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Abstract

We introduce a new automaton model and compare it with two existing models for recognizing
data languages – deterministic register automata and orbit-finite monoids. We show that
every language recognized by the new model can also be recognized by an orbit-finite monoid.
It follows that some languages can be recognized using deterministic register automata, but
cannot be recognized by this new model. We conjecture that the new model is equivalent to
orbit-finite monoids.

Keywords

Register automata, Orbit-finite sets, Monoids, Data words

Thesis domain (Socrates-Erasmus subject area codes)

11.3 Informatyka

Subject classification

Theory of computation
Formal language and automata theory

Tytuł pracy w języku polskim

Model automatowy dla monoidów orbitowo skończonych





Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1. Register automata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.1. Data words and data languages . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2. Deterministic register automata . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2.1. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. Orbit-finite sets and orbit-finite monoids . . . . . . . . . . . . . . . . . . . . 11
2.1. Orbit-finite sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1. Sets with atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.2. Orbit finiteness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2. Languages over orbit finite alphabets and monoids . . . . . . . . . . . . . . . 13
2.2.1. Monoids with atoms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1. Comparison with deterministic register automata . . . . . . . . . . . . 15

3. An automaton model for orbit-finite monoids . . . . . . . . . . . . . . . . . 17
3.1. Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2. Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.3. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.4. Connection with orbit-finite monoids . . . . . . . . . . . . . . . . . . . . . . . 21
3.5. Comparison with other models . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.6. Further work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3





Introduction

One of the best-known parts of the formal language theory is the class of regular languages.
It can be defined as the class of all the languages that can be recognized by a deterministic
finite automaton (like the one below):

0start 1

a

b

a

b

To check if a word (e. g. abbab) belongs to the language recognized by this automaton, we
set a token in the ‘start’ state, and then, going through every letter in the word, we move the
token as directed by the arrows. The input word belongs to the language if, in the end, the
token is placed in a state marked with a double circle (an accepting state). In our example
this would look like this:

0
a→ 0

b→ 1
b→ 0

a→ 0
b→ 1

We finish in state 1, which is marked with a double circle, so the word abbab belongs to the
language.
One of interesting properties of this class is its robustness – we could add new features to the
automaton without changing its expressive power. Some of the most notable extensions are:

• NFA – a nondeterministic finite automaton can have states with multiple outgoing ar-
rows marked with the same letter. A word w will be accepted if there exists a path
from the starting state to any of the accepting states, such that its labels form the word
w. This means that whenever the automaton has a ‘choice’, we can assume that it will
guess the correct option (provided that it exists).

• 2DFA – a deterministic two-way finite automaton has transitions that can also decide if
the ‘automaton head’ will move one step backwards or one step forwards in the input
word.

• 2NFA – a nondeterministic two-way finite automaton is a combination of an NFA with
a 2DFA. It can move backwards and forwards in the input word and (when in doubt) it
can guess the correct transition that will eventually lead to an accepting state (if only
such transition exists).

Other well-known definitions of regular languages involve regular expressions such as

a∗b(a∗ba∗ba∗)∗
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or finite monoids (discussed in the Chapter 3 of this thesis).
When we study languages over infinite alphabets this robustness usually fades away. For
example, when considering data languages (described in Chapter 1 of this thesis), each of
the presented variants (DFA, NFA, 2DFA, 2NFA, regular expressions and monoids) defines a
different class of languages.
In this thesis, we propose a new model of register automata that works with infinite alphabets
and we compare the class of languages it defines with some important classes of languages
over infinite alphabets. The main difference between the new model and the already known
variants of register automata (e.g. the one described in the Chapter 1 of this thesis) is that
the registers of the new model are single-use only. To illustrate this idea (and to conclude
this introduction) we present the following riddle.

Riddle. Imagine a chemical laboratory that receives many samples of substances. At the end
of each the day, the scientists that work in this lab have to report the approximate number
of different substances seen that day – they have to decide if they have seen 1 substance, 2
substances, 3 substances, or many substances (which can be interpreted as any number greater
than 3). For example, if the lab receives 100 samples of water, they should report that they
have seen only one substance, and if they receive one sample of water, one sample of methane,
one sample of ethane, and one sample of propane, they should report that they have seen many
substances. All the substances received by the lab may only be stored in special test tubes and
the laboratory is equipped with just 10 of them. The concentration of the samples is so low, that
the only way of telling if two test tubes contain the same compound is to use a special machine.
The machine accepts two test tubes, processes them, and produces two possible outputs: same
or different. There is, however, a side effect of this procedure – during the examination the
machine destroys the contents of the test tubes, leaving them empty. The laboratory receives
the samples one by one. After receiving a sample, the scientists can fill up the test tubes and
use the machine as many times as they want to (the volume of the sample they receive is much
larger than the volume of a test tube). However, before receiving the next sample, they have to
pass the current one forward, never to see it again. Is it possible for the lab team to perform
the measurements in such a way, that will lead them to a valid report at the end of each day?
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Chapter 1

Register automata

In this section, we introduce data words and register automata. They were first defined in
[3], but we are going to base this section on the first chapter of [2].

1.1. Data words and data languages

Define a data word to be a word over the alphabet Σ×A, where Σ is a finite set and A is a fixed
infinite set. The Σ part of a letter is called its label, and the A part is called its data value.
Intuitively, a data language is any set of data words that can be defined without explicitly
using any value from A. Moreover the only operation we can perform on elements from A is
to check if two of them are equal. Valid data languages for Σ = {a, b} are for example:

1. The first letter’s label is equal to a.

2. The first letter’s data value is equal to the last letter’s data value.

3. The first letter’s data value appears somewhere else in the word.

4. Some data value appears at least twice in the word.

5. Some data value appears at least once with label a and at least once with label b.

Formally, we say that L ⊆ (Σ× A)∗ is a data language, if for every permutation of atoms

π : A→ A

we have
∀
w
w ∈ L ⇔ π(w) ∈ L

Here, we naturally extend a function that works on data values to a function that works on
data words.

1.2. Deterministic register automata

A deterministic register automaton consists of:

1. A finite set Σ of labels;

2. A finite set Q of control states;
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3. A finite set R of register names;

4. An initial control state q0 ∈ Q and a set of accepting control states F ⊆ Q;

5. An equivariant (see below) transition function:

f ∈ Q× (A ∪ {⊥})R × (Σ× A)→ Q× (A ∪ {⊥})R

A deterministic register automaton can be used to define a data language. Like most of the
other automata, it keeps track of its internal configuration and updates it, processing the word
letter by letter. The internal state of a register automaton consists of a control state and of a
valuation of the registers (Q × (A ∪ {⊥})R). The initial state is the initial control state and
the empty register valuation. The configuration is updated using the transition function f .
A data word is accepted if the final control state belongs to the set of accepting states F .
Let us explain what it means for a transition function f to be equviariant. If we look at the
function f as a special case of a relation,

f ⊆ Q× (A ∪ {⊥})R × (Σ× A)×Q× (A ∪ {⊥})R

we see that any atom permutation π can be extended to f :

(π(f))(x) = π−1(f(π(x)))

We say that a set S is equivariant if every bijection π : A→ A can be naturally extended to
elements of S, and if for every such π we have π(S) = S. (We can now rewrite the definition of
a data language from the previous section, saying that it is any equivariant subset of (Σ×A)∗).
Knowing this, we can directly apply the definition of equivariance to f : π(f) = f . In other
words, this means that:

∀
x,π
f(x) = π−1(f(π(x)))

To make the concept more concrete we also cite another equivalent definition from [2]. We
still consider f as a special (functional) case of a relation. We say that a transition relation
is syntactically equivariant if it can be defined by a finite boolean combination of constraints
of the following types:

1. the control state in the source (respectively, target) configuration is q ∈ Q;

2. the label in the input letter is a ∈ Σ;

3. the data value is undefined in register r ∈ R of the of the source configuration (respec-
tively, target configuration);

4. the data value in the input letter equals the contents of register r ∈ R in the source
configuration;

5. the data value in register r ∈ R of the source configuration (respectively, target configu-
ration) equals the data value in register s ∈ S of the source configuration (respectively,
target configuration).

We say that a function f is syntactically equivariant if it defines a syntactically equivariant
relation. By [2, Lemma 1.3], a relation is equivariant if and only if it is syntactically equiv-
ariant. To extend this proof to functions we only have to notice that the property of “being
a function” is preserved under applying an atom permutation π to a relation.
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1.2.1. Examples

Here are some languages that can be recognized using deterministic register automata:

1. The first and the last data values are equal

2. The first data value of the word appears somewhere else in the word

3. There are no more than 3 different data values in the word

start

a

a

a

a

b

b

a

start

a

a

a

b

b

b, a

start

a

a, b

a, b, c

a

a

b

a, b

c

a, b, c

d

a

Figure 1.1: Register automata recognizing the example languages. In every state and in every
transition values a, b, c, d represent different elements from A. The Σ-labels have been skipped
for clarity.

Here is an example of a language that cannot be recognized by any deterministic register
automaton:

There is a data value that appears at least twice in the word.

Proof. Suppose that there is an automaton A that recognizes this language using k registers.
After A reads a prefix of a word consisting of k + 1 different data values, at least one data
value from the prefix will not be present in the registers. Because of that, A has to go to the
same control state when it sees a new data value and when it sees the “forgotten” data value.
It means that A either has to either accept a word that does not belong to the language, or
it has to reject a word from the language. So A cannot exist.
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Chapter 2

Orbit-finite sets and orbit-finite
monoids

In this section, we define orbit-finite monoids – another model that can be used to define
languages over infinite (but orbit-finite) alphabets.

2.1. Orbit-finite sets

We begin by defining sets with atoms.

2.1.1. Sets with atoms

In set theory “everything is a set”, in sets with atoms everything is a set or an atom – an
element from the fixed structure A (an infinite set equipped only with the equality relation).
For the formal definition of a set with atoms we are going to cite Section 3.1 from [2]. The
definition from [2] is actually more generic than the presented version, allowing for other
choices of the structure of A, but we only use an infinite structure equipped with the binary
equality relation.

The cumulative hierarchy and its finitely supported elements

Consider first the cumulative hierarchy of sets with atoms, which is a hierarchy of sets indexed
by ranks which are ordinal numbers. The empty set is the unique set of rank 0. For an ordinal
number α > 0, a set of rank α is any set whose elements are sets of rank smaller than α, or
atoms. In other words, the cumulative hierarchy contains all possible objects built using the
empty set, atoms and set brackets, including some objects that we do not want to consider.
The definition of sets with atoms is obtained by restricting the cumulative hierarchy to sets
that satisfy the “finite support condition”, which models the idea of being definable using only
the equality of the atoms and finitely many constants. The formal description is defined in
terms of permutations

π : A→ A

If such permutation preserves a tuple of atoms: ā = (a1, ..., an), then it is called a ā-
permutation. A permutation can be applied to a set in the cumulative hierarchy, by renaming
its elements, (if the set happens to contain atoms), elements of its elements, and so on re-
cursively. The result of applying a permutation π to a set X in the cumulative hierarchy is
denoted by π(X), and it is also a set in the cumulative hierarchy with the same rank.
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Definition 2.1 (support). A tuple ā of atoms is called a support of a set X in the cumulative
hierarchy if π(X) = X holds for every ā-permutation π. A set is called finitely supported if
it has some finite support.

An intuitive description of the support of a set is that the support consists of the atoms that
are “hard-coded” into the definition of the set. Note that the order or repetition of atoms in
the tuple is not relevant for the support, i.e. only the set of atoms that appear in the tuple
matters. The support of a set with atoms is not unique e.g. supports are closed under adding
atoms. A set with empty support is called equivariant (note that this definition of equivariance
matches the definition from the previous chapter). Intuitively speaking, an equivariant set is
one which can be defined without referring to any specific atoms.

Definition 2.2 (Set with atoms). A set with atoms is a set in the cumulative hierarchy which
is hereditarily finitely supported, i.e. it is finitely supported, its elements are finitely supported,
and so on.

In many respects, sets with atoms behave like normal sets. For instance if X, Y are sets
with atoms, then X × Y , X ∪ Y , X∗ and the finite powerset of X are all sets with atoms.
When talking about pairs (as in X × Y or X∗), we use the Kuratowski pair. Using pairs
we can define sets with atoms which are binary relations, and using binary relations we can
define sets with atoms which are functions. An arbitrary subset of a set with atoms might
not be finitely supported, and therefore sets with atoms are not closed under taking arbitrary
subsets, but only under taking finitely supported subsets.

2.1.2. Orbit finiteness

When talking about sets with atoms it makes little sense to talk about finite sets – they are
not much different from the classical finite sets. Instead, we introduce an analog of finiteness
for sets with atoms – orbit finiteness. In order to define it, we cite a section from [2].

Orbits and orbit finiteness

Intuitively speaking, a set is orbit finite if it has finitely many elements, up to atom permu-
tations. The precise definition is given below. Let ā be a tuple of atoms. Define an ā-orbit to
be a set of form:

{π(x) : π is an ā-permutation}
where x is an atom or set with atoms. It is easy to see that ā-orbits are either equal or
disjoint, and therefore being in the same ā-orbit is an equivalence relation. A set with atoms
is supported by ā if and only if it is union, possibly infinite, of ā-orbits. The idea behind orbit
finiteness is to consider sets which are finite unions of orbits. The number of ā-orbits depends
on the choice of ā, but as the following theorem shows, whether or not the number of orbits
is finite does not depend on the choice of support.

Theorem 2.1 ([2, Theorem 3.4]). For every set with atoms X, the following conditions are
equivalent:

• X is a finite union of some atom tuple ā which supports X;

• X is a finite union of ā-orbits for every atom tuple ā which supports X.

A set with atoms which satisfies either of the above conditions is called orbit-finite.
To conclude this section we note that orbit-finite sets are closed under binary union, binary
products, finitely supported subsets and images under finitely supported functions, but are
not closed under taking the powerset [2, Lemma 3.8].
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2.2. Languages over orbit finite alphabets and monoids

In this section, we consider languages over orbit-finite alphabets (we will focus on Σ × A
which is a special case of such alphabet). We demonstrate how to extend the concept of finite
monoids to orbit finite-monoids, so that they can handle infinite (but orbit-finite) alphabets.
Finally, we provide examples of languages that can and cannot be recognized this way and
compare the expressive power of orbit-finite monoids and deterministic register automata.
This section is based on [1].

2.2.1. Monoids with atoms

For this section we are going to cite [1], slightly adjusting the terminology:

Definition 2.3. An orbit-finite monoid is a monoid whose carrier is orbit-finite, and whose
binary concatenation operation is finitely supported. A morphism of orbit-finite monoids is a
finitely supported function that is a monoid morphism.

Free monoid

The following lemma shows that A∗ (with regular word concatenation as the concatenation
operation) deserves to be called free, for any orbit-finite set with atoms A:

Lemma 2.1 ([1, Lemma 3.2 on p. 8]). Let M be an orbit-finite monoid and A an orbit-finite
set. Every orbit-finite function with atoms α : A→M can be uniquely extended to a monoid
morphism [a] : A∗ →M (the morphism is a valid set with atoms, but it may be orbit-infinite).

Recognition

A monoid morphism A∗ →M is said to recognize a language with atoms L ⊆ A∗ if there is a
finitely-supported subset F ⊆M such that

∀
w
w ∈ L ⇔ α(w) ∈ F

2.3. Examples

We present three languages over the alphabet A. Two of them can be recognized using orbit-
finite monoids and one of them cannot.

One of the letters of the word is equal to a fixed a ∈ A

The monoid is a finite monoid M = {1, 0} with the standard multiplication from N as the
concatenation operation. The morphism is:

α(x) =

{
0 x = a

1 x 6= a

And the accepting subset is {1}.
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There are at most 3 different letters in the word

The monoid has 5 orbits:

• {} – empty set (identity element), represents empty words,

• {x} – one element set, represents words with only one letter,

• {x, y} – two element set, represents words with only two letters,

• {x, y, z} – three element set, represents words with only three letters,

• > – represents words with four or more letters.

The concatenation operation is defined as follows:

m1 ·m2 =

{
> m1 = > or m2 = > or |m1 ∪m2| > 3

m1 ∪m2 otherwise

The morphism is α(x) = {x} and the accepting subset is M − {>}.

The first letter appears again

This time we are going to show that no monoid recognizes this language. First let us prove
the following lemma:

Lemma 2.2. For every orbit-finite set A there is a number k, such that for every a ∈ A there
is a support of a that contains no more than k atoms.

Proof. Fix a support of A. First, let us prove this lemma for every S with only one orbit
(with respect to this fixed support of A). Pick any a ∈ S and any of its finite supports s̄.
Now from the definition of an orbit, for every b ∈ S, there is such π that b = π(a). If so, then
b is supported by π(s̄) and this means that every element in S is supported by no more than
k = |s̄| atoms. To extend this to A we note that there are only finitely many orbits in A, so
there exists the maximum k among all the orbits of A.

Now, suppose that there is an orbit-finite monoid M which recognizes the language 2.3. Take
the value of k from Lemma 2.2 for this monoid, and consider

m = α(a1a2a3...ak+1)

The value m has a support s̄ with at most k atoms, which means that at least one of the
values ai does not appear in s. Call this value aj . There are infinitely many atoms in A, so
we can take another value e that is not equal to any of the ai and is not present in s̄. Let θ
be a permutation that switches aj with e and does not touch any of the other atoms. The
function θ is a s̄-permutation, so m = θ(m). We can assume that there is a support of α that
contains none of the values ai or e (this is because we could have fixed some finite support of
α, and choose all of the values ai and e outside of this support). This means that:

α(a1a2a3...aj ...ak+1) = α(a1a2a3...e...ak+1)

If we multiply both sides by α(aj) from the left, we obtain that:

α(aja1a2a3...aj ...ak+1) = α(aja1a2a3...e...ak+1)

which means that aja1a2a3...aj ...ak+1 and aja1a2a3...e...ak+1 are either both accepted or
both rejected. This is a contradiction because aja1a2a3...aj ...ak+1 is in the language 2.3 and
aja1a2a3...e...ak+1 is not.
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2.3.1. Comparison with deterministic register automata

On of the problems of comparing orbit-finite monoids with deterministic register automata
are incompatible alphabets of the two formalisms – register automata can only work with
alphabets of the form Σ × A, whereas monoids can work with any orbit-finite alphabet. To
overcome this problem we might either limit ourselves to the alphabets of the form Σ×A, or
consider deterministic orbit-finite automata – an extension of register automata ([2, Section
5.2]). It is not clear however how to use the second approach to generalize the automaton
model described in the next section, so for the purpose of this thesis we choose the first solu-
tion.

The last example from the previous section (language 2.3) shows that

orbit-finite monoids 6= deterministic register automata

Actually, using the representation theorem ([2, Theorem 3.7]), one can construct a determin-
istic register automaton that recognizes the same language as every orbit-finite monoid M ,
obtaining that

orbit-finite monoids ( deterministic register automata

15





Chapter 3

An automaton model for orbit-finite
monoids

In this section, we propose a version of register automaton and show that all the languages
recognized using this model can also be recognized using orbit-finite monoids.

3.1. Motivation

One reason why deterministic register automata can recognize languages not recognizable by
orbit-finite monoids is that they can compare a value stored in their register with infinitely
many values that will appear later in the word. (This is clearly visible in the third example of
from Section 2.3). As we will see this is the only reason. To prove this claim, we propose a new
model of a register automaton which “loses” the value in a register every time it compares
it with another value, and prove that as a tool of recognizing languages it is weaker than
deterministic register automata.

3.2. Definition

Let us define a deterministic automaton with disappearing registers. This is another automaton
model for recognizing equivariant languages over the alphabet Σ× A. Such an automaton is
similar to the deterministic register automaton (as defined in Chapter 1). It consists of:

• a finite set Σ of labels;

• a finite set Q of control states;

• a finite set R of register names;

• an initial state q0 ∈ Q;

• a command function:
fc ∈ Q× (Σ ∪ {a})→ C

where C denotes the following set of commands:

– if ra = rb then q1 else q2 for every ra, rb ∈ R, q1, q2 ∈ Q,

– if current = r then q1 else q2 for every r ∈ R, q1, q2 ∈ Q,

– next letter and goto q for every q ∈ Q,
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– fill r and goto q for every r ∈ R, q ∈ Q,

– accept and reject;

When processing the input, the automaton keeps track its configuration, which consist of:

1. the position in the input word,

2. the current control state q ∈ Q,

3. the values kept in the registers (a function R→ A ∪ {⊥}).

The initial configuration consists of the first position in the word, the initial control state,
and the empty value (⊥) in every register. When updating the configuration, the automaton
executes the command chosen by fc in the following way.

• For if ra = rb then q1 else q2, the automaton checks if the value held in ra is equal
to the value held in rb, updates the control state accordingly, and erases the values of
ra and rb, inserting ⊥ in their places;

• for if current = r then q1 else q2, the automaton checks if the value held in the
register r is equal to the currently seen data value, updates the control state accordingly,
and erases the value of r, inserting ⊥ in its place;

• for next letter and goto q the automaton tries to move its head to the next position
in the word and sets the control state to q. If the automaton was already in the last
position of the word, it proceeds to a special “end of word” position with label a and
with the empty data value ⊥;

• for fill r and go to q the automaton fills the register r with the currently seen data
value, and updates the control state to q;

• for accept or reject the automaton accepts or rejects the input word accordingly and
finishes the run.

Note that the only way for the automaton to move its head forward is to use the move to
next letter command. Observe that all the registers whose values have been used are set
to ⊥ afterwards – this is why the registers are called “disappearing”.

3.3. Examples

We now present two examples of languages that can be recognized using this kind of an
automaton.

The same data value appears in some two consecutive positions

This language can be recognized using only one register. It will always store the value of the
previously seen data value (or ⊥ in the beginning). In every position, the automaton checks if
the current data value is equal to the data value in the register. If it is, the automaton accepts
the word. If it is not, the automaton saves the current letter in the register and proceeds to
the next letter. The automaton rejects the input word, as soon as it reaches the end of the
word.
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There are at most 3 different letters in the word

(This example is also the solution to the riddle stated in the introduction).
This language is a little trickier. To recognize it we use 6 registers: a1, a2, a3, b1, b2, c1. The
idea is that we only keep 3 values a, b and c, but we are keep a in 3 copies, b in 2 copies and
c in 1 copy. Those values are going to be all the values the automaton has seen so far.

a

a

a

b

b

c

Figure 3.1: A sample configuration of the automaton

The automaton works as follows:

• when all of the registers are empty, the automaton fills up a-registers with the current
data value and proceeds to the next letter;

a

a

a

a

• when only the value a is filled, the automaton checks if the current data value is equal
to a (losing one of the copies of a):

– if the current data value is equal to a, the automaton restores the lost copy of a
using the current data value,

– if not, the automaton moves two copies of a to b-registers, and fills up a-registers
with the current data value;
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a

a

a

b

b

b

a

a

b

a

• when the values a and b are filled (but c is still empty), the automaton checks if the
current data value is equal to a:

– if it is, the automaton restores the used copy of a, using the current data value,

– if it is not, the automaton checks if the current data value is equal to b:

∗ if it is, the automaton moves the remaining two copies of a to b-registers and
fills up a-registers with the current data value,
∗ if it is not, the automaton moves the remaining one copy of b to the c-register,

the remaining two copies a to b-registers and fills up a-registers with the current
data value;

b

b

b

a

a

a

a

a

b

b

c

c

c

b

b

a

c

b
a

• when all of the values are filled, the automaton asks if the current data value is equal
to a:

– if it is, the automaton restores the copy of a a,

– if it is not, the automaton asks if the current data value is equal to b:
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∗ if it is, the automaton moves the remaining two copies of a to b-registers and
fills up a-registers with the current value,

∗ if it is not, the automaton asks if the current data value is equal to c:

· if it is, the automaton moves the remaining one copy of b to the c-register,
the two remaining copies of a to b-registers, and fills up a-registers with
the current data value,

· if it is not, the automaton infers that it already has seen more than 3
different data values and rejects the input word.

c

c

c

b

b

a b

b

b

c

c

aa

a

a

c

c

b

reject

ba

c d

The automaton accepts the word when it manages to proceed all of its letters without reject-
ing it.
One problem that still needs to be resolved are the “move” operations, that move a value from
one register to the other. They are not explicitly allowed in the definition, but it turns out,
that they do not change the expressive power of the automaton – we can get rid of them by
keeping a permutation of register names in the control state (as there are only finitely many of
such permutations). The complete schematic representation of the automaton can be found
in Figure 3.2.

3.4. Connection with orbit-finite monoids

In this section, we prove the following result.

Theorem 3.1. Every language recognized by a deterministic automaton with disappearing
registers is also recognized by some orbit-finite monoid.

Proof. We are given A – a deterministic automaton with k disappearing registers. Let us
start the proof by defining the behaviour tree of A on any data (sub)word w. When we treat
w as a subword, we assume that it does not end with the a mark, unless it has been explicitly
included in w.
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Figure 3.2: A complete schematic representation of the automaton described in 3.3. Solid
edges represent (squashed) transitions of the automaton. Dashed edges represent equivalence
of connected states.

22



r3 = 7

r1 = 4 r2 = r1

q1
r1:=5
r2:=r2
r3:=1

reject r1 = 3 accept

q2
r1:=3
r2:=2
r3:=3

q1
r1:=1
r2:=1
r3:=3

tru
e false

tr
ue

false tr
ue

false

tr
ue

false

Figure 3.3: An example of a behaviour tree

If A enters w from the left side in the state q ∈ Q with values r1, r2, ..., rk in its registers,
there are only orbit-finitely many possible outcomes:

1. A exits the (sub)word from the right side of w in the state q′ with values r′1, r′2, ..., r′k
in its registers. Here exits means that the automaton was in the last position in w that
was different then a, and executed the next letter and goto q′ command.

2. A accepts the word,

3. A rejects the word, possibly getting stuck in a loop.

If the word w and the state q are fixed, the outcome depends only on the the initial values of
the registers. Let us define how to represent this kind of function. First, let us set the initial
values of the registers to special “placeholder” values (outside of A∪{⊥}): r1, r2, · · · , rk. The
behaviour tree of A on the word w is defined as follows.

• As long as the automaton does not exit the word, reject it, accept it, loop, or executes
if commands that require “placeholders” values, it runs normally. (It may use the fill
command to override the real data values from w).

• If A executes an if command that requires the value of a placeholder, we consider both
possible outcomes of the command. In this case, the behaviour tree has the placeholder-
query in the root. Its left and right subtrees are the behaviour trees of the automaton
after the two possible outcomes of the if command (qa or qb). Note that there are two
possible types of a placeholder-query: ri = rj and ri = a for some a ∈ A.

• If the automaton accepts or rejects the word, the behaviour is an accept-leaf or a
reject-leaf respectively. (Those leaves will be called terminal leaves).

• Finally, if the automaton leaves the word from the right in the state q′, with register
values equal to r′1, r′2, ..., r′k (some of which may be equal to regular elements of A∪{⊥}
and some of which may still be placeholders), the behaviour tree is a (non-terminal) leaf
containing all this information.
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An example of a behaviour tree can be found in the Figure 3.3. (In all of the pictures we use
elements from N to represent elements from A).

Observe that the depth of a behaviour tree is limited by the number of registers of A – the
automaton overrides the value of each register it is using, so the path from the root to any of
the leaves cannot pass twice through the same placeholder ri. Since the out-degree of every
inner node is 2 and the depth of the tree is bounded (by k), the number of nodes in the tree is
also bounded (by 2k+1). This means that every tree stores at most (z = k · 2k+1) data values.
This means that it can be stored as an element of S × ({⊥} ∪ A)z (where S is the finite set
of all possible shapes of binary trees of depth not greater than k). This means that the set of
all possible behaviour trees for A is orbit finite.

The entire behaviour of A can be stored as a function:

h : (Σ× A)∗ → BehaviourTreesQ

where value h(w) denotes the function from the starting control state to the behaviour tree
on the word w.

Lemma 3.1. The function h is compositional. This means that for every v, w, the value
h(vw) depends only on the values of h(v) and h(w).

Proof. Say we want to compute h(vw)(q), for some q ∈ Q. We first compute the tree T1 =
h(v)(q). Then, we attach the tree h(w)(q′) to each of its non-terminal leaves – q′ is the
control state of A in which it exits v (this information is stored in the leaf). The resulting
tree may contain some placeholder-query nodes that can already be resolved using the register
valuation update found in the non-terminal leaves of T1. After resolving all such queries the
height of the resulting tree will be still at most k, because if a placeholder ri is used in T1
on the path from the root to the non-terminal leaf, then the non-terminal leaf has to store a
A∪ {⊥} valuation for ri since its placeholder value has already disappeared. (An example of
this kind of composition can be found in Figures 3.4).

This means that we can develop a monoid structure on

BehaviourTreesQ

in such a way that the h function is a monoid morphism.
Now, given the function h and a word w we want to decide whether A accepts w. For that
we compute the tree

T = h(w a)(qinit)

and substitute all the placeholder values with ⊥. This narrows us down to only one leaf which
has to be terminal (no A can exit a (sub)word that ends with a a mark). So we can simply
read the leaf’s label to say whetherA accepts w. The function h is equivariant, so the language
recognized by A can also be recognized by the orbit-finite monoid BehaviourTreesQ.

3.5. Comparison with other models

We have shown that

deterministic automata with disappearing registers ⊆ orbit-finite monoids
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(d) Replacing non-terminal leaves in B(v)(q1) with matching trees from B(w)

Figure 3.4a: Example of behaviour trees composition
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(e) Substituting placeholder values and resolving queries
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(f) Final value of B(vw)(q1)

Figure 3.4b: Example of behaviour trees composition
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Since orbit-finite monoids are weaker than deterministic register automata, this proves that
substituting regular registers with their “disappearing” version results in a weaker model.

3.6. Further work

The main question regarding deterministic automata with disappearing registers is

deterministic automata with disappearing registers
?
⊇ orbit-finite monoids

We would like to conjecture that this inclusion holds. The proof would, however, would require
a way to store an abstract orbit-finite monoidM in a very concrete memory of a deterministic
automaton with disappearing registers, which is a little problematic.
The two-way version of deterministic automata with disappearing registers seems to be very
similar to the one-way version. We believe that all the languages recognized by two-way
automata can also be recognized by orbit-finite monoids. The presented proof of Theorem 3.1
seems to work for this extension as well, but in order to complete it, one would additionally
have to deal with cases in which the automaton starts to loop (in non-obvious ways).
If we combined the inclusion

deterministic automata with disappearing registers
?
⊇ orbit-finite monoids

together with the

two-way deterministic automata with disappearing registers
?
⊆ orbit-finite monoids

and with the rather obvious

two-way deterministic automata with disappearing registers

⊆

one-way deterministic automata with disappearing registers

We would obtain that all the following formalisms recognize the same class of languages:

• Orbit-finite monoids

• One-way deterministic automata with disappearing registers

• Two-way deterministic automata with disappearing registers
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