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Abstract
The k-center problem is a classic facility location problem, where given an edge-weighted graph
G = (V,E) one is to find a subset of k vertices S, such that each vertex in V is “close” to some
vertex in S. The approximation status of this basic problem is well understood, as a simple
2-approximation algorithm is known to be tight. Consequently different extensions were studied.

In the capacitated version of the problem each vertex is assigned a capacity, which is a strict
upper bound on the number of clients a facility can serve, when located at this vertex. A constant
factor approximation for the capacitated k-center was obtained last year by Cygan, Hajiaghayi
and Khuller [FOCS’12], which was recently improved to a 9-approximation by An, Bhaskara and
Svensson [arXiv’13].

In a different generalization of the problem some clients (denoted as outliers) may be disre-
garded. Here we are additionally given an integer p and the goal is to serve exactly p clients, which
the algorithm is free to choose. In 2001 Charikar et al. [SODA’01] presented a 3-approximation
for the k-center problem with outliers.

In this paper we consider a common generalization of the two extensions previously studied
separately, i.e. we work with the capacitated k-center with outliers. We present the first constant
factor approximation algorithm with approximation ratio of 25 even for the case of non-uniform
hard capacities.
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1 Introduction

The k-center problem is a classic facility location problem and is defined as follows: given
a finite set V and a symmetric distance (cost) function d : V × V → R≥0 satisfying the
triangle inequality, find a subset S ⊆ V of size k such that each vertex in V is “close” to
some vertex in S. More formally, once we choose S the objective function to be minimized
is maxv∈V minu∈S d(v, u). The vertices of S are called centers or facilities. The problem is
known to be NP-hard [12]. Approximation algorithms for the k-center problem have been
well studied and are known to be optimal [13, 15, 16, 17].

In the capacitated setting, studied for twenty years already, we are additionally given
a capacity function L : V → Z≥0 and no more than L(u) vertices (called clients) may be
assigned to a chosen center at u ∈ V . For the special case when all the capacities are
identical (denoted as the uniform case), a 6-approximation was developed by Khuller and
Sussmann [19] improving the previous bound of 10 by Bar-Ilan, Kortsarz and Peleg [4]. In the
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soft capacities version, in contrast to the standard (hard capacities), we are allowed to open
several facilities in a single location, i.e. the facilities may form a multiset. For the uniform
soft capacities version the best known approximation ratio equals 5 [19]. For general hard
capacities a constant factor approximation has been obtained only recently [11], somewhat
surprisingly by using LP rounding. It was followed by a cleaner and simpler approach of
An, Bhaskara and Svensson [1] who gave a 9-approximation algorithm. From the hardness
perspective a (3− ε) lower bound on the approximation ratio is known [9, 11].

Another natural direction in generalizing the problem is an assumption that instead of
serving all the clients we are given an integer p and we are to select exactly p clients to
serve. The disregarded clients are in the literature called outliers. The k-center problem
with outliers admits a 3-approximation algorithm, which was obtained by Charikar et al. [8].

In this article we study a common generalization of the two mentioned variants of the k-
center problem, i.e. involving both capacities and outliers. In order to simplify our algorithms
we work with a slight generalization, the Capacitated k-supplier with Outliers problem,
where vertices are either clients or potential facility locations. These vertices may coincide,
so that one may have both a client and a potential facility location at the same point, as in
k-center. Below we give the formal problem definition.

Capacitated k-supplier with Outliers
Input: Integers k, p ∈ Z≥0, finite sets C and F , a symmetric distance (cost) function
d : (C ∪ F)× (C ∪ F)→ R≥0 satisfying the triangle inequality, and a capacity function
L : F → Z≥0
Find: Sets C ⊆ C, F ⊆ F , and a function φ : C → F satisfying
|C| = p,
|F | = k,
|φ−1(u)| ≤ L(u) for each u ∈ F .

Minimize: maxv∈C d(v, φ(v)).
Again, in the soft capacities version, F is allowed to be a multiset, and in the uniform

capacities version, the capacity function L is constant.
Existence of an r-approximation algorithm for Capacitated k-center with Outliers

can be shown to be equivalent to existence of an r-approximation algorithm for Capacitated
k-supplier with Outliers.1 Interestingly, such an equivalence is not known to hold if we
do not allow outliers: the best known approximation factor for the Capacitated k-supplier
is 11 while for the Capacitated k-center it is 9, see [1].

1.1 Our results and organization of the paper
The following is the main result of this paper.

I Theorem 1. The Capacitated k-supplier with Outliers problem, both in hard and
soft capacities version, admits a 25-approximation algorithm. The hard uniform capacities
version admits a 23-approximation, and soft uniform capacities – a 13-approximation.

Note that taking C = F = V shows that the k-supplier problem generalizes the k-center
problem, and consequently gives the same approximation bounds for the latter.

I Corollary 2. The Capacitated k-center with Outliers problem, both in hard and
soft capacities version, admits a 25-approximation algorithm. The hard uniform capacities
version admits a 23-approximation, and soft uniform capacities – a 13-approximation.

1 The proof is left for the full version of the paper.
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It is worth noting, that the already known approximation algorithm for the k-center
problem with outliers relies on the fact that a single vertex can serve all the clients that
are its neighbors, i.e. there are no capacity constraints. At the same time the previous
approximation algorithms for the capacitated k-center problem (both in the uniform and
non-uniform case) heavily used the fact that each vertex of the graph is close to some center
in any solution. For this reason it was possible to create a path-like [11] or tree-like [1]
structure with integrally opened non-leaf vertices, that was the crux in the rounding process.
Consequently none of the algorithms for the two previously independently studied extensions
of the basic problem, i.e. capacities and outliers, works for the problem we are interested in.

The first step of our algorithm (Section 3) is the standard thresholding technique, where
we reduce a general metric to a distance metric of an unweighted graph. In Section 4 we
introduce our main conceptual contribution, i.e. the notion of a skeleton. A skeleton is a set
S of vertices, for which there exists an optimum solution F ⊆ F , such that each vertex of S
can be injectively mapped to a nearby vertex of F and moreover each vertex of F is close
to some vertex of S. Intuitively a skeleton is not yet a solution, but it looks similar to at
least one optimum solution. If no outliers are allowed, any inclusionwise maximal subset of
F with vertices far enough from each other, is a skeleton. In [11] and [1], such a set is then
mapped to non-leaf vertices of the structure steering the rounding process. We use a skeleton
in a similar way, but before we are able to do that, we need to bound the integrality gap.
Without outliers, it was sufficient to take the standard LP relaxation and decompose the
graph into connected components. Although with outliers this is no longer the case, as shown
in Section 5, a skeleton lets us both strengthen the LP relaxation, adding an appropriate
constraint, and obtain a more granular decomposition of the initial instance into several
subinstances, for which the strengthened LP relaxation is feasible and has bounded integrality
gap. Further in Section 6 we show how each of these smaller instances can be independently
rounded using tools previously applied for the capacitated setting [1].2 Section 7 contains a
wrap-up of the whole algorithm.

The improvements in the approximation ratio when soft or uniform capacities are consid-
ered, are postponed to the full version of the paper.

1.2 Related facility location work
The facility location problem is a central problem in operations research and computer science
and has been a testbed for many new algorithmic ideas resulting a number of different
approximation algorithms. In this problem, given a metric (via a weighted graph G), a set of
nodes called clients, and opening costs on some nodes called facilities, the goal is to open a
subset of facilities such that the sum of their opening costs and connection costs of clients to
their nearest open facilities is minimized. Up to now, the best known approximation ratio is
1.488, due to Li [21] who used a randomized selection in Byrka’s algorithm [6]. Guha and
Khuller [14] showed that this problem is hard to approximate within a factor better than
1.463, assuming NP 6⊆ DTIME

[
nO(log logn)].

When the facilities have capacities, the problem is called the capacitated facility location
problem. It has also received a great deal of attention in recent years. Two main variants
of the problem are soft-capacitated facility location and hard-capacitated facility location:
in the latter problem, each facility is either opened at some location or not, whereas in

2 The final rounding step can be also done using the path-like structures notion of [11], however we use
the ideas of [1] as it allows cleaner presentation.
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the former, one may specify any integer number of facilities to be opened at that location.
Soft capacities make the problem easier and by modifying approximation algorithms for the
uncapacitated problems, we can also handle this case [23, 18]. To the best of our knowledge all
the existing constant-factor approximation algorithms for the general case of hard capacitated
facility location are local search based, and the most recent of them is the 5-approximation
algorithm of Bansal, Garg and Gupta [3]. The only LP-relaxation based approach for this
problem is due to Levi, Shmoys and Swamy [20] who gave a 5-approximation algorithm
for the special case in which all facility opening costs are equal (otherwise the LP does not
have a constant integrality gap). Obtaining an LP based constant factor approximation
algorithm for capacitated facility location is considered a major problem in approximation
algorithms [24].

A problem very close to both facility location and k-center is the k-median problem in
which we want to open at most k facilities and the goal is to minimize the sum of connection
costs of clients to their nearest open facilities. Very recently Li and Svensson [22] obtained
an LP rounding (1 +

√
3)-approximation algorithm, improving upon the previously best

(3 + ε)-approximation local search algorithm of Arya et al. [2]. Unfortunately obtaining a
constant factor approximation algorithm for capacitated k-median still remains open despite
consistent effort. The only previous attempts with constant approximation factors for this
problem violate the capacities within a constant factor for the uniform capacity case [7]
and the non-uniform capacity case [10] or exceed the number k of facilities by a constant
factor [5].

2 Preliminaries

For a fixed instance of the Capacitated k-supplier with Outliers, we call (C,F, φ)
a solution if it satisfies the required conditions. We often identify the solution by φ only
(considering it as a partial function from C to F), using Cφ and Fφ to refer to the other
elements of the triple. If φ satisfies maxv∈C d(v, φ(v)) ≤ τ , we say that φ is a distance-τ
solution.

Let G = (V,E) be an undirected graph. By dG we denote the metric defined by G. For
sets A,B ⊆ V we define dG(A,B) = mina∈A,b∈B dG(a, b). If B = {b} we write dG(A, b)
instead of dG(A,B).

For a vertex v ∈ V and an integer k ∈ Z≥0 we denote Nk
G(v) = {u ∈ V : dG(u, v) = k}

and Nk
G[v] = {u ∈ V : dG(u, v) ≤ k}. We omit the superscript for k = 1 and the subscript if

there is no confusion which graph we refer to.
For a set S and an element s by S + s we denote S ∪ {s}.

3 Reduction to graphic instances

As usual when working with a min max problem we start with the standard thresholding
argument, i.e. reduce a general metric function to a metric defined by an unweighted graph.

We say that an instance of the k-supplier problem is graphic, if d is defined as the distance
function of an unweighted bipartite graph G = (C,F , E), and the goal is to find a distance-1
solution. An r-approximation algorithm is then allowed to either give a distance-r solution,
or, only if it finds out that no distance-1 solution exists, a NO answer.

Below we show how to build an r-approximation algorithm for Capacitated k-supplier
with Outliers given an r-approximation (in the aforementioned sense) for the graphic
instances. Correctness of the reduction is standard. If an optimal solution exists, then
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its value OPT belongs to T . In particular, in the phase corresponding to OPT , there is
a distance-1 solution in G≤OPT . Thus the algorithm for graphic instances is required to
find a solution. Therefore returns a solution φ for the first time at phase corresponding
to τ∗ ≤ OPT . Since d(v, u) ≤ τ∗dG≤τ∗ (v, u), φ is a distance-r · τ∗ solution, hence also
distance-r ·OPT solution.

T := {d(v, u) : v ∈ C, u ∈ F};
foreach τ ∈ T in ascending order do

G≤τ := (C,F , {(v, u) : d(v, u) ≤ τ});
solve the graphic instance for G≤τ ;
if a solution φ found then return φ;

return NO;

Algorithm 1: Reduction to graphic instances

4 Finding a skeleton

From now on we work with graphic instances only. Without loss of generality we may
assume that L(u) ≤ deg(u) for each u ∈ F . Indeed, setting L(u) := min(L(u), deg(u)) has
no influence on distance-1 solutions, while no additional distance-r solutions are created.

The first phase of the algorithm outputs several subsets of F . If a distance-1 solution
exists, at least one of them resembles (in a certain sense, to be defined later) a distance-1
solution and can be successfully used by the subsequent phases as a hint for constructing a
distance-r solution. We formalize the features of a good hint in the following definition.

I Definition 3. A set S ⊆ F is called a skeleton if
(separation property) d(u, u′) ≥ 6 for any u, u′ ∈ S, u 6= u′,
there exists a distance-1 solution (Cφ, Fφ, φ) such that:

(covering property) d(u, S) ≤ 4 for each u ∈ Fφ,
(injection property) there exists an injection f : S ↪→ Fφ satisfying d(u, f(u)) ≤ 2
for each u ∈ S.

If just separation and injection properties are satisfied, we call S a preskeleton.

In other words a skeleton is a set S, each vertex of which can be injectively mapped to a
vertex of a distance-1 solution Fφ, and at the same time no two vertices of S are close and
N4[S] contains the whole set Fφ.

Note that the separation property implies that sets N2[u] are pairwise disjoint for u ∈ S,
hence any function f : S → Fφ satisfying d(u, f(u)) ≤ 2 is in fact an injection, however we
make it explicit for the sake of presentation.

I Lemma 4. Let S be a preskeleton and let U = {u ∈ F : d(u, S) ≥ 6}. Then S is a skeleton,
or U 6= ∅ and S + s is a preskeleton, where s is a highest-capacity vertex of U .

Proof. Let φ be a distance-1 solution, which witnesses S being a preskeleton, where f : S ↪→
Fφ satisfies the injection property. If φ witnesses S being a skeleton, we are done. Otherwise
the covering property is not satisfied, hence there exists u ∈ Fφ such that d(u, S) > 4. Since
d is a distance function of a bipartite graph, this implies d(u, S) ≥ 6, so u ∈ U 6= ∅. If
|Fφ ∩ N2[s]| ≥ 1, then φ already witnesses S + s being a preskeleton, as one can extend
the injection f by mapping a vertex of Fφ ∩ N2[s] to s. Therefore, we may assume that
N2[s] ∩ Fφ = ∅. In particular, this means that the clients in N(s) are not served by any
facility of Fφ.
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Let us modify φ to obtain ψ as follows: close the facility in u, opening one in s instead.
Let c be the number of clients assigned to u in φ. No longer serve these, instead serve any
c neighbors of s in ψ (as we have observed before, they are not served in φ). Note that
c ≤ L(u) ≤ L(s) ≤ deg(s) by the choice of u maximizing the capacity and by the assumption
of L being bounded by deg. Consequently, there are enough neighbors of s to serve, and the
capacity constraint for s is satisfied. Moreover, the number of open facilities and the number
of served clients are preserved. Other open facilities remain unchanged, so ψ satisfies the
capacity and distance constraints for them, and therefore is a distance-1 solution. Finally,
consider a function f ′ = f + (s, s). As s is at distance at least 6 from S, by the injection
property for S we know that s does not belong to the image of f , hence f ′ is an injection.
Consequently ψ and f ′ ensure S + s satisfies the injection property. Moreover s is far from
S, hence S + s is a preskeleton. J

With ∅ being trivially a preskeleton provided that any distance-1 solution exists, Lemma 4
lets us generate a sequence of sets, which contains a skeleton (see Algorithm 2). Note that
any skeleton, by the injection property, is of size at most k.

I Lemma 5. If there exists a distance-1 solution, there is at least one skeleton among sets
output by Algorithm 2.

S := ∅;
while |S| ≤ k − 1 do

U := {u ∈ F : d(u, S) ≥ 6};
if U = ∅ then break;
s := argmax{L(u) : u ∈ U};
S := S + s;
output S;

Algorithm 2: Construction of a family of sets containing at least one skeleton.

5 Clustering

For a set S ⊆ F define the following linear program LPk,p(G,L, S), where a variable yu for
u ∈ F denotes whether we open a facility in u or not, while a variable xuv for u ∈ F , v ∈ C
corresponds to whether u serves v or not.

∑
u∈F

yu = k (1)∑
u∈F,v∈C

xuv = p (2)

xuv ≤ yu for each u ∈ F , v ∈ C (3)∑
v

xuv ≤ L(u) · yu for each u ∈ F (4)∑
u

xuv ≤ 1 for each v ∈ C (5)∑
u∈F∩N2[s]

yu ≥ 1 for each s ∈ S (6)

xuv = 0 for each u ∈ F , v ∈ C such that (v, u) /∈ E (7)
0 ≤ x, y ≤ 1 (8)
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Constraints (1) − (5), (7) are the standard constraints for Capacitated k-supplier
with Outliers, ensuring that we open exactly k facilities (1), serve exactly p clients (2),
obey capacity constraints (3)-(5), and serve clients which are close to facilities (7).

Observe that if S is a skeleton and a distance-1 solution φ witnesses that fact, we get
a feasible solution of LPk,p(G,L, S) setting yu = 1 iff u ∈ Fφ and xuv = 1 iff v ∈ Cφ and
v = φ(u). Indeed the injection property ensures that constraint (6) is satisfied. However,
as usual in a capacitated problem with hard constraints, the integrality gap of this LP is
unbounded. Similarly to the standard capacitated k-center [11], this issue is addressed
by considering the connected components of G separately. When all the clients need to
be served having a connected graph with a feasible solution of the standard LP is enough
to round it [1, 11]. However, if we allow outliers, there are sill connected instances with
arbitrarily large integrality gap.3 For this reason we use the additional constraint (6) together
with the assumption that all the vertices are close to S. This way we crucially exploit the
covering, injection and separation properties of a skeleton.

In the following we shall prove that any instance with a skeleton can be decomposed into
several smaller instances with additional properties. In the next section we will show how to
round the obtained smaller instances.

I Lemma 6. Let S ⊆ F , let G1, . . . , G` be components of G after all vertices v with
d(v, S) > 5 are removed and let Si = S ∩ V (Gi) for 1 ≤ i ≤ `.

If S is a skeleton, then in polynomial time one can find partitions k =
∑`
i=1 ki and

p =
∑`
i=1 pi such that LPki,pi(Gi, L, Si) are all feasible.

Proof. Observe that if S is a skeleton, then a witness solution φ opens facilities at distance
at most 4 from S, and thus serves clients with distance at most 5 from S. Consequently all
vertices further from S can be safely removed and S remains a skeleton. Then G might contain
several connected components G1, . . . , G` with Gi = (Ci,Fi, Ei). The witness solution φ can
be partitioned among these components so that we get assignments φi which in total open k
facilities to serve p clients. In particular, this means that for some partitions k =

∑
i ki and

p =
∑
i pi sets Si = S ∩ Fi are skeletons, and consequently LPki,pi(Gi, L, Si) are feasible.

The latter condition can be tested efficiently for any values ki and pi. While we cannot
exhaustively test all partitions of k and p, dynamic programming lets us find partitions such
that these linear programs are feasible for each i.

For i ∈ {0, . . . , `}, k′ ∈ {0, . . . , k} and p′ ∈ {0, . . . , p} define a boolean value F [i][k′][p′],
which equals true iff there exist partitions k′ =

∑i
j=1 kj and p′ =

∑i
j=1 pj such that

LPkj ,pj (Gj , L, Sj) are all feasible for j ≤ i.
Clearly F [0][0][0] is true, while F [0][k′][p′] is false for any other pair (k′, p′). For i > 1

the value F [i][k′][p′] is simply an alternative of F [i− 1][k′ − ki][p′ − pi] for every pair (ki, pi)
such that LPki,pi(Gi, L, Si) is feasible, ki ≤ k′ and pi ≤ p′. Thus in polynomial time one can
check whether the desired partitions exists, and provided that together with a true value we
also store the witness partitions, also find these partitions. J

6 Rounding

In the previous section we have shown how given a skeleton S one can partition the initial
instance into smaller subinstances with more structural properties. Our main goal in this

3 The construction is simple, but due to space restrictions it is left for the full version of the paper.
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section is to show that those structural properties are in fact sufficient to construct a solution
for each of the subinstances, which is formalized in the following lemma.

I Lemma 7. Let I = (G = (C,F , E), L, k, p) be an instance of Capacitated k-supplier
with Outliers and let S ⊆ F . If the following four conditions are satisfied:

(i) G is connected,
(ii) for any u, u′ ∈ S, u 6= u′ we have d(u, u′) ≥ 6,
(iii) N5[S] = F ∪ C,
(iv) LPk,p(G,L, S) admits a feasible solution,
then one can find a distance-25 solution for I in polynomial time.

Before we give a proof of Lemma 7, in Section 6.1 we recall (an adjusted version) of a
distance-r transfer, a very useful notion introduced in [1], together with its main properties.
Next, in Section 6.2 we prove Lemma 7.

6.1 Distance r-transfer
I Definition 8. Given a graph G = (V,E) with W ⊆ V , a capacity function L : W → Z≥0
and y ∈ RW≥0, a vector y′ ∈ RW≥0 is a distance-r transfer of (G,L, y) if

1.
∑
v∈W y′v =

∑
v∈W yv and

2.
∑
v∈W :d(v,U)≤r L(v)y′v ≥

∑
u∈U L(u)yu for all U ⊆W .

If y′ is a characteristic vector of F ⊆W , we say that F is an integral distance-r transfer of
(G,L, y).

Less formally a distance-r transfer is a reassignment, where the sum of y-variables is
preserved and locally for any set U ⊆W the total fractional capacity in a small neighborhood
of U does not decrease.

Like in [1], an integral distance-r transfer of the fractional solution of the LP already
gives a distance-r + 1 solution (in particular point 2 of Definition 8 ensures that the Hall’s
condition is satisfied). The proof must be modified though, so that it encompasses outliers.

I Lemma 9. Let G = (C,F , E) be a bipartite graph with a capacity function L : F → Z≥0.
Assume (x, y) is a feasible solution of LPk,p(G,L, S) and F ⊆ F is an integral distance-r
transfer of y. Then one can find a distance-r + 1 solution (C,F, φ) in polynomial time.

U

NH′ [U ]

C

multiplicated F

v

L(u) copies
u1 u2 u3

Figure 1 Graph H ′ obtained from H by removing vertices from F \ F and duplicating each
vertex u ∈ F to its capacity. Shaded ellipses represent sets used in Hall’s theorem.
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Proof. Consider a bipartite graph H = (C,F , EH) with (v, u) ∈ EH if dG(v, u) ≤ r + 1.
Modify H to obtain H ′ by removing vertices from F \ F and duplicating each vertex u ∈ F
to its capacity, i.e. L(u) times, see also Fig. 1. Observe that cardinality-p matchings in this
graph correspond to distance-r + 1 solutions for G. If any, such a matching can clearly be
found in polynomial time. We shall prove its existence by checking the deficit version of
Hall’s theorem, i.e. that for each U ⊆ C we have∑

u∈F :d(u,U)≤r+1

L(u) ≥ |U | − |C|+ p

First, observe that

∑
v∈U,u∈F

xuv =
∑

v∈C,u∈F
xuv −

∑
v∈C\U,u∈F

xuv
(2),(5)
≥ p−

∑
v∈C\U

1 = p− |C \ U | = |U | − |C|+ p.

Moreover

∑
v∈U,u∈F

xuv =
∑

v∈U,u∈NG(U)

xuv ≤
∑

u∈NG(U)

∑
v∈C

xuv
(4)
≤

∑
u∈NG(U)

L(u)yu

Def. 8 point 2
≤

∑
u∈F :dG(u,NG(U))≤r

L(u) =
∑

u∈F :dG(u,U)≤r+1

L(u) .

Together these equalities conclude the proof. J

We proceed with a pair of simple properties of transfers.

I Fact 10. Let G = (V,E) be a graph with W ⊆ V and a capacity function L : W → Z≥0,
and let y, y′, y′′ ∈ RW≥0. Assume y′ is a distance-r transfer of (G,L, y) and y′′ is a distance-r′
transfer of (G,L, y′). Then y′′ is a distance-r + r′ transfer of (G,L, y).

I Fact 11. Let G = (V,E) and G′ = (V ′, E′) be graphs with W ⊆ V and W ⊆ V ′ and a
capacity function L : W → Z≥0. Let y, y′ ∈ RW≥0 and let f : Z≥0 → Z≥0 be a monotonic
function such that dG(u, v) ≤ f(dG′(u, v)) for any u, v ∈ W . Assume y′ is a distance-r
transfer of (G′, L, y). Then y′ is a distance-f(r) transfer of (G,L, y).

The following is the main technical contribution of [1].

I Lemma 12 ([1]). Let T = (V,E) be a tree with a capacity function L : V → Z≥0 and let
y ∈ [0, 1]V be a vector such that yv = 1 for every non-leaf v ∈ V and

∑
v∈V yv ∈ Z≥0. Then

one can find in polynomial time an integral distance-2 transfer of (T, L, y).

6.2 Final rounding
I Lemma 13. Let G = (C,F , E) be a connected bipartite graph and let S ⊆ F such that
d(v, S) ≤ 5 for every v ∈ C ∪ F . There exists an auxiliary tree T = (S,ET ) such that
d(u, u′) ≤ 10 for any {u, u′} ∈ ET . Moreover, such a tree can be computed in polynomial
time.

Proof. We shall grow a tree adding a leaf in each step. At the beginning we select any
s ∈ S and initialize with a single-vertex tree. Assume we have already grown a tree with
vertex-set S′ ⊆ S. Choose a shortest path connecting S′ to S′ \ S. Such a path exists
since G is connected. If its length is at most 10, we add the endpoint in S \ S′ to the tree,
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s
ms

≤ 2

≤ 4

s′t
mt

≤ 2

≤ 4

t′

Figure 2 A fragment of the tree T ′ with s, t ∈ S. Nodes of F are marked in black, of S′ in gray.
Edges of T ′ are represented as dashed lines. Note that ms and mt are not vertices of T ′.

joining it with the other endpoint. For a proof by contradiction assume that a shortest path
has length greater than 10. Since G is bipartite, its length needs to be even, and thus at
least 12. Choose the midpoint of such a path. Its distance both to S′ and to S′ \ S is at
least 6, otherwise the path could be shortened. This vertex contradicts the assumption that
d(v, S) ≤ 5 for every v ∈ C ∪ F . J

We are ready to prove Lemma 7.

proof of Lemma 7. Since G is connected and every vertex of G is within distance 5 from S,
we can use Lemma 13 to construct a tree T = (S,ET ). Let us add a duplicate s′ of every
s ∈ S to create a bipartite graph G′ = (C,F ′, E′), where F ′ = F ∪ S′ and S′ = {s′ : s ∈ S}.
For each s ∈ S choose ms = argmax{L(u) : u ∈ N2[s] ∩ F} and set L(s′) = L(ms). Let us
create a tree T ′ with V (T ′) = F ′ \ {ms : s ∈ S}. We build it in two steps, see also Fig. 2:

1. create a tree with vertex set S′ so that {u′, v′} is an edge iff {u, v} ∈ E(T ),
2. connect each vertex in F \ {ms : s ∈ S} to the closest vertex in S′.
Observe that endpoints of the edges created in the first step are at most at distance 10 in G′,
while endpoints of the edges created in the second step, at most at distance 4. Consequently,
dG′(u, v) ≤ 10dT ′(u, v) for any u, v ∈ V (T ′). Moreover, note that all non-leaves of T ′ belong
to S′.

Let (x, y) be a feasible solution of LPk,p(G,L, S). Note that y can be interpreted as a
vector in RF ′≥0 extending with zeroes at S′. We shall give an integral distance-24 transfer
F of (G′, L, y). Despite it being formally a transfer in G′, F will be a subset of F , i.e. a
transfer of (G,L, y) as well.

Recall that by (ii), the sets N2[s] are pairwise disjoint and in particular ms are pairwise
different. This lets us use (6) to gather in s′ one unit from N2[s] for every s ∈ S so that the
whole value in ms is transferred to s′. Note that L(s′) ≥ L(u) for each u ∈ N2[s], so this way
we obtain a distance-2 transfer y′ of (G′, L, y). Additionally, we have made sure that y′ms = 0,
so y′ can be interpreted as a vector in RV (T ′)

≥0 , and that y′s′ = 1, so y′ is 1 for all non-leaves
of T ′. This lets us use Lemma 12 to obtain an integral distance-2 transfer F ′ ⊆ V (T ′) of
(T ′, L, y′). According to Fact 11 it can be interpreted as a distance-20 transfer of (G′, L, y′).
Finally we move the value from s′ to ms for each s ∈ S. Note that these vertices have equal
capacities, so this step can be interpreted as an integral distance-2 transfer.
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The final transfer is therefore a composition of a distance-2 transfer, a distance-20 transfer
and a distance-2 transfer. Thus, by Fact 10 it is a distance-24 transfer.4 By Lemma 9 having
an integral distance-24 transfer is enough to construct a distance-25 solution φ in polynomial
time, which concludes the proof of Lemma 7. J

7 Wrap-up

With the results of previous section, we are ready to the prove the main theorem.

I Theorem 14. The Capacitated k-supplier with Outliers problem admits a 25-
approximation algorithm.

Proof. Section 3 with Algorithm 1 provides (a Turing-like) reduction to graphic instances.
Algorithm 2 of Section 4 given such an instance outputs several sets. Provided that a distance-
1 solution exists, one of them is guaranteed to be a skeleton. Each of these sets is then
processed separately. As described in Section 5, some redundant vertices are removed and the
graph is partitioned into connected components. Dynamic programming (Lemma 6) is then
used to find a compatible partition of k and p, so that each linear program LPki,pi(Gi, L, Si)
admits a feasible solution. While this procedure might fail in general, it is guaranteed to
succeed for a skeleton, hence at least once if a distance-1 solution exists.

Note that if such a partition is found, then for each of the instances (Gi, L, ki, pi) together
with sets Si, we can use Lemma 7 as all the conditions (i) − (iv) are satisfied. A sum of
solutions for these ` instances is finally returned as a distance-25 solution for the original
graphic instance. J
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A Soft capacities and uniform capacities

A.1 Soft capacities
Note that a variant of Capacitated k-supplier with Outliers with soft capacities can
be reduced to the original problem preserving the quality of solutions. It suffices to duplicate
|C| times each v ∈ F . Opening several facilities of v then corresponds to opening facilities in
several copies of v.

I Theorem 15. The Capacitated k-supplier with Outliers problem with soft capacities
admits a 25-approximation algorithm.

A.2 Uniform capacities
In the special case of Capacitated k-supplier with Outliers where the capacities are
uniform, we can obtain a slightly better approximation factor. Namely, in the proof of
Lemma 7 we can set ms = s and avoid introducing additional vertices s′, using s instead.
With this change the third component of the transfer – moving the value from s′ to ms – is
not necessary, thus we get an integral distance-22 transfer. Analogously to Theorem 14, we
then obtain the following result.

I Theorem 16. The Capacitated k-supplier with Outliers problem with uniform
capacities admits a 23-approximation algorithm.

A.3 Uniform soft capacities
While we could argue as for general soft capacities that in the case of uniform soft capacities
we have a 23-approximation algorithm, a tailor-made proof gives much better factor.

It is easy to verify that the ingredients of the proof of Theorem 14 be adapted to soft
capacities with two changes:

instead of a set of open facilities, we consider a multiset,
we drop the y ≤ 1 requirement in the LP.

Thus, in order to obtain an r+1-approximation algorithm it is enough to compute an integral
(again, multisets allowed) distance-r transfer of y, where (x, y) is the fractional solution of
the LP for an instance satisfying the conditions of Lemma 7.

Again, we shall start with gathering value from N2[s] in s. This time we are allowed to
gather more than 1 unit in s, so we gather everything from N2[s]. A vector y′ defined this
way clearly is a distance-2 transfer of (G,L, y). Moreover, by (6) at least 1 unit is gathered
at each s ∈ S. Like in the proof of Lemma 7, the second component uses the structure of
T . We connect each v ∈ F \ S to the closest s ∈ S obtaining a tree T ′. This way we have a
tree on C whose non-leaves belong to S, and such that dG(u, v) ≤ 10 for any {u, v} ∈ E(T ′).
We shall give an integral distance-1 transfer y′′ of (T, L, y′). Let us make T ′ a rooted tree,
setting the root at a vertex r ∈ S. For each v ∈ V (T ) define Y ′v as the sum of y′u over all u
in the subtree rooted at v. For each v ∈ V (T ′) we transfer δv := Y ′v − bY ′vc units from v to
its parent p(v). Note that Y ′r is an integer, since

∑
v∈F y

′
v = k, so δr = 0 which makes the

operation well defined. Observe that for every v we have

y′′v = yv − δv +
∑

u : child of v
δu = bY ′vc −

∑
u : child of v

bY ′uc ∈ Z≥0.

Also, from any vertex v we have δv ≤ yv. That is because for leaves δv = Y ′v−bY ′vc ≤ Y ′v = y′v
and for the remaining vertices δv = Y ′v − bY ′vc ≤ 1 ≤ y′v, since v ∈ S so that y′v ≥ 1.
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Consequently, for any U ⊆ F , with U ′ = {u : dT ′(u, U) ≤ 1}, we get

∑
v∈U ′

y′′v =
∑
v∈U ′

(
y′v − δv +

∑
u : child of v

δu

)
=
∑
v∈U ′

(y′v − δv) +
∑

u:p(u)∈U ′
δu ≥

≥
∑
v∈U

(y′v − δv) +
∑
u∈U

δu =
∑
v∈U

y′v,

since 0 ≤ δv ≤ y′v for any v ∈ F . Moreover L(v) = L is a constant, so this inequality proves
the condition 2. of Definition 8, and thus y′′ is indeed a distance-1 transfer of (T, L, y′). By
Fact 11 this defines a distance-10 transfer of (G,L, y′), which composed with the previous
transfer using Fact 10 gives an integral distance-12 transfer of (G,L, y).

Consequently, repeating the proof of Theorem 14 we get the following result.

I Theorem 17. The Capacitated k-supplier with Outliers problem with uniform soft
capacities admits a 13-approximation algorithm.

B Equivalence of Capacitated k-supplier with Outliers and
Capacitated k-center with Outliers

I Theorem 18. Assume there exists an r-approximation algorithm for Capacitated k-
center with Outliers. Then there exists an r-approximation algorithm for Capacitated
k-supplier with Outliers.

Proof. Let us consider an instance I = (C,F , d, L, k, p) of Capacitated k-supplier with
Outliers. Define a graphic instance I ′ = (V, d, L′, k′, p′) of Capacitated k-center with
Outliers as follows: take V ′ = C × {1, . . . , N} ∪ F , for every u ∈ F, v ∈ C, i ∈ {1, . . . , N}
set d′((u, i), v) = d(u, v) where N = |F |+ 1. Other values of d′ are taken as the symmetric,
transitive closure of d′ (note that since d was symmetric and satisfied triangle equality,
the closure does not modify any explicitly set value of d′). Also, set L′(v) = 0 for v ∈ C′,
L′(u) = NL(u) for u ∈ F , k′ = k, and p′ = pN . Clearly I ′ can be constructed in polynomial
time from I. Thus, it suffices to show that a distance-r solution in I exists if and only if a
distance r-solution exists in I ′.

One direction is very simple: assume φ : C → F is a distance-r solution in I. Observe
that φ′ : (C × {1, . . . , N}) → F defined as φ′(u, i) = φ(u) for u ∈ C, i ∈ {1, . . . , N} is a
distance-r solution in I ′.

Now, let us prove the other implication. The construction is going to be similar to the
one in the proof of Lemma 9. Assume φ′ : C ′ → F is a distance-r solution in I ′. Note
that C ′ may contain vertices from F . Construct a bipartite graph H = (C,F , EH) with
(v, u) ∈ EH if d(v, u) ≤ r, and modify H to obtain H ′ by removing vertices from F \ F and
multiplicating each u ∈ F to its capacity, i.e. L(u) times. Note that |F | = k′ = k, so a
cardinality-p matching in H ′ gives a distance-r solution to I. Observe that for any U ⊆ C
we have the following inequality∑

u∈F :d(u,U)≤r

NL(u) ≥ |U × {1, . . . , N} ∩ C ′| ≥ |C ′| − |F| − |(C \ U)× {1, . . . , N}|

= Np − |F| + N |U | −N |C| > N(p + |U | − |C| − 1).

Consequently ∑
u∈F :d(u,U)≤r

L(u) > |U | − |C|+ p− 1.
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f1,1

f1,2

f2,1

f2,2

6N

· · ·
6N

· · ·c1 c2· · ·

N

Figure 3 The graph G, vertices in C are marked as white circles, vertices in F as black circles.

Both sides of this inequality are integral, which implies∑
u∈F :d(u,U)≤r

L(u) ≥ |U | − |C|+ p

and, by the deficit version of Hall’s theorem, the existence of a cardinality p-matching in H ′,
and a distance r-solution to I. J

C Connected Instance with Arbitrarily Large Integrality Gap

I Fact 19. For arbitrarily large r ∈ Z≥0 there is a graphic instance I = (G = (C,F , E), L, k, p)
of Capacitated k-supplier with Outliers and a set S ⊆ F , such that all conditions of
Lemma 7 except (iii) are satisfied, but I does not have a distance-r solution.

Proof. Assume r ≥ 2 and fix N = 2r. Let G consist of the following components (see also
Figure 3): a path of N + 1 vertices with endpoints c1, c2 ∈ C and inner vertices alternately
in F and C, four vertices fi,j ∈ F (i, j ∈ {1, 2})), with fi,j adjacent to ci, and 12N vertices
ci,j ∈ C (i ∈ {1, 2}, j ∈ {1, . . . , 6N}), with ci,j adjacent both to fi,1 and fi,2. For each u ∈ F
we set L(u) = 4N , moreover k = 3 and p = 12N . The set S is defined as {f1,1, f2,1}.

Observe that an instance I constructed this way satisfied conditions of Lemma 7 except
(iii): clearly G is connected, dG(f1,1, f2,1) = N + 2 ≥ 6. The feasible solution (x, y) of
LPk,p(G,L, S) has the following non-zero coordinates: yfi,j = 3

4 for i, j ∈ {1, 2}, xfi,jci,j′ = 1
2

for i, j ∈ {1, 2}, j′ ∈ {1, . . . , 6N}, it is easy to verify that it satisfies all constraints.
It remains to show that I does not have a distance-r solution. For a proof by contradiction,

assume that is does, with F ⊆ F being the set of open facilities and C ⊆ C being the set of
clients served. Note that each u ∈ F must serve 4N clients, since p = 4Nk and L(u) = 4N
for u ∈ F . Let Fi = {u ∈ F : d(u, fi,1) ≤ r} and Ci = {v ∈ C : d(v,Fi) ≤ r} for
i ∈ {1, 2}. Observe that F = F1 ∪F2 and the sum is disjoint. Consequently |F ∩Fi| ≥ 2 and
|C∩Ci| ≥ 8N for some i ∈ {1, 2}. However, Ci does not contain c3−i,j for any j ∈ {1, . . . , 6N},
so |Ci| ≤ |C| − 6N = 6.5N + 1 < 8N , a contradiction. J
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