
Order-Preserving Incomplete Suffix Trees
and Order-Preserving Indexes

Maxime Crochemore4,6, Costas S. Iliopoulos4,5, Tomasz Kociumaka1, Marcin
Kubica1, Alessio Langiu4, Solon P. Pissis6,7?,

Jakub Radoszewski1, Wojciech Rytter1,3??, and Tomasz Waleń2,1

1 Faculty of Mathematics, Informatics and Mechanics,
University of Warsaw, Warsaw, Poland

[kociumaka,jrad,rytter,walen]@mimuw.edu.pl
2 Laboratory of Bioinformatics and Protein Engineering,

International Institute of Molecular and Cell Biology in Warsaw, Poland
3 Faculty of Mathematics and Computer Science,

Copernicus University, Toruń, Poland
4 Dept. of Informatics, King’s College London, London WC2R 2LS, UK

[maxime.crochemore,csi]@dcs.kcl.ac.uk
5 Faculty of Engineering, Computing and Mathematics,

University of Western Australia, Perth WA 6009, Australia
6 Université Paris-Est, France

7 Laboratory of Molecular Systematics and Evolutionary Genetics,
Florida Museum of Natural History, University of Florida, USA

8 Scientific Computing Group (Exelixis Lab & HPC Infrastructure),
Heidelberg Institute for Theoretical Studies (HITS gGmbH), Germany

solon.pissis@h-its.org

Abstract. Recently Kubica et al. (Inf. Process. Let., 2013) and Kim
et al. (submitted to Theor. Comp. Sci.) introduced order-preserving pat-
tern matching: for a given text the goal is to find its factors having the
same “shape” as a given pattern. The known results include a linear-time
algorithm for this problem (in case of polynomially-bounded alphabet)
and a generalization to multiple patterns. We extend these results and
give an O(n log log n) time construction of an index that enables order-
preserving pattern matching queries in time linear with respect to the
length of the pattern. The main novel component is a data structure
being an incomplete suffix tree in the order-preserving setting. The tree
can miss single letters related to branchings at internal nodes. Such in-
completeness results from the weakness of our so called weak character
oracle. However, due to its weakness, such oracle can be computed in
O(log logn) time on-line using a sliding-window approach. For most of
the applications such incomplete suffix-trees provide the same functional
power as the complete ones. We also give an O(n logn

log logn
) time algorithm

constructing complete order-preserving suffix trees.

? Supported by the NSF–funded iPlant Collaborative (NSF grant #DBI-0735191).
?? Supported by grant no. N206 566740 of the National Science Centre.

1 Introduction

We introduce order-preserving suffix trees that can be applied for pattern match-
ing and repetition discovery problems in the order-preserving setting. In particu-
lar, this setting can be used to model finding trends in time series which appear
naturally when considering e.g. the stock market or melody matching of two
musical scores, see [11].

Two strings x and y of the same length over an integer alphabet are called
order-isomorphic (or simply isomorphic), written x ≈ y, if

∀1≤i,j≤|x| xi ≤ xj ⇔ yi ≤ yj .

Example 1. (5, 2, 7, 5, 1, 4, 9, 4, 5) ≈ (6, 4, 7, 6, 3, 5, 8, 5, 6), see Fig. 1.

The notion of order-isomorphism was introduced in [11] and [14]. Both papers
independently study the order-preserving pattern matching problem that consists
in identifying all consecutive factors of a string x that are order-isomorphic to
a given string y. If |x| = n and |y| = m, an O(n + m logm) time algorithm for
this problem is presented in both papers. Under a natural assumption that the
characters of y can be sorted in linear time, the algorithm can be implemented in
O(n+m) time. Moreover, in [11] the authors present extensions of this problem
to multiple-pattern matching based on the algorithm of Aho–Corasick.

The problem of order-preserving pattern matching has evolved from the com-
binatorial study of patterns in permutations. This field of study is concentrated
on pattern avoidance, that is, counting the number of permutations not contain-
ing a subsequence which is order-isomorphic to a given pattern. Note that in
this problem the subsequences need not to be consecutive. The first results on
this topic were given by Knuth [12] (avoidance of 312), Lovász [16] (avoidance
of 213) and Rotem [17] (avoidance of both 231 and 312). On the algorithmic
side, pattern matching in permutations (as a subsequence) was shown to be NP-
complete [3] and a number of polynomial-time algorithms for special cases of
patterns were developed [1, 9, 10].

We introduce an index for order-preserving pattern matching. The prepro-
cessing time is O(n log log n) and queries are answered in O(m) time for a pat-
tern of length m over polynomially bounded integer alphabet Σ. The index
is based on incomplete order-preserving suffix trees (incomplete op-suffix-trees,
in short). We also introduce (complete) order-preserving suffix trees (op-suffix-
trees) and show how they can be constructed using their incomplete counterpart
in O(n log n/ log log n) time.

In the literature there are a number of results in the related field of indexing
for parameterized pattern matching. This problem is solved using parameterized
suffix trees, a notion first introduced by Baker [2] who proposed an O(n log n)
time construction algorithm. The result was then improved by Cole and Hariha-
ran [5] to O(n) construction time. Recently, Lee et al. [15] presented an online
algorithm with the same time complexity. What Cole and Hariharan [5] pro-
posed was actually a general scheme for construction of suffix trees for so-called
quasi-suffix families with a constant time character oracle. This result can also

2

be applied in the order-preserving setting, however the resulting index has higher
complexity than ours. We further comment on this in the Final Remarks section.

Structure of the paper. In Sections 2 (preliminary notation) and 3 we give
a formal definition of a complete and an incomplete op-suffix-tree and describe
their basic properties. Then in Sections 4 and 5 we show an O(n log log n) con-
struction of an incomplete op-suffix-tree. The former section contains an algo-
rithmic toolbox that is also used in further parts of the paper. Applications of
our data structure for order-preserving pattern matching and longest common
factor problems are presented in Section 6. Finally in Section 7 we obtain a con-
struction of complete op-suffix-trees and give some final remarks in Section 8.

2 Order-Preserving Code

Let w = w1 . . . wn be a string of length n over an integer alphabet Σ. We assume
that Σ is polynomially bounded in terms of n, i.e. Σ = {1, . . . , nc} for an integer
constant c. We denote the length of a string w by |w| = n. By w[i . . j] we denote
the factor wi . . wj . Denote by suf i the i-th suffix of w, that is, w[i . . n].
For any i ∈ {1, . . . , n} define:

αw(i) = i− j if wj = max{wk : k < i, wk ≤ wi},

if there is no such j then αw(i) = i, similarly define:

βw(i) = i− j if wj = min{wk : k < i, wk ≥ wi},

and βw(i) = i if no such j exists. If several equally good values of j exist, we
select the greatest good value of j.

5

2

7

5

1

4

9

4
5

6

4

7
6

3

5

8

5
6

Fig. 1. Example of two order-isomorphic strings. Their codes are equal to
(1, 1) (2, 1) (2, 3) (3, 3) (5, 3) (4, 2) (4, 7) (2, 2) (5, 5).

We introduce codes of strings in a similar way as in [14]:

Code(w) = ((αw(1), βw(1)), (αw(2), βw(2)), . . . , (αw(|w|), βw(|w|))).

We also denote LastCode(w) = (αw(|w|), βw(|w|)). The following property is a
consequence of Lemma 2 in [14].

3

Lemma 1. Let x and y be two strings of length t and x′ = x[1 . . t − 1], y′ =
y[1 . . t− 1]. Then:

(a) x ≈ y ⇔ x′ ≈ y′ ∧ (yi ≤ yt ≤ yj),
(b) x ≈ y ⇔ x′ ≈ y′ ∧ LastCode(x) = LastCode(y),

where i = t− αx(t), j = t− βx(t).

Proof. Part (a) is an equivalent formulation of Lemma 2 in [14]. Part (b) is a
technical consequence of part (a). ut

x
xi xj xt

βx(t)

αx(t)
y

yi yj yt

Fig. 2. An illustration of Lemma 1, part (a): x[1 . . t] ≈ y[1 . . t] iff x[1 . . t−1] ≈ y[1 . . t−
1] and yi ≤ yt ≤ yj .

As a corollary of part (b) of Lemma 1 we obtain that the codes provide an
equivalent characterization of order-isomorphism:

Lemma 2. x ≈ y ⇔ Code(x) = Code(y).

The codes of strings can be computed efficiently. Applying Lemma 1 from [14]
to strings over polynomially-bounded alphabet we obtain:

Lemma 3. For a string w of length n, Code(w) can be computed in O(n) time.

3 Order-Preserving Suffix Trees

Let us define the following family of sequences:

SufCodes(w) = {Code(suf 1)#, Code(suf 2)#, . . . , Code(suf n)#},

see Fig. 3. The order-preserving suffix tree of w (op-suffix-tree in short), denoted
opSufTree(w), is a compacted trie of all the sequences in SufCodes(w).

Example 2. Let w = (1, 2, 4, 4, 2, 5, 5, 1). All SufCodes(w) are given in Fig. 3.

The nodes of opSufTree(w) with at least two children are called branch-
ing nodes, together with the leaves they form explicit nodes of the tree. All
the remaining nodes (that ‘disappear’ due to compactification) are called im-
plicit nodes. For a node v, its explicit descendant (denoted as FirstDown(v))
is the top-most explicit node in the subtree of v (possibly FirstDown(v) =

4

1 2 4 4 2 5 5 1

2 4 4 2 5 5 1

4 4 2 5 5 1

4 2 5 5 1

2 5 5 1

5 5 1

5 1

1

(1,1) (1,2) (1,3) (1,1) (3,3) (2,6) (1,1) (7,7) #

(1,1) (1,2) (1,1) (3,3) (2,5) (1,1) (7,3) #

(1,1) (1,1) (3,1) (2,4) (1,1) (6,3) #

(1,1) (2,1) (2,3) (1,1) (5,3) #

(1,1) (1,2) (1,1) (4,3) #

(1,1) (1,1) (3,1) #

(1,1) (2,1) #

(1,1) #

suffixes of w: SufCodes(w):

Fig. 3. SufCodes(w) for w = (1, 2, 4, 4, 2, 5, 5, 1).

v). By LocusCode(x) we denote the (explicit or implicit) locus of Code(x) in
opSufTree(w). Only the explicit nodes of opSufTree(w) are stored. The tree con-
tains O(n) leaves, hence its size is O(n).

The leaf corresponding to Code(suf i)# is labeled with the number i. Each
branching node stores its depth and one of the leaves in its subtree. Each edge
stores the code only of its first character. The codes of all the remaining char-
acters of any edge can be obtained using a character oracle that can efficiently
provide the code LastCode(suf i[1 . . j]) for any i, j.

Each explicit node v stores a suffix link, SufLink(v), that may lead to an
implicit or an explicit node (see an example in Fig. 5). The suffix link is defined
as:

SufLink(LocusCode(x)) = LocusCode(DelFirst(x)),

where DelFirst(x) results in removing the first character of x, see Fig. 4.

Observation 1 Code(x) = Code(y)⇒ Code(DelFirst(x)) = Code(DelFirst(y)).

We also introduce an incomplete order-preserving suffix tree of w, denoted
T (w), in which the character oracle is not available and each explicit node v
has at most one outgoing edge that does not store its first character (incomplete
edge). This edge is located on the longest path leading from v to a leaf.

Example 3.
Let w = (1, 2, 4, 4, 2, 5, 5, 1). The op-suffix-tree of w is presented in Fig. 5.

4 Algorithmic Toolbox

We use y-fast trees, see [19], to compute the last symbols of the code of a sequence
changing in a queue-like manner.

Lemma 4. [Weak Character Oracle] An initially empty sequence x over
{1, . . . , n} can be maintained in a data structure D(x) of O(|x|) size so that the
following queries are supported in O(log log n) expected time:

5

root

p q r

leaves

v

v′

SufLink

Fig. 4. Let γ = PathLabel(root , v), |γ| = k, and γ′ = PathLabel(root , v′), where v′ =
SufLink(v). Not necessarily γ′ is a suffix of γ, but γ′ = Code(DelFirst(x)), where
x = w[p . . p+ k − 1] or x = w[q . . q + k − 1] or x = w[r . . r + k − 1].

(1, 1)

(1, 1)

(3, 1)

(2, 4)

(1, 1)

(6, 3)

#

#

(1, 2)

(1, 1)

(3, 3)

(2, 5)

(1, 1)

(7, 3)

#

(4, 3)

#

(1, 3)

(1, 1)

(3, 3)

(2, 6)

(1, 1)

(7, 7)

#

(2, 1)

(2, 3)

(1, 1)

(5, 3)

#

#

#
(1, 1)

(1,1)

(2, 4)

3

#

6

(1, 2)

(1,1)

(3, 3)

2

(4,3)

5

(1, 3)

1

(2,1)

(2, 3)

4

#
7

#
8

Fig. 5. The uncompacted trie of SufCodes(w) for w = (1, 2, 4, 4, 2, 5, 5, 1) (to the left)
and its compacted version, the complete op-suffix-tree of w (to the right). The dotted
arrows (left figure) show suffix links for branching nodes, note that one of them leads
to an implicit node. Labels in the right figure that are in bold are present also in the
incomplete op-suffix-tree.

compute LastCode(x); append a single letter to x; and DelFirst(x).

The first and the third operations are invalid if x is empty.

Proof. The main tool is here the y-fast tree, a data structure for dynamic pre-
decessor queries. The following fact has been shown in [19].

Claim. Let N be an integer such that N = O(logw), where w is the machine
word-size. There exists a data structure that uses O(|X|) space to maintain a

6

set X of key-value pairs with keys from {1, . . . , N} and supports the following
operations in O(log logN) expected time:

find(k): find the value associated with k, if any,
predecessor(k): return the pair (k′, v) ∈ X with the largest k′ ≤ k,
successor(x): return the pair (k′, v) ∈ X with the smallest k′ ≥ k,
remove(k): remove the pair with key k,
insert(k, v): insert (k, v) to X removing the pair with key k, if any.

The y-fast trees are now used as follows. For each symbol present in x we store
in a y-fast tree its last occurrence, represented as a time-stamp (the ordinal
number of the push operation used to append it). Then the LastCode() query is
answered using one predecessor and one successor query. ut

Our second tool is the dynamic weighted ancestor data structure proposed by
Kopelowitz and Lewenstein [13] and originally motivated by problems related to
ordinary suffix trees. A weighted tree is a rooted tree with weights in each node
that satisfies a monotonicity condition: the weight of a node is strictly greater
than the weight of its parent. The weighted ancestor query is:

given a node v and a weight w find LevelAnc(v, w) – the lowest ancestor of
v with weight at least w.

The following lemma is proved in [13].

Lemma 5. Let N be an integer such that N = O(logw), where w is the ma-
chine word-size. There exists a data structure which maintains a weighted tree
T with weights {1, . . . , N} in space O(|T |) and supports the following operations
in O(log logN) amortized time:

– answer LevelAnc(v, w),
– insert a leaf with weight w and v as a parent,
– insert a node with weight w by subdividing the edge joining v with its parent.

We require that the weights of inserted nodes satisfy the monotonicity condition.

5 Constructing Incomplete Order-Preserving Suffix Tree

We design a version of Ukkonen’s algorithm [18] in which suffix links are com-
puted using dynamic weighted ancestors, see Fig. 6. The weights of explicit nodes
represent their depths. In this case for a node u, by LevelAnc(u, d) we denote its
(explicit or implicit) ancestor of depth d.

Our algorithm works online. After reading the string w it produces:

– the incomplete op-suffix-tree T (w) for w;
– the longest suffix F of w such that Code(F) corresponds to a non-leaf node

of T (w), together with the data structure D(F); F is called the active suffix;
– the node (explicit or implicit) LocusCode(F), called the active node.

7

In the algorithm all implicit nodes are represented in a canonical form: the
explicit descendant (FirstDown) and the length of the edge to this descendant.
Each explicit node stores a hash table (see [5, 8]) of its explicit children, indexed
by the labels of the respective edges. Note that the explicit child corresponding
to an incomplete edge is stored outside of this hash table.

When w is extended by one character, say a, we traverse the active path in
T (w): we search for the longest suffix F′ of F such that LocusCode(F′a) appears
in the tree, and for each longer suffix F′′ of F we create a branch leading to a
new leaf node LocusCode(F′′a). The active path is found by jumping along suffix
links, starting at the active node. The end point of the active path provides the
new active node, and F′a becomes the active suffix.

To compute the code of a in Code(Fa) we use the following observation.

Observation 2 Due to Lemma 4 we can compute LastCode(F·a) in O(log log n)
time, where F is the active suffix.

We also use two auxiliary subroutines.

Function Transition(v, (p, q)). This function checks if v has an (explicit or
implicit) child v′ such that the edge from v to v′ represents the code (p, q). It
returns the node v′ or nil if such a node does not exist. We check, using hashing,
if any of the labeled edges outgoing from v starts with the code (p, q), for (at
most one for v) incomplete edge we can check if its starting letter code equals
(p, q) by checking two inequalities from part (a) of Lemma 1.

Function Branch(v, (p, q)). This function creates a new (open) transition from
v with the code (p, q). If v was implicit then it is made explicit, at this moment
the edge leading to its existing child remains incomplete.

Every single jump along a suffix link in the algorithm is performed in O(log log n)
time as presented in Fig. 6.

v

u

FirstDown(v)

vv′

uu′

LevelAnc(u′, |v| − 1)

SufLin
k(v)

SufLin
k(u)

Fig. 6. The computation of SufLink(v). Here u is explicit.

8

Algorithm Construct incomplete opSufTree(w)

Initialize T as incomplete opSufTree for w1;

v := root ; F := empty string;

for i := 2 to n do

a := wi; F := F · a;

while Transition(v,LastCode(F)) = nil do

Branch(v,LastCode(F));

if v = root then break;

F := DelFirst(F);

u := FirstDown(v); { u is the first explicit node below v, including v }
u′ := SufLink(u); { u′ can be an implicit node }
v′ := LevelAnc(u′, |v| − 1); { weighted ancestor query }
SufLink(v) := v′; v := v′;

v := Transition(v,LastCode(F));

return T ;

Observation 3 [Why incomplete?] At first glance it is not clear why incom-
plete edges appear. Consider the situation when we jump to an implicit node
v′ = SufLink(v) and we later branch in this node. The node v′ becomes explicit
and the existing edge from this node to some node u′ becomes an incomplete
edge. Despite incompleteness of the edge (v′, u′) the equality test between the
(known) lastcode letter of the active string and the first (unknown) code letter of
the label of this edge can be done quickly due to part (a) of Lemma 1.

In the pseudocode above we perform O(n) operations in total. This follows from
the fact that each step of the while-loop creates a new edge in the tree. The
operations involving F and the operation LevelAnc are performed in O(log log n)
time and all the remaining operations require only constant time. We obtain the
following result.

Theorem 1. The incomplete op-suffix-tree T (w) for a string w of length n can
be computed in O(n log log n) time.

6 Incomplete Suffix Tree as Order-Preserving Index

The most common application of suffix trees is pattern matching with time
complexity independent of the length of the text.

Theorem 2. Assume that we have T (w) for a string w of length n. Given a
pattern x of length m, one can check if w contains a factor order-isomorphic to
x in O(m) time and report all occurrences of such factors in O(m+ Occ) time,
where Occ is the number of occurrences.

9

Proof. First we compute the code of the pattern. This takes O(m) time due
to Lemma 3. To answer a query, we traverse down T (w) using the successive
symbols of the code. At each step we use the function Transition(v, (p, q)).

This enables to find the locus of Code(x) in O(m) time. Afterwards all the
occurrences of factors that are order-isomorphic to x can be listed in the usual
way by inspecting all leaves in the subtree of LocusCode(x). ut

Another important application of standard suffix trees is related to finding the
longest common factor of two strings. An analog of this problem in the order-
preserving setting is especially important, since it provides a way to find common
trends in time series. In this problem, given two strings w and x, we need to
find the maximum length of their common factors that are order-isomorphic. We
show the usefulness of the suffix links in incomplete op-suffix-tree.

Theorem 3. Let w be a string of length n. Having T (w), one can find the order-
preserving longest common factor of w and x, the latter string of length m, in
O(m(log logm+ log log n)) time.

Proof. The main principle of the algorithm is the same as in the standard setting
(see Corollary 6.12 in [6]). However, it needs to be enhanced using our algorithmic
tools.

Let pref (x) be the longest prefix of x such that Code(pref (x)) corresponds
to a node in T (w). Let suf x

i be the i-th suffix of x. The algorithm computes
pref (suf x

1), pref (suf x
2) etc and finds the maximum depth among their loci.

At each point the data structureD(pref (suf x
i)) for the current suffix is stored.

First, the locus of pref (suf x
1) is found by iterating Transition(v, (p, q)), as in the

order-preserving pattern matching (Theorem 2). To proceed from pref (suf x
i)

to pref (suf x
i+1), we remove the first letter (DelFirst), which also corresponds

to a jump along a suffix link, and then keep traversing down the T (w) using
Transition(v, (p, q)).

By Lemmas 4 and 5, we obtain the required time complexity. ut

7 Constructing Complete Order-Preserving Suffix Tree

In Section 5 we presented an O(n log log n) time construction of an incomplete
op-suffix-tree. To obtain a complete op-suffix-tree, we need to put labels on
incomplete edges and to provide a character oracle. Note that, using a character
oracle working in f(n) time, we can fill in the missing labels in O(nf(n)) time.

Observation 4 The op-suffix-tree of a string of length n can be constructed in
O(n log n) time.

Proof. After O(n log n) preprocessing one can compute LastCode(suf i[1 . . j]) for
any i, j in O(log n) time. We use range trees, see [7]. Then we can fill in separately
each missing label in the incomplete tree in O(n log n) time. ut

10

Below we show a slightly faster construction. For this, however, we need a dif-
ferent encoding of strings that also preserves the order. A very similar code was
already presented in [11]. For any i ∈ {1, . . . , n} define:

prev<
w(i) = |{k : k < i, wk < wi}|, prev=

w(i) = |{k : k < i, wk = wi}|.

The counting code of a string w is defined as:

Code ′(w) = ((prev<
w(1), prev=

w(1)), . . . , (prev<
w(|w|), prev=

w(|w|))).

We also define LastCode ′(w) = (prev<
w(|w|), prev=

w(|w|)).
Example 4. The counting code of each of the strings in Fig. 1 is (0, 0) (0, 0) (2, 0)
(1, 1) (0, 0) (2, 0) (6, 0) (2, 1) (4, 2).

The following lemma states that Code ′ is also an order-preserving code. In this
version of the paper we omit the proof, since it is basically present in [11].

Lemma 6. x ≈ y ⇔ Code ′(x) = Code ′(y).

The main advantage of the new order-preserving code is the existence of an
O(log n/ log log n) time character oracle. To construct the oracle we use a geo-
metric approach: the computation of LastCode ′ for w corresponds to counting
points in certain orthogonal rectangles in the plane.

Observation 5 Let us treat the pairs (i, wi) as points in the plane. Then we
have LastCode ′(suf i[1 . . j]) = (a, b), where a is the number of points that lie
within the rectangle A = [i, i + j − 2] × (−∞, wi+j−1) and b is the number of
points in the rectangle B = [i, i+ j − 2]× [wi+j−1, wi+j−1], see Fig. 7.

The orthogonal range counting problem is defined as follows. We are given n
points in the plane and we need to answer queries of the form:

“how many points are contained in a given axis-aligned rectangle?”.

An efficient solution to this problem was given by Chan and Pǎtraşcu, see The-
orem 2.3 in [4] which we state below as Lemma 7. We say that a point (p, q)
dominates a point (p′, q′) if p > p′ and q > q′.

Lemma 7. We can preprocess n points in the plane in O(n
√

log n) time, using
a data structure with O(n) words of space, so that we can count the number of
points dominated by a query point in O(log n/ log log n) time.

Theorem 4. The op-suffix-tree of a string of length n using the counting code
can be constructed in O(n log n/ log log n) time.

Proof. Due to Lemma 2 and the corresponding Lemma 6, the skeleton of the op-
suffix-tree for each of the order-preserving codes is the same. Hence, to construct
the op-suffix-tree for the counting code, we compute the skeleton of the suffix
tree using the algorithm for incomplete op-suffix-tree. Afterwards we use the
character oracle to insert the first characters on each edge of the skeleton.

Due to Observation 5 and Lemma 7 after O(n
√

log n) time and O(n) space
preprocessing one can compute LastCode ′(suf i[1 . . j]) for any i, j in
O(log n/ log log n) time. ut

11

i

wi

1 2 3 4 5 6 7 8 9

1

2

3

4

5

6 B

A

Fig. 7. Geometric illustration of the sequence w = (5, 4, 6, 5, 2, 6, 1, 5, 6). The elements
wi are represented as points (i, wi). The computation of LastCode ′(suf 2[1 . . 7]) = (3, 1)
corresponds to counting points in rectangles A, B.

8 Final Remarks

A family of strings S1, . . . , Sn is called a quasi-suffix collection [5] if the following
conditions hold: (a) |S1| = n and |Si| = |Si−1| − 1 for all i > 1; (b) no Si is a
prefix of another Sj ; (c) if Si and Sj have a common prefix of length l > 0 then
Si+1 and Sj+1 have a common prefix of length at least l − 1.

The suffix tree for a quasi-suffix collection is defined as a compacted trie
of all the strings in the collection. Cole and Hariharan [5] presented a general
framework for constructing suffix trees for quasi-suffix collections. Assuming they
are given a character oracle that provides the j-th character of any Si in O(1)
time, they construct the suffix tree for a quasi-suffix collection in O(n) time and
space. They assume that the alphabet of Si has size polynomial in n.

One can observe that the strings in SufCodes(w) form a quasi-suffix collec-
tion. Hence, we can apply the result of Cole and Hariharan [5] to obtain an
op-suffix-tree by using our character oracle. The time complexity grows by a
factor corresponding to the complexity of the oracle and matches the bound
from our Theorem 4. However, our approach, tailored for the order-preserving
setting, appears to be simpler.

The framework of Cole and Hariharan [5] is based on McCreight’s algorithm
for suffix tree construction. Recently Lee, Na and Park [15] presented a modified
version of this algorithm that uses Ukkonen’s suffix tree construction algorithm.
If one applies their construction, a yet alternative construction of op-suffix-tree
can be given, still within the same complexity bounds.

References

1. M. H. Albert, R. E. L. Aldred, M. D. Atkinson, and D. A. Holton. Algorithms for
pattern involvement in permutations. In P. Eades and T. Takaoka, editors, ISAAC,
volume 2223 of Lecture Notes in Computer Science, pages 355–366. Springer, 2001.

2. B. S. Baker. Parameterized pattern matching: Algorithms and applications. J.
Comput. Syst. Sci., 52(1):28–42, 1996.

12

3. P. Bose, J. F. Buss, and A. Lubiw. Pattern matching for permutations. Inf.
Process. Lett., 65(5):277–283, 1998.

4. T. M. Chan and M. Patrascu. Counting inversions, offline orthogonal range count-
ing, and related problems. In M. Charikar, editor, SODA, pages 161–173. SIAM,
2010.

5. R. Cole and R. Hariharan. Faster suffix tree construction with missing suffix links.
SIAM J. Comput., 33(1):26–42, 2003.

6. M. Crochemore, C. Hancart, and T. Lecroq. Algorithms on Strings. Cambridge
University Press, USA, 2007.

7. M. de Berg, O. Cheong, M. van Kreveld, and M. Overmars. Computational Ge-
ometry. Algorithms and Applications. Third Edition. Springer-Verlag Berlin Hei-
delberg, 2008.

8. M. Dietzfelbinger, A. R. Karlin, K. Mehlhorn, F. Meyer auf der Heide, H. Rohnert,
and R. E. Tarjan. Dynamic perfect hashing: Upper and lower bounds. SIAM J.
Comput., 23(4):738–761, 1994.

9. S. Guillemot and S. Vialette. Pattern matching for 321-avoiding permutations.
In Y. Dong, D.-Z. Du, and O. H. Ibarra, editors, ISAAC, volume 5878 of Lecture
Notes in Computer Science, pages 1064–1073. Springer, 2009.

10. L. Ibarra. Finding pattern matchings for permutations. Inf. Process. Lett.,
61(6):293–295, 1997.

11. J. Kim, P. Eades, R. Fleischer, S.-H. Hong, C. S. Iliopoulos, K. Park, S. J. Puglisi,
and T. Tokuyama. Order preserving matching. CoRR, abs/1302.4064, 2013. Sub-
mitted to Theor. Comput. Sci.

12. D. E. Knuth. The Art of Computer Programming, Volume I: Fundamental Algo-
rithms, 2nd Edition. Addison-Wesley, 1973.

13. T. Kopelowitz and M. Lewenstein. Dynamic weighted ancestors. In N. Bansal,
K. Pruhs, and C. Stein, editors, SODA, pages 565–574. SIAM, 2007.

14. M. Kubica, T. Kulczynski, J. Radoszewski, W. Rytter, and T. Walen. A linear
time algorithm for consecutive permutation pattern matching. Inf. Process. Lett.,
113(12):430–433, 2013.

15. T. Lee, J. C. Na, and K. Park. On-line construction of parameterized suffix trees
for large alphabets. Inf. Process. Lett., 111(5):201–207, 2011.

16. L. Lovász. Combinatorial problems and exercices. North-Holland, 1979.
17. D. Rotem. Stack sortable permutations. Discrete Mathematics, 33(2):185–196,

1981.
18. E. Ukkonen. On-line construction of suffix trees. Algorithmica, 14(3):249–260,

1995.
19. D. E. Willard. Log-logarithmic worst-case range queries are possible in space

theta(n). Inf. Process. Lett., 17(2):81–84, 1983.

13

