Hyperbolic Conservation Laws (WS 20/21)

Homeworks

Compiled on $06 / 01 / 2021$ at $5: 01 \mathrm{pm}$
Problems have to be solved and the solutions have to be e-mailed to
jakub.skrzeczkowski@student.uw.edu.pl
before the class begins (16:00). As the subject of your e-mail use

CL-n-homework

where \mathbf{n} is the number of the submitted homework (\mathbf{n} is 1 for the first one).

Contents

Homework 1 (for $28 / 10 / 2020$) 2
Homework 2 (for $4 / 11 / 2020$) 3
Homework 3 (for $12 / 11 / 2020$) 4
Homework 4 (for $26 / 11 / 2020$) 5
Homework 5 (for $9 / 12 / 2020$) 6
Homework 6 (for $16 / 12 / 2020$) 7
Homework 7 (for 8/01/2021) 8
Homework 8 (for $8 / 01 / 2021$) 9
Homework 9 (for $20 / 01 / 2021$) 10

Homework 1 (for 28/10/2020)
Let $G \in L^{1}\left(\mathbb{R}^{n}\right), \mathcal{B}$ be a bounded subset of $L^{p}\left(\mathbb{R}^{n}\right)$ and $1 \leq p<\infty$. Let \mathcal{F} be a family of functions defined as

$$
\mathcal{F}=\{G * B: B \in \mathcal{B}\} .
$$

Prove that $\left.\mathcal{F}\right|_{\Omega}$ has a compact closure in $L^{p}(\Omega)$ for any $\Omega \subset \mathbb{R}^{n}$ with finite measure.

Homework 2 (for 4/11/2020)

Let $\gamma(t): \mathbb{R}^{+} \rightarrow \mathbb{R}$ be a curve of class C^{1} and

$$
u(t, x)= \begin{cases}u_{l}(t, x), & x<\gamma(t), \\ u_{r}(t, x), & x>\gamma(t)\end{cases}
$$

as in the figure below.

We assume that u_{l}, u_{r} are pointwise solutions to the conservation law

$$
\begin{equation*}
u_{t}+\operatorname{div} F(u)=0 \tag{1}
\end{equation*}
$$

in Ω_{1}, Ω_{2} respectively. Prove that u is an entropy solution to (1) if and only if

$$
\dot{\gamma}(t)\left[\eta\left(u_{r}(t, \gamma(t))\right)-\eta\left(u_{l}(t, \gamma(t))\right)\right] \geq\left[Q\left(u_{r}(t, \gamma(t))\right)-Q\left(u_{l}(t, \gamma(t))\right)\right]
$$

for all entropy/entropy-flux pairs (η, Q) for all convex η. This can be seen as a Rankine-Hugoniot version of entropy inequality.

Homework 3 (for 12/11/2020)

Let $u \in L^{\infty}\left(\mathbb{R}^{+} \times \mathbb{R}^{d}\right)$ and $u_{0} \in L^{\infty}\left(\mathbb{R}^{d}\right)$. Suppose that u is an entropy solution to the scalar conservation law

$$
u_{t}+\operatorname{div} F(u)=0
$$

with initial condition u_{0}, i.e. for all entropy/entropy-flux pairs (η, Q) with η convex and all test functions $\varphi \in C_{c}^{1}\left([0, \infty) \times \mathbb{R}^{d}\right)$ such that $\varphi \geq 0$ we have

$$
\begin{align*}
\int_{0}^{\infty} \int_{\mathbb{R}^{d}} \varphi_{t}(t, x) \eta(u(t, x)) \mathrm{d} x \mathrm{~d} t+\int_{0}^{\infty} \int_{\mathbb{R}^{d}} \nabla \varphi(t, x) \cdot Q(& F(u(t, x))) \mathrm{d} x \mathrm{~d} t+ \\
& +\int_{\mathbb{R}^{d}} \varphi(0, x) \eta\left(u_{0}(x)\right) \mathrm{d} x \geq 0 \tag{2}
\end{align*}
$$

Prove that u is a distributional solution, i.e. for all test functions $\varphi \in C_{c}^{1}\left([0, \infty) \times \mathbb{R}^{d}\right)$ we have

$$
\begin{align*}
\int_{0}^{\infty} \int_{\mathbb{R}^{d}} \varphi_{t}(t, x) u(t, x) \mathrm{d} x \mathrm{~d} t+\int_{0}^{\infty} \int_{\mathbb{R}^{d}} \nabla \varphi(t, x) & \cdot F(u(t, x)) \mathrm{d} x \mathrm{~d} t+ \\
& +\int_{\mathbb{R}^{d}} \varphi(0, x) u_{0}(x) \mathrm{d} x=0 \tag{3}
\end{align*}
$$

This shows that entropy solutions can be defined directly by the entropy inequality (2) without assuming distributional identity (3).

Homework 4 (for 26/11/2020)

Let $u:[0, \infty) \times \mathbb{R}^{d} \rightarrow \mathbb{R}$ be a bounded (i.e. $u \in L^{\infty}\left(\mathbb{R}^{+} \times \mathbb{R}^{d}\right)$) distributional solution to the scalar conservation law

$$
u_{t}+\operatorname{div}(F(u))=0
$$

with bounded initial condition u_{0} and locally Lipschitz continuous F. Prove that $t \mapsto u(t, x)$ has weakly* continuous for all $t \geq 0$.

Next, consider equation studied in the class

$$
u_{t}+\operatorname{div}(F(u))=\mu
$$

where μ is a locally bounded measure and specify reasonable assumptions on μ so that $t \mapsto u(t, x)$ has weakly* continuous for all $t \geq 0$.

Hint: Follow the reasoning from the class and observe that if a measure term is zero, you can use Arzela-Ascoli Theorem.

Homework 5 (for 9/12/2020)

Here are two examples of Young measures that one can compute directly.
(A) Let $u:(0,1) \rightarrow \mathbb{R}$ be given with $u(x)=\mathbb{1}_{(0,1 / 2)}(x)-\mathbb{1}_{(1 / 2,1)}(x)$. Extend u periodically to the whole of \mathbb{R} and define $u_{j}:(0,1) \rightarrow \mathbb{R}$ with $u_{j}(x)=u(j x)$. Prove that the Young measure $\left\{\nu_{x}\right\}_{x \in(0,1)}$ of the sequence $\left\{u_{j}\right\}_{j \in \mathbb{N}}$ is given by

$$
\nu_{x}=\frac{1}{2} \delta_{-1}+\frac{1}{2} \delta_{1} .
$$

As this Young measure does not depend on x, we say that the Young measure $\left\{\nu_{x}\right\}_{x \in(0,1)}$ is homogeneous.
(B) Consider functions $u_{j}:(0,1) \rightarrow \mathbb{R}$ defined with $u_{j}(x)=\sin (2 \pi j x)$. Prove that the Young measure $\left\{\nu_{x}\right\}_{x \in(0,1)}$ of the sequence $\left\{u_{j}\right\}_{j \in \mathbb{N}}$ is absolutely continuous with respect to the Lebesgue measure on $(-1,1)$ and its density equals

$$
\frac{1}{\pi \sqrt{1-y^{2}}}
$$

(C) Use result in (B) to compute weak limits of $\sin (2 \pi j x), \sin ^{2}(2 \pi j x)$ and $\sin ^{3}(2 \pi j x)$.

Hint: It is sufficient to study $\int_{0}^{1} \varphi(x) h\left(u_{j}(x)\right) \mathrm{d} x$ for sufficiently many test functions φ and h.

Homework 6 (for 16/12/2020)

Let $\Omega=(0,1)^{d}$ be a unit cube and consider homogenization problem

$$
\begin{aligned}
-\operatorname{div}\left(A(x / \varepsilon) \nabla u^{\varepsilon}\right) & =f \text { in } \Omega \\
u & =0 \text { on } \partial \Omega
\end{aligned}
$$

where $f \in L^{2}(\Omega), A \in L^{\infty}\left(\Omega ; \mathbb{R}^{n \times n}\right)$ and A is extended periodically to the whole of \mathbb{R}^{n}. We assume that A is strongly elliptic in the sense that for all $\xi \in \mathbb{R}^{n}$ we have

$$
\lambda^{-1}|\xi|^{2} \leq \xi^{T} A(y) \xi \leq \lambda|\xi|^{2}
$$

(A) Prove that for $\varepsilon \in(0,1)$ there is the unique solution $u^{\varepsilon} \in H_{0}^{1}(\Omega)$.
(B) Prove that there is some $\xi_{0} \in L^{2}(\Omega)$ such that up to a subsequence,

$$
\begin{aligned}
\nabla u^{\varepsilon} & \rightharpoonup \nabla u \text { weakly in } L^{2}(\Omega) \\
u^{\varepsilon} & \rightarrow u \text { strongly in } L^{2}(\Omega) \\
A(x / \varepsilon) \nabla u^{\varepsilon} & \rightharpoonup \xi_{0} \text { weakly in } L^{2}(\Omega) \\
A(x / \varepsilon) & \rightharpoonup \bar{A}=\int_{\Omega} A(y) \mathrm{d} y \text { weakly in } L^{2}(\Omega)
\end{aligned}
$$

(C) Prove that $\nabla u^{\varepsilon} A(x / \varepsilon) \nabla u^{\varepsilon} \rightharpoonup \nabla u \xi_{0}$ in $L^{1}(\Omega)$.

Remark: In fact, one can use more complicated tricks to see that $\xi_{0}=\bar{A} \nabla u$.

Homework 7 (for 8/01/2021)

We know from tutorials that when $\Omega \subset \mathbb{R}^{n}$ is a bounded subset and $\left\{\mu_{n}\right\}_{n \in \mathbb{N}}$ is bounded in $\mathcal{M}(\Omega)$, the sequence $\left\{\mu_{n}\right\}_{n \in \mathbb{N}}$ is compact in $W^{-1, q}(\Omega)$ for $1 \leq q<\frac{n}{n-1}$.

Argue in a similar manner to prove that if a sequence $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is bounded in $L^{p}(\Omega)$, it is compact in $W^{-1, q}(\Omega)$ for $1 \leq q<p^{*}$ where p^{*} is a usual Sobolev exponent.

Homework 8 (for 8/01/2021)

Here is another result of compensated compactness type proved similarly to the div-curl lemma. Let $u_{n}, v_{n}:(0, T) \times \Omega \rightarrow \mathbb{R}$ where $\Omega \subset \mathbb{R}^{n}$ is a bounded subset. Assume that
$\left\{v_{n}\right\}_{n \in \mathbb{N}}$ is uniformly bounded in $L^{2}\left(0, T ; H_{0}^{1}(\Omega)\right)$,
$\left\{u_{n}\right\}_{n \in \mathbb{N}}$ is uniformly bounded in $L^{2}\left(0, T ; L^{2}(\Omega)\right)$,
$\left\{\partial_{t} u_{n}\right\}_{n \in \mathbb{N}}$ is uniformly bounded in $L^{2}\left(0, T ; H^{-1}(\Omega)\right)$,
where time derivatives above are understood in the sense of distributions. Suppose that

$$
u_{n} \rightharpoonup u, v_{n} \rightharpoonup v \text { in } L^{2}((0, T) \times \Omega)
$$

Prove that $u_{n} v_{n} \rightarrow u v$ in the sense of distributions (in duality with smooth compactly supported functions).

Hint: As always, start by writing $u_{n}=-\Delta z_{n}$ for some z_{n}.

Homework 9 (for 20/01/2021)

(A) (revision) Let $h(x)=\gamma \mathbb{1}_{[a, b]}$. Find explicitly the derivative h^{\prime} i.e. a linear functional on the Schwartz space $\mathcal{S}(\mathbb{R})$ such that

$$
h^{\prime}(\varphi)=-\int_{\mathbb{R}} h(x) \varphi^{\prime}(x) \mathrm{d} x
$$

Show that $h^{\prime} \in \mathcal{M}(\mathbb{R})$.
(B) Let $u^{\varepsilon}: \Omega \rightarrow \mathbb{R}$ be a sequence of bounded functions such that $u^{\varepsilon} \stackrel{*}{\rightharpoonup} u$ in $L^{\infty}(\Omega)$. Suppose that the Young measure generated by $\left\{u^{\varepsilon}\right\}_{\varepsilon>0}$ is given by

$$
\mu_{x}=\frac{1}{4} \delta_{-1}+\frac{1}{2} \delta_{2}+\frac{1}{4} \delta_{5}
$$

for a.e. $x \in \Omega$. Draw the corresponding kinetic function (i.e. weak* limit of $\chi\left(\xi, u^{\varepsilon}(x)\right)$ in $\left.L^{\infty}(\Omega \times \mathbb{R})\right)$.
(C) Let $v^{\varepsilon}: \Omega \rightarrow \mathbb{R}$ be a sequence of bounded functions such that $v^{\varepsilon} \stackrel{*}{\sim} v$ in $L^{\infty}(\Omega)$. Suppose that its kinetic function is $f(x, \xi)=\mathbb{1}_{[0,1]}(\xi)$. Find Young measure generated by sequence $\left\{v^{\varepsilon}\right\}_{\varepsilon>0}$.

