Hy perbolic Conservation Laws Tutovial
Topic 8: Kinetic approximations for SCL.

Kuba Skneakouskai

Topic 8: Kinetic approximation for SCL
In the lecture it was proved that there is a solution to the kinetic approximation

$$
\begin{aligned}
& \frac{\partial}{\partial t} f_{\lambda}(t, x, z)+a(\xi) \cdot \nabla_{x} f_{\lambda}(t, x, z) \\
& \quad+\lambda\left[f_{\lambda}(t, x, z)-\lambda\left(\xi ; u_{\lambda}(t, x)\right)\right]=0
\end{aligned}
$$

where $u_{\lambda}(t, x)=\int_{\mathbb{R}} f_{\lambda}(t, x, z) d \xi$ and initial Condition for $f_{\lambda}(0, x, z):=: f^{0}(x, 2)$ is given. The solution was constructed in the Banach space

$$
Y_{T}=C\left([0, T] ; L_{x, z}^{1}\right)
$$

We also let $X_{T}=C\left([0, T] ; L_{1}^{1} \begin{array}{l}x\end{array}\right)$.
Problem 1: Existence was proved with BFPT, For $v \in X_{T}$ we solve

$$
\frac{\partial}{\partial t} f_{x}+a(\xi)-\nabla_{x} f_{\lambda}+\lambda\left(f_{\lambda}-\lambda(\xi, v(t, x))\right)=0
$$

Then, we define $\Phi(v)=\int_{\mathbb{R}} f_{x}(t, x, z) d \xi$.
(we keep initial condition $\left.\left.f_{\lambda}\right|_{t=0} ^{\mathbb{R}}=f_{\alpha}(x\},\right)$).
This is well-defined: we know that for linear problem

$$
\begin{aligned}
& \frac{\partial}{\partial t} f+\underbrace{a(\xi)}_{\in L_{\text {loc }}^{\infty}} \cdot \nabla_{x} f+\lambda f=g_{L_{t, x,\}}^{1}} \text { (*) } \\
& \left.\left.f\right|_{t=0}=f_{0}\right) \in L^{1}
\end{aligned}
$$

there is a solution $f \in Y_{T}$, in ponticulor $\left.\int f d\right\}$ belongs to X_{T} and the nap is nell-defined.
LEMMA. $\Phi: X_{T} \rightarrow X_{T}$ is contractive.
PROOF. Let $v_{1}, v_{2} \in X_{T}$ and $f_{1}, f_{2}=\Phi\left(v_{1}\right), \Phi\left(v_{2}\right)$. Then $f_{1}-f_{2}$ solves

$$
\begin{aligned}
\left.\partial_{+}\left(f_{1}-f_{2}\right)+a(\}\right) \cdot \nabla_{x}\left(f_{1}-f_{2}\right) & +\lambda\left(f_{1}-f_{2}\right)= \\
& \left.=\lambda\left(\lambda\left(\xi, v_{1}\right)-\lambda(\}, v_{2}\right)\right)
\end{aligned}
$$

We know from the theory of linear equation that

$$
\frac{d}{d t} \int_{\mathbb{R}^{d} \times \mathbb{R}}|f|+\lambda \int_{\mid \mathbb{R}^{d} \times \mathbb{R}}|f| \leqslant \int_{\mathbb{R}^{d} \times \mathbb{R}}|g| \text {. }
$$

Using this with $\left.g=\lambda(\}, v_{1}\right)-\lambda\left(3, v_{2}\right)$ wis deduce

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathbb{R}^{d} \times \mathbb{R}}\left|f_{1}-f_{2}\right|+\lambda \int_{\mathbb{R}^{d} \times \mathbb{R}}\left|f_{1}-f_{2}\right| \leqslant \lambda \int_{\mathbb{R}^{d} \times \mathbb{R}}\left|\lambda\left(z_{2} v_{1}\right)-\lambda\left(\xi, v_{2}\right)\right| \\
& \leqslant \lambda \int_{\mathbb{R}^{d}}\left|v_{1}(t, x)-v_{2}(t, x)\right| \quad \text { (by contraction property). } \\
& \leqslant \lambda\left\|v_{1}-v_{2}\right\|_{x_{T}} .
\end{aligned}
$$

Multiply this with $e^{\lambda t}$ to get

$$
\begin{gathered}
\frac{d}{d t} \int_{\mathbb{R}^{a} \times \mathbb{R}} e^{\lambda t}\left|f_{1}-f_{2}\right| \leqslant \lambda e^{\lambda t}\left\|v_{1}-v_{2}\right\|_{x_{T}} \\
\left.\Rightarrow e^{\lambda T} \int_{\mathbb{R}^{d} \times \mathbb{R}}\left|f_{1}-f_{2}\right| d x d\right\} \leqslant\left\|v_{1}-v_{2}\right\|_{x_{T}} \int_{0}^{T} \lambda e^{\lambda t} d t \\
=\left\|v_{n}-v_{2}\right\|_{x_{T}}\left(e^{\lambda T}-1\right)
\end{gathered}
$$

$$
\Rightarrow \int_{\mathbb{R}^{d} \times \mathbb{R}}\left|f_{1}-f_{2}\right| \leqslant\left(1-e^{-\lambda T}\right)\left\|v_{1}-v_{2}\right\|_{x_{T}}
$$

But $\int_{\mathbb{R}^{d}}\left|u_{1}-u_{2}\right|=\int_{\mathbb{R}^{d}}\left|\int_{\mathbb{R}} f_{1} d \xi-\int_{\mathbb{R}} f_{2} d z\right| d x \leqslant$

$$
\begin{aligned}
& \leqslant \int_{\mathbb{R}^{2}} \int_{\mathbb{R}}\left|f_{1}-f_{2}\right| d \zeta d x \\
\Rightarrow & \left\|u_{1}-u_{2}\right\|_{X_{T}} \leqslant\left(1-e^{-\wedge T}\right)\left\|v_{1}-v_{2}\right\|_{X_{T}}
\end{aligned}
$$

Problem 2: Lº estimate in the proof. Let

$$
\left.A_{\infty}:=\inf \{A>0: \quad f(x,\})=0 \quad \forall|z| \geq A\right\}
$$

LEMMA. (f $f_{0} \in L_{x,\}}^{1}$ and satisfies sign property then

- $\left\|u\left(t_{1} x\right)\right\|_{\infty} \leqslant A_{\infty}$
- $f(t, x, z)=0 \quad \forall|z|>A_{\infty}$.

PROOF: We first prove that the subset of X_{T} given with $\left\|v\left(t_{i}\right)\right\|_{\infty} \leqslant A_{\infty}$ is invariant under Φ.

Indeed, if $\|v\|_{\infty} \leqslant A_{\infty}$, then represourtation formula for f is

$$
\begin{aligned}
& \text { for } f \text { is } \\
& \begin{aligned}
f(t, x, z)= & =0 \text { for }|z|>A_{\infty} \\
& +\lambda \int_{0}^{0}(x-a(\eta) t, \xi) e^{-\lambda t}+ \\
& \underbrace{\lambda(\eta ; \underbrace{v(t-s, x-a(\xi) s})}_{\leqslant A_{\infty}}) \\
& =0 \text { for } \mid\left\{\mid>A_{\infty}\right.
\end{aligned}
\end{aligned}
$$

so we get $f(t, x, z)=0$ for $|\Sigma|>A_{\infty}$. Using the sign property (vepresantation formula slows that if ID satisfies the sign popenty, the same is true for the solution),

$$
\begin{aligned}
u(t, x) & \left.\left.=\int_{0}^{\infty} f(t, x, \eta) d\right\}-\int_{2 \infty}^{0}|f(t, x, z)| d\right\} \\
\Rightarrow & |u(t, x)|
\end{aligned}
$$

As $|f| \leqslant 1$ and f is supported on $\mid\left\{\mid \leqslant A_{\infty}\right.$ we obtain that $\|u\|_{\infty} \leq A_{\infty}$ is invariant for Φ.

Now, there is general simple fact that if one uses BFPT for $\Phi: X_{T} \rightarrow X_{T}$ and X_{T} has closed subspace Z invariant under $\$$ then the fixed point belongs to Z (otherwise we can apply BFPT for $\Phi: Z \rightarrow z$ here we use invariance) and get contradiction with uniqueness of the fixed point.

Problem 3: Covollowy 3.6.2
LEMMA: Kinetic approx imotion equation cam be witter as

$$
\frac{\partial}{\partial t} f_{\lambda}+\alpha(\xi) \cdot \nabla_{x} f_{x}=\frac{\partial}{\partial \xi} m_{\lambda}(t, x, \xi)
$$

for mi nonnegative and bounded. Moreover, it satisfies the following estimates:
(i) for all convex S with S ooundeol and $S(0)=0$ we have

$$
\left.\left.\int_{0}^{\infty} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}} S^{\prime \prime}(\xi) m_{\lambda}(t, x,\}\right) \leqslant \int_{\mathbb{R}^{d}} \int_{\mathbb{R}} S^{\prime}(\xi) f_{0}(x,\}\right) d \xi d x,
$$

(ii) for all $\zeta \in \mathbb{R}$

$$
\int_{0}^{\infty} \int_{\mathbb{R}^{d}} m_{x}(t, x, z) d x d t \leqslant \mu^{o}(z) \in C_{0}(\mathbb{R})
$$

Where

$$
\begin{aligned}
& \mu^{e}(\xi)=\left\|_{z>0}\right\| f_{0} \|_{\left.L^{1}\left(\mathbb{R}_{\times(~}^{d}, \infty\right)\right)}+ \\
&+\left\|_{\imath<0}\right\| f_{0} \|_{L^{1}\left(\mathbb{R}^{d} \times(-\infty, \xi)\right)}
\end{aligned}
$$

and $m_{\lambda}(t, x, \xi)=0$ for $|\xi|>A_{\infty}$.
PRODF: Recall that in the first tutorial on kinetic formulation Le proved there is $m(z)$ sit.

$$
x(\xi, u)-f_{\lambda}(t, x)=\frac{\partial}{\partial \xi} m(\xi), \quad m \in C_{0}(\mathbb{R})
$$

with $u=\int f(t, x) d t d x$. Hence, existence of $m \lambda$ is clear. To obtain the first bound we multiply eq with $S^{\prime}(\varepsilon)$ to get

$$
S^{\prime}(\xi) \frac{\partial}{\partial t} f_{\lambda}+S^{\prime}(\varepsilon) a(\xi) \cdot \nabla_{x} f_{\lambda}=\frac{\partial}{\partial \xi} m_{\lambda} \cdot S^{\prime}(z)
$$

Formally: $\int \frac{\partial}{\partial z} m_{\lambda} \cdot S^{\prime}(z)=-\int m_{\lambda}\left(t_{1}, z\right) S^{\prime \prime}(\xi)$
We consider test functions

Then:

$$
\begin{aligned}
& (1)-\int \partial_{+} \partial_{\mu}(t) S^{\prime}(z) f_{\lambda}(t, x, z) d t \\
& =-f_{0}^{1 / M} S^{\prime}(\xi) f_{\lambda}(t, x, z) d t \rightarrow-S^{\prime}(\xi) f_{0}(x, z), \\
& (2) \int_{|x| \geqslant N} S^{\prime}(z) a(z) f_{\lambda} \cdot \nabla_{x} \varphi_{N} \rightarrow 0 \text { by } \\
& \quad \text { integrability } \\
& \Rightarrow \int_{0}^{T} \iint_{0} m_{\lambda}(t, x, z) S^{\prime \prime}(\xi) d t d x d\left\{s \int S^{\prime}(z) f_{0}(x, z) d x d\right\} \\
& -\int S^{\prime}(\zeta) f(T, x, z) d x d z
\end{aligned}
$$

It remains to see that $-\int S^{\prime}(\{) f(T, x\}) d,\{$
From $\left.\lambda(\}, u(t, x))-f(t, x\},)=\frac{\partial}{\partial\}} m(t, x\},\right)$ we get

$$
S(u(t, x))-\int S^{\prime}(\xi) f(t, x, \xi) d \xi=-\int S^{\prime \prime}(\xi) m(t, x, \eta)
$$

so the estimate is satisfied for nonnegative S.

$$
\left.\left.\left.\left.\int_{0}^{\infty} \int_{\mathbb{R}^{d}} \int_{\mathbb{R}} S^{\prime \prime}(\}\right) m_{\lambda}\left(t_{1},\right\}_{1}\right\}\right) \leqslant \int_{\mathbb{R}^{d}} \int_{\mathbb{R}} S^{\prime}(\xi) f_{0}\left(x_{1}\right\}\right) d\{d x,
$$

(by sending $T \rightarrow \infty$ after using $\left.\int s^{\prime}(\eta) f(T, x\},\right) \geqslant 0$). Using point (ii) we know that m_{λ} vanishes for $|\xi|>A_{\infty}$. Hence $|S(z)| \leqslant \|\left. S^{\prime}\right|_{\infty} \cdot|\xi|$ so we can consider $\tilde{S}(\eta)=S(\xi)+\|S\|_{\infty} A_{\infty}$ and get the result for all S without nonnegativity assumption

REMARK: Note that it is not possible to send $T \rightarrow \infty$ in the definition of $G_{M}(t)$ as $f_{\lambda} \& L_{t, x, 2}^{1}$ (it is "only $\left.C_{t} L_{x, 2}^{1}\right)$.
(proof cts) As in the lecture, fix $\zeta_{0}>0$ and Consider $\left.S(\})=(\}-\}_{0}\right)^{+}$so that $\left.S^{\prime}(\}\right)=\|_{\left\{>\xi_{0}\right.}$ bound $S^{\prime \prime}(\xi)=\delta_{\left\{=\xi_{0}\right.}$. Note that S is nonnegative

$$
\begin{aligned}
& \Rightarrow \int_{0}^{\infty} \int_{\mathbb{R}^{d}} m_{\lambda}\left(t, x, z_{0}\right) d t d x \leqslant \\
& \left.\leqslant \int_{\mathbb{R}^{d}} \int_{\left\{>\xi_{0}\right.} f_{0}(x, z) d x d\right\}=\left\|f_{0}\right\|_{L^{1}\left(\mathbb{R}^{d} \times\left(\xi_{0}, \infty\right)\right)}
\end{aligned}
$$

For $\}_{0}<0$ we choose $S(\xi)=\left(\{-\}_{0}\right)$ - so that $S^{\prime}(z)=-1_{\xi<\xi_{0}}$ and $S^{\prime \prime}(\eta)=\delta_{\xi=z_{i 0}}$. Note again that S is nonnegative. Hence,

$$
\begin{aligned}
& \left.\int_{0}^{\infty} \int_{\mathbb{R}^{d}} m_{\lambda}(t, x,\}_{0}\right) d t d x \leqslant \\
& \left.\left.\left.\leqslant \int_{\mathbb{R}^{d}} \int_{\{<\}_{0}}-f_{0}(x,\}\right) \& x d\right\}=\int_{\mathbb{R}^{d}\{<\}_{0}} \int_{0}\left|f_{0}\right| d x d\right\}
\end{aligned}
$$

Finally, for $\left|z_{0}\right|>A_{\infty}$ we take S supported for $|\Sigma|>A_{\infty}$ and strictly convex and $S \geq 0$. Using bound above we get

$$
\begin{aligned}
& \underbrace{\int_{0}^{\infty} \int_{\mathbb{k}^{\alpha} \mid \mathbb{R}} \int_{>0 \text { for }|\xi|>A_{\infty}}^{\left.\int^{\prime \prime}(\xi) m_{\lambda}(t, x,\}\right)} d \xi d x d t \leq \iint_{\sim 0} f_{0}(x, \eta) S^{\prime}(\xi) d \xi d x}_{\geqslant 0}=0 \\
& \Rightarrow \iiint_{|\xi|>A_{\infty}} S^{\prime \prime}(\xi) m_{\lambda}(t, x, z)=0 . \text { But } S^{\prime \prime}(\xi)>0 \text { so }
\end{aligned}
$$

that $m_{\lambda}=0$ for $\left(\Sigma \mid>A_{\infty}\right.$.

