rangle=0$. Any orthonormal system satisfies Bessel's inequality: for each $x \in H$ we have

$$
\sum_{\alpha \in \mathcal{A}}\left\langle x, e_{\alpha}\right\rangle^{2} \leq\|x\|^{2}
$$

The sum above contains at most countably many nonzero terms.
We say that the set $\left\{e_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is an orthonormal basis of H if there is no bigger orthonormal set $\left\{e_{\beta}\right\}_{\beta \in \mathcal{B}}$ such that $\left\{e_{\alpha}\right\}_{\alpha \in \mathcal{A}} \subset\left\{e_{\beta}\right\}_{\beta \in \mathcal{B}}$, i.e. $\left\{e_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is a maximal orthonormal set in H. Any orthonormal basis $\left\{e_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ satisfies:
(A) Parseval's identity (i.e. equality in Bessel's inequality) for all $x \in H$ we have

$$
\sum_{\alpha \in \mathcal{A}}\left\langle x, e_{\alpha}\right\rangle^{2}=\|x\|^{2} .
$$

(B) for each $x \in H$ we can wrie $x=\sum_{\alpha \in \mathcal{A}}\left\langle x, e_{\alpha}\right\rangle e_{\alpha}$ and this series is convergent in H.

Below, we obtain easier characterizations of orthonormal basis (see Problems 1 and 2).

1. (criterion 1) Prove that the orthonormal set $\left\{e_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is actually the basis if and only if

$$
\left\langle x, e_{\alpha}\right\rangle=0 \text { for all } \alpha \in \mathcal{A} \Longrightarrow x=0
$$

2. (criterion 2) Prove that the orthonormal set $\left\{e_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ is actually the basis if and only if

$$
H=\overline{\operatorname{span}\left(e_{\alpha}: \alpha \in \mathcal{A}\right)},
$$

where span is the space of all linear combinations.
3. Let $\left(f_{n}\right)_{n \in \mathbb{N}}$ be an orthonormal Schauder basis of $L^{2}(0,1)$. For given $t \in[0,1]$ compute:

$$
\sum_{n=1}^{\infty}\left|\int_{0}^{t} x^{3} f_{n}(x) d x\right|^{2}
$$

4. Let $a_{n}=\int_{0}^{2 \pi} t^{2} e^{i n t} \mathrm{~d} t$. Compute $\sum_{n \in \mathbb{Z}}\left|a_{n}\right|^{2}$ and $\sum_{n=1}^{\infty}\left|a_{n}\right|^{2}$.
5. Prove that if H is separable than it has a countable orthonormal basis.
6. Prove that separable infinite dimensional Hilbert space H is isometrically isomorphic to l^{2}.
7. Consider Radamacher system: $r_{0}=1$ and $r_{n}=\operatorname{sgn}\left(\sin \left(2^{n} \pi t\right)\right)$. Prove that this is an orthogonal system but it is not an orthogonal basis of $L^{2}(0,1)$.
8. If $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ is an orthonomal set in H, for all $x \in H$ we have $\left\langle x, e_{n}\right\rangle \rightarrow 0$ when $n \rightarrow \infty$.
9. Let $\left\{e_{n}\right\}_{n \in \mathbb{N}}$ be an orthonormal set in Hilbert space H. Consider operator $T: H \rightarrow c_{0}$ defined with

$$
T x=\left(\frac{n}{n+1}\left\langle x, e_{n}\right\rangle\right)_{n \in \mathbb{N}} .
$$

Prove that T is well-defined. Is T a bounded linear operator? If yes, compute its norm.
10. If H is infinite dimensional, there is a sequence $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ such that $\left\|x_{n}\right\|=1$ and $x_{n} \rightharpoonup 0 .{ }^{1}$
11. Let $y \in l^{\infty},\left\{e_{n}\right\}_{n \in \mathbb{N}}$ is an orthonomal set in H and $u_{n}=\frac{1}{n} \sum_{i=1}^{n} e_{i} y_{i}$. Prove that $u_{n} \rightarrow 0$.
12. Let $\left\{e_{\alpha}\right\}_{\alpha \in \mathcal{A}}$ be an orthonormal basis of H. Prove that

$$
x_{n} \rightharpoonup x \text { in } H \Longleftrightarrow\left\langle x_{n}-x, e_{\alpha}\right\rangle \rightarrow 0 \text { for all } \alpha \in \mathcal{A} .
$$

13. (Banach-Alaoglu-Bourbaki Theorem, special case) Let H be a separable Hilbert space. Let $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ be a bounded sequence in H. Prove that $\left\{x_{n}\right\}_{n \in \mathbb{N}}$ has a subsequence converging weakly to some $x \in H .{ }^{2}{ }^{3}$
14. Let μ be a gaussian measure on \mathbb{R}, i.e. a measure with density $\frac{1}{\sqrt{2 \pi}} e^{-x^{2} / 2}$. Let $H=L^{2}(\mathbb{R}, \mu)$.
(A) Let $X=\operatorname{span}\left(1, x, x^{2}\right)$. Prove that X is a linear subspace of H.
(B) Recall Gram-Schmidt algorithm. Use it to find an orthonormal basis of X.
(C) Compute the distance of $f(x)=|x|$ from X.

When evaluating integrals you may use certain moments of normally distributed random variables without a proof.
15. Consider two σ-finite measure spaces (X, μ) and (Y, ν). Prove or disprove:
(A) If $\left\{f_{j}\right\}_{j \in \mathbb{N}}$ and $\left\{g_{k}\right\}_{k \in \mathbb{N}}$ are orthonormal sets in $L^{2}(X, \mu)$ and $L^{2}(Y, \mu)$ respectively, then the set

$$
f_{j} \otimes g_{k}: X \times Y \rightarrow \mathbb{R}, \quad f_{j} \otimes g_{k}(x, y):=f_{j}(x) g_{k}(y), \quad k, j \in \mathbb{N}
$$

is an orthonormal set of $L^{2}(X \times Y, \mu \otimes \nu)$. Here, $\mu \otimes \nu$ denotes product measure on $X \times Y$.
(B) If $\left\{f_{j}\right\}_{j \in \mathbb{N}}$ and $\left\{g_{k}\right\}_{k \in \mathbb{N}}$ form orthonormal basis of $L^{2}(X, \mu)$ and $L^{2}(Y, \mu)$ respectively, then the set $f_{j} \otimes g_{k}$ is an orthonormal basis of $L^{2}(X \times Y, \mu \otimes \nu)$.
16. There are Hilbert spaces that are not separable. Consider space of functions $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f(x) \neq 0$ only for countably many $x \in \mathbb{R}$ equipped with the scalar product

$$
\langle f, g\rangle=\sum_{x \in \mathbb{R}} f(x) g(x) .
$$

Prove that it is a Hilbert space but it is not separable (find uncountable set of elements x_{i} such that $\left\|x_{i}-x_{j}\right\| \geq 1$).

[^0]
[^0]: ${ }^{1}$ This is copied from Problem Set 7.
 ${ }^{2}$ This result is probably the most important one in Functional Analysis and holds for more general spaces.
 ${ }^{3}$ This is copied from Problem Set 7.

