Hyperbolic Conservation Laws Intoviol Topic 6: Toolbox for compensated compartness.

Kuba Skneckovski.

Topic 6: Toolbox for compensated compactness.

- 1. Negative Sobolev spaces and connection with - a operator.
- 2. div-and lemma
- 3. Murat lemma

Motivation: for mulate general results on products on weakly converging sequences (say Vn - V, $w_m - s v ;$ when $v_m \cdot w_m - v \cdot w ?$). In general, it's not true (consider sin²(nx)).

1. Negative Sobolev spores and connection with -s operator.

Definition: we write $W^{(1)}(U)$ for the dual space of $W^{(1)}(U)$ equipped with the usual dual norm $\| \ell \| = \sup_{u \in W_0^{1/2}(U)} (\ell(u))$ $\| u \| \le 1$ $if \ (e \ W^{-liq}(K) \ for each$ We write $(\mathcal{E} = \mathcal{W}_{loc}^{-l(q)}(\mathcal{U})$ Compart KECU. **Remark:** Some people define $W^{-1,q}(V)$ as a dual space of $W_0^{1,q}(V)$. Unless q = 2, it is always important to set up notation.

Remark: Mostly, we will be concerned with W_{loc}^{-liq} so we vestrict our attention to $W^{-liq}(\mathcal{R})$ for \mathcal{R} bodd. Remark: We set up hierardry of negative Soboler spece. For usual sobole spaces we have Would a Wo 92591. Here,

 $W^{-1}(\mathfrak{n}) \subset W^{-1}(\mathfrak{n}) \qquad q_2 < q_1$

Indeed, when $(\varepsilon W^{1/q_1}(\mathfrak{A}) =)$ is body functional on $W^{1/q_2}(\mathfrak{A}) \supset W^{1/q_2}(\mathfrak{A}) \rightarrow (\varepsilon W^{-1/q_2}(\mathfrak{A})) \square$. $(as q_1' > q_2')$

There is a nice trick to more between positive and hegotive Suboler spaces.

FACT 1. let $1 < q < \infty$. Then, for each $(q \in U^{-lig}(\mathfrak{R}))$ there exists a unique solution to

 $-\Delta U_{\xi} = \ell \qquad \mathcal{N}$ $u = 0 \qquad \mathcal{N}$

(in the sense that $\int \mathcal{P}_{\mathcal{U}} \cdot \mathcal{P}_{\mathcal{V}} = \{e(v) \mid \forall v \in \mathcal{W}_{0}^{1/q}(\mathcal{A})\},\$ Noveover, - A is bijective as a linear operator $-\Delta: W_{0}^{\eta} \longrightarrow W^{-\eta}$

and there are constants 211211 why & Il use 1 why $\leq C \parallel e \parallel_{\mathcal{W}^{-1}} e$.

PROOF
$$(q=2)$$
. Recall lax-Itilgram lemma: given coexcire,
bounded and likeor form $a(4,0)$ on Hilbert gace H , for
each $l \in H^*$ $\exists ! u \in H$ s.t. $a(u,v) = l(v) \forall v \in H^-$
let $a(u,v) = \int \nabla u \cdot \nabla v$, $H = h_0^{1/2}(\Omega)$, $l = le = H^* =$
 $= U_0^{1/2}(\Omega)$. Hence, we get the unique solution U_p . Horeover
 $|| U_q ||_{U_0^{1/2}} = \int |\nabla U_q|^2 = l(u_q) \leq ||l|| || U_q ||_{U_0^{1/2}}$
 $= \int || U_q ||_{U_0^{1/2}} \leq ||l||$. Let $(-\Delta)^-$: $W^{-1/2}(\Omega) \to W_1^{1/2}(\Omega)$
so that $(p + \Delta)^ U_q$.
• the wap is injective: indeed when $U_q = O$
 $= \int l = O$.
• the wap is surjective: if $U_q \in W_0^{1/2}$ is fixed, we
way define $le = -\Delta U_p \in W_0^{1/2}$ defined as
 $l(q) = \int \nabla u_q \cdot \nabla q$
 $|| follows that $(-\Delta)^-|(e) = U_q$.
(t follows that $(-\Delta)^-|(e) = U_q$.$

ween two Bourach spoces. Inverse Kopping Theorem Implies that its inverse is also bounded.

PROOF (cose q e (1,00)). This involves feu techniques from singular integrals, Calderon - Zygmund theory out regularity theory for elliptic equations. The complete proof can be found here:

https://people.math.ethz.ch/~salamon/PREPRINTS/pde.pdf

FACT 2 (H² vegularity). Let $u \in H_0^1(\Omega)$ be a weak shi to -Au = f with $f \in L^2(\Omega)$ and Dividulet bdd cond. Then $u \in H^2$ and there exists C s.t. $\|u\|_{H^2} \leq C \|f\|_2$. Proof: Theorem 4 is Section 6.3, Evans, This is based on testing equation with difference quotients.

Using Facts 1 and 2, we can prove everything else.

LENMA (Interpolation in negative Soboler spores) Let $1 < q_0 < q_1 < \infty$ with $\frac{1}{q} = \frac{\lambda}{q_1} + \frac{1-\lambda}{q_0}$. Suppose that $(e \in W^{-1/q_0}(s_1) \cap W^{-1/q_1}(s_1))$. Then, $(e \in W^{-1/q})$ and we have estimate $\| \mathcal{E} \|_{W^{-1}\mathcal{Q}} \leq C(q, q_{2}, q_{2}) \| \mathcal{E} \|_{W^{-1}\mathcal{Q}}^{1-\lambda} \| \mathcal{E} \|_{W^{-1}\mathcal{Q}_{4}}^{\lambda}$ PROOF: We transform the problem to positive Sobolev spaces and apply Hölder, inequality. Indeed, $\varphi \in W^{-1,q_0} \Longrightarrow \exists u_{\varphi} \in W^{1,q_0}$ $\varphi \in W^{-1,q_1} \Longrightarrow \exists \widetilde{u}_{\varphi} \in W^{1,q_1}$ $e = -Du_e$ $\psi = -\Delta \widetilde{u}_{\psi}$ $\psi \in W^{-1}(\Psi) \Rightarrow \exists \widetilde{u}_{\psi} \in W^{1}(\Psi)$ $\ell = -\Delta u_{\ell}$

We chaim that $U_{\psi} = \widetilde{U}_{\xi} = \widetilde{\widetilde{U}}_{\xi}$. Indeed, we have uniqueness for each of these problems. For instance, if $\widetilde{U}_{\psi} \in W^{1/q} \Rightarrow \widetilde{U}_{\psi} \in W^{1/q_{o}}$ so it solves eq. also in $W^{1/q_{o}}$

Applying Hölder inequality $\|u_{\ell}\|_{q} \leq \|u_{\ell}\|_{q_{0}} \|u_{\ell}\|_{q_{1}}^{\chi}$ Coming back to negative Soboler spaces: $\|\mathcal{E}\|_{\overline{U}^{1,q_{0}}} \leq C \|\mathcal{E}\|_{\overline{U}^{1,q_{0}}} \|\mathcal{E}\|_{\chi}^{-1,q_{1}}$

 \Box .

2. div-curl Lemma.

LEMMA. Let {vm3, {wm3 be two vector fields such that:

• they are bounded in
$$L_{loc}(IE^{n})$$

• $\{div v_{n}\}$ is compart in $H_{loc}^{-1}(IR^{n})$
• $\{currlwn\}$ is compart in $H_{loc}^{-1}(IR^{n}; H^{u \times n})$.
Suppose that $v_{n} \rightarrow v$, $w_{n} \rightarrow w$ in L_{loc}^{2} . Then we nore $w_{n} \cdot v_{n} \rightarrow v$, $w_{n} \rightarrow w$ in L_{loc}^{2} . Then we nore $w_{n} \cdot v_{n} \rightarrow w \cdot v$ in M_{oc} in the sense of distr.
PROOF. The main tool is to apply laplawan truch.
Je fix some bdd $\Lambda \subset IR^{n}$ and define u_{n} as
 $\int -\Lambda u_{n} = w_{n}$ in Λ
 $\int u_{n} = 0$ on $\partial \Lambda \Rightarrow IIu_{n}I_{H^{2}} \leq C$.
As a motivation, we compute (*i* is fixed):

$$\begin{array}{l} div \left(u_{n,x_{j}}^{i} - u_{n,x_{i}}^{i} \right) &= \sum_{j=1}^{2} \left(u_{n,x_{j}}^{i} - u_{n,x_{i}}^{i} \right)_{x_{j}}^{z} \\ &= \sum_{j=1}^{n} u_{n,x_{j}x_{j}}^{i} - \sum_{j=1}^{n} u_{n,x_{i}x_{j}}^{j} \\ &= -\omega_{n}^{i} - div \left(u_{n,x_{i}}^{i} \right)_{x_{j}}^{z} \end{array}$$

 $div \left(u_{n,x_{j}}^{i} - u_{n,x_{i}}^{j} \right) = - \omega_{n}^{i} - div \left(u_{n,x_{i}} \right)$ $-y_{n}^{i}$ z_{n}^{i} $\rightarrow W_m^i = z_n^i + y_n^i$ or $w_m = z_m + y_m^i$ (as vectors) Sequence 2n can be mitten as - > dirun. Sequence y_n is compact strongly in $L^2(\Omega)$: indeed, $curl w_n$ is compact in $H^{-1} \Rightarrow curl w_n$ is compact $tn H^{\Delta}$ so divcurl w_n is compart in $L^2(\Omega)$. $= \int V_m \cdot \tilde{c}_m \mathcal{L} + \int V_m \cdot \tilde{c}_m \mathcal{L}.$ For the second term, $v_n \rightarrow v_{in} \downarrow^2$ but $y_n \rightarrow y_{in} \downarrow^2$ so $v_n y_n \rightarrow v y_{in} \downarrow^1$. For the first term $\int v_m \cdot z_n \cdot e = -\int v_m \cdot \nabla div u_m \cdot e = \int div v_m \cdot div u_m \cdot e$ + JUn De divun

Worning: the 2nd term has to be understood as: (div vn) (div un E) as div un is only in Hterm (dirvn) (dir uni E); we know that dirvn > dirv in H^{-1} and divin $\mathcal{E} \longrightarrow \operatorname{div} \mathcal{U} \mathcal{E}$ (as \mathcal{U}_{n} is bold in H^{2} \Longrightarrow div \mathcal{U}_{n} bdd in $H^{2} \Longrightarrow$ div \mathcal{U}_{n} compact in L^{2}). Hence $|(\operatorname{div} v_n)(\operatorname{div} u_n \varepsilon) - (\operatorname{div} v)(\operatorname{div} u \varepsilon)| \leq$ $\leq \underbrace{(\operatorname{div} v_{n} - \operatorname{div} v)(\operatorname{div} u_{n} e)}_{\rightarrow 0 \text{ in } H^{-1}} \underbrace{(\operatorname{div} u_{n} e)}_{\text{bdd} \text{ in } H^{2}} \rightarrow 0 \text{ in } H^{-1}}_{\rightarrow 0 \text{ in } H^{1}}$ Term Jun - Ol divun : as un bod in H2 => div un is carpact in 12 (strongly) by Rellich. As Un-V really, product of reality and throughy converging sequences, converges to the appropriate limit. We conclude $\int v_n z_n \left(\longrightarrow \left(\operatorname{div} v \right) \left(\operatorname{div} u \left(\varepsilon \right)_+ \right) \vee \nabla \left(\operatorname{div} u \left(\varepsilon \right)_+ \right)$ $= -\int v \left(\nabla div u \right) e = \int v z e.$

Frually, Svmwn & -> Svze+ Svye = $=\int v(z+y) e = \int v \omega e.$ Π.

[in homeworks: one simple application and another

result of compensated conjustness type

compact compact = compact. J.

3. Nuvat lemma and some coupart subjets in hegative sobolev spares.

For opplications in conservation laws, veneed a better understanding what is compact in negative 5bolev spaces.

Example: If $\{f_k\}$ is compact in $L^2(\Lambda)$, then $2f_k$ is compact in $H^{-1}(\Lambda)$. Indeed, when $f_k \rightarrow f$ in $L^2(\Lambda)$
$$\begin{split} \|\partial_{x}f_{k}-\partial_{x}f\|_{H^{-1}} &= \sup \int (f_{k}-f)\partial_{x}\psi \leq \\ & \psi \in H^{1}_{0}(\Lambda) \\ & \|\psi\|\leq 1 \\ \leq \|f_{k}-f\|_{2} \|\partial_{x}\psi\|_{2} \leq \|f_{k}-f\|_{2} \longrightarrow 0. \quad \Box \end{split}$$

Example 1: in view of $-\Delta u_k = f_k$ we have $\{u_k\}$ is bold in $W_0^{1,q}(\Lambda) \iff \{f_k\}$ is bold in $W_0^{-1,q}(\Lambda)$.

Now, le prove that bounded neasures form a coupart set in W^{-1,9}. This bequives that W^{1,9}(I) C(I) which holds when q is sufficiently large (q > n, h is the dimension of the space).

LEMMA. Let q>n. Let & Jrm ? be bounded in J((S) with total vaniation. Then 3 Jrm? is conjust in (J¹⁰/2) **PROOF.** Let $B = \{ u \in W_0^{l,q'}(r) : ||u|| \le 1 \}$. $B < C(\overline{r})$ and actually $B = C(\overline{x})$. Fix $E \ge 0$ and choose N(E) - functions $P_{1,--}, P_{N(E)} \in C$ ((\overline{x}) such that $B \subset \bigcup B(\theta_i, \varepsilon)$ i=1We may always find subsequence $\mu_{m_{L}} \rightarrow \mu$ wedly \star . We dain that $\mu_{m_{L}} \rightarrow \mu$ in W. Indeed, $\|\mu_{\mathcal{H}_{\mathcal{H}}} - \mu\|_{\mathcal{H}^{-1,q}} = \sup_{\boldsymbol{\Psi} \in \mathcal{B}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{B}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{B}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{B}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{B}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{B}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{B}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{B}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{B}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{B}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{B}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{B}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{B}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{B}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{B}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{B}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}_{\mathcal{H}}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} + \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} \int \boldsymbol{\Psi} d\mu_{\mathcal{H}} - \mu = \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}} + \bigcup_{\boldsymbol{\Psi} \in \mathcal{H}}$ $= \sup_{\Psi \in \mathcal{B}} \left[\int (\Psi - \Psi_{i,\Psi}) d(\mu_{mk} - \mu) + \int \Psi_{i,\Psi} d\mu_{mk} - \mu \right]$ $\leq 2\xi \sup_{n} \|\mu_{n}\|_{TV} + \sup_{1 \leq i \leq N(\xi)} \int \Psi_{i,i} \psi d(\mu_{n} - \mu)$ $\leq 2\xi \sup_{n} \|\mu_{n}\|_{TV} \quad as \quad h_{k} \longrightarrow \infty.$ As E>O is antitrary, we conclude the proof

q' > n means $\frac{1}{q'} < \frac{1}{n} = \frac{1}{q} > \frac{1}{-n} = \frac{n-1}{n} < =$ $\langle = \rangle q \leq \frac{n}{n-1} = (1)^*.$

(Howework) If In ? bdd in LP(I) then Ity Inen is Compact in $W^{1,q}$ for $q < p^*$.

LEMMA (Murat). Let JCIR be a bounded domain, A coupact in W⁻¹¹²(I), B bounded in M(I) and C bounded in $W^{-1'P}(r)$ for some P > 2. Then, any D s.t. D C (A+B) n C is compact in W "(I). **PROOF:** Note that B is compart in $W^{-1,2}$ for $q < \frac{n}{m}$ =2. It follows that AtB is coupact in by for any 9<2. Finally, D is coupart in W⁻¹¹⁹ (9<2) and bounded in Wip (p>2). Interpolation inequality D is coupout in any W (r <p), proves that W^{-1,2} as desired. in particular Д.

(Various generalizations of this lemma are passible).