Functional Analysis (WS 20/21), Problem Set 8

(orthonormal systems and basis in Hilbert spaces)

Compiled on 14/12/2020 at 10:05 pm

We say that the set $\{e_{\alpha}\}_{\alpha \in \mathcal{A}}$ is an **orthonormal system** if $||e_{\alpha}|| = 1$ and $\langle e_{\alpha_1}, e_{\alpha_2} \rangle = 0$. Any orthonormal system satisfies **Bessel's inequality**: for each $x \in H$ we have

$$\sum_{\alpha \in \mathcal{A}} \langle x, e_{\alpha} \rangle^2 \le \|x\|^2.$$

The sum above contains at most countably many nonzero terms.

We say that the set $\{e_{\alpha}\}_{\alpha \in \mathcal{A}}$ is an **orthonormal basis** of H if there is no bigger orthonormal set $\{e_{\beta}\}_{\beta \in \mathcal{B}}$ such that $\{e_{\alpha}\}_{\alpha \in \mathcal{A}} \subset \{e_{\beta}\}_{\beta \in \mathcal{B}}$, i.e. $\{e_{\alpha}\}_{\alpha \in \mathcal{A}}$ is a maximal orthonormal set in H. Any orthonormal basis $\{e_{\alpha}\}_{\alpha \in \mathcal{A}}$ satisfies:

(A) **Parseval's identity** (i.e. equality in Bessel's inequality) for all $x \in H$ we have

$$\sum_{\alpha \in \mathcal{A}} \langle x, e_{\alpha} \rangle^2 = \|x\|^2$$

(B) for each $x \in H$ we can write $x = \sum_{\alpha \in \mathcal{A}} \langle x, e_{\alpha} \rangle e_{\alpha}$ and this series is convergent in H.

Below, we obtain easier characterizations of orthonormal basis (see Problems 1 and 2).

1. (criterion 1) Prove that the orthonormal set $\{e_{\alpha}\}_{\alpha\in\mathcal{A}}$ is actually the basis if and only if

$$\langle x, e_{\alpha} \rangle = 0$$
 for all $\alpha \in \mathcal{A} \implies x = 0$.

2. (criterion 2) Prove that the orthonormal set $\{e_{\alpha}\}_{\alpha \in \mathcal{A}}$ is actually the basis if and only if

$$H = \overline{\operatorname{span}(e_{\alpha} : \alpha \in \mathcal{A})},$$

where span is the space of all linear combinations.

3. Let $(f_n)_{n \in \mathbb{N}}$ be an orthonormal Schauder basis of $L^2(0,1)$. For given $t \in [0,1]$ compute:

$$\sum_{n=1}^{\infty} \left| \int_0^t x^3 f_n(x) \, dx \right|^2.$$

- 4. Let $a_n = \int_0^{2\pi} t^2 e^{int} dt$. Compute $\sum_{n \in \mathbb{Z}} |a_n|^2$ and $\sum_{n=1}^{\infty} |a_n|^2$.
- 5. Prove that if H is separable than it has a countable orthonormal basis.
- 6. Prove that separable infinite dimensional Hilbert space H is isometrically isomorphic to l^2 .
- 7. Consider Radamacher system: $r_0 = 1$ and $r_n = \operatorname{sgn}(\sin(2^n \pi t))$. Prove that this is an orthogonal system but it is not an orthogonal basis of $L^2(0, 1)$.
- 8. If $\{e_n\}_{n\in\mathbb{N}}$ is an orthonormal set in H, for all $x\in H$ we have $\langle x,e_n\rangle\to 0$ when $n\to\infty$.

9. Let $\{e_n\}_{n\in\mathbb{N}}$ be an orthonormal set in Hilbert space H. Consider operator $T: H \to c_0$ defined with

$$Tx = \left(\frac{n}{n+1} \left\langle x, e_n \right\rangle\right)_{n \in \mathbb{N}}$$

Prove that T is well-defined. Is T a bounded linear operator? If yes, compute its norm.

- 10. If H is infinite dimensional, there is a sequence $\{x_n\}_{n\in\mathbb{N}}$ such that $||x_n|| = 1$ and $x_n \to 0$.¹
- 11. Let $y \in l^{\infty}$, $\{e_n\}_{n \in \mathbb{N}}$ is an orthonomal set in H and $u_n = \frac{1}{n} \sum_{i=1}^n e_i y_i$. Prove that $u_n \to 0$.
- 12. Let $\{e_{\alpha}\}_{\alpha \in \mathcal{A}}$ be an orthonormal basis of H. Prove that

$$x_n \rightharpoonup x$$
 in $H \iff \langle x_n - x, e_\alpha \rangle \to 0$ for all $\alpha \in \mathcal{A}$.

- 13. (Banach-Alaoglu-Bourbaki Theorem, special case) Let H be a separable Hilbert space. Let $\{x_n\}_{n\in\mathbb{N}}$ be a bounded sequence in H. Prove that $\{x_n\}_{n\in\mathbb{N}}$ has a subsequence converging weakly to some $x \in H$.²³
- 14. Let μ be a gaussian measure on \mathbb{R} , i.e. a measure with density $\frac{1}{\sqrt{2\pi}}e^{-x^2/2}$. Let $H = L^2(\mathbb{R}, \mu)$.
 - (A) Let $X = \text{span}(1, x, x^2)$. Prove that X is a linear subspace of H.
 - (B) Recall Gram-Schmidt algorithm. Use it to find an orthonormal basis of X.
 - (C) Compute the distance of f(x) = |x| from X.

When evaluating integrals you may use certain moments of normally distributed random variables without a proof.

- 15. Consider two σ -finite measure spaces (X, μ) and (Y, ν) . Prove or disprove:
 - (A) If $\{f_j\}_{j\in\mathbb{N}}$ and $\{g_k\}_{k\in\mathbb{N}}$ are orthonormal sets in $L^2(X,\mu)$ and $L^2(Y,\mu)$ respectively, then the set

$$f_j \otimes g_k : X \times Y \to \mathbb{R}, \qquad f_j \otimes g_k(x, y) := f_j(x) g_k(y), \qquad k, j \in \mathbb{N}$$

is an orthonormal set of $L^2(X \times Y, \mu \otimes \nu)$. Here, $\mu \otimes \nu$ denotes product measure on $X \times Y$.

- (B) If $\{f_j\}_{j\in\mathbb{N}}$ and $\{g_k\}_{k\in\mathbb{N}}$ form orthonormal basis of $L^2(X,\mu)$ and $L^2(Y,\mu)$ respectively, then the set $f_j \otimes g_k$ is an orthonormal basis of $L^2(X \times Y, \mu \otimes \nu)$.
- 16. There are Hilbert spaces that are not separable. Consider space of functions $f : \mathbb{R} \to \mathbb{R}$ such that $f(x) \neq 0$ only for countably many $x \in \mathbb{R}$ equipped with the scalar product

$$\langle f,g \rangle = \sum_{x \in \mathbb{R}} f(x) g(x).$$

Prove that it is a Hilbert space but it is not separable (find uncountable set of elements x_i such that $||x_i - x_j|| \ge 1$).

¹This is copied from Problem Set 7.

²This result is probably the most important one in Functional Analysis and holds for more general spaces.

³This is copied from Problem Set 7.