Fermat’s Last Theorem in the XIXth century

Arkadiusz Męcel
am234204@students.mimuw.edu.pl
http://students.mimuw.edu.pl/~am234204/

Faculty of Mathematics, Informatics and Mechanics
University of Warsaw
Fermat’s Hypothesis...

Theorem. The Diophantine equation:

\[x^n + y^n = z^n, \]

where \(x, y, z, n \) are nonzero integers, has no nonzero solutions for \(n > 2 \).

I have discovered a truly marvellous proof of this, which this margin is too narrow to contain.

Pierre de Fermat – around 400 years before...
Fermat’s Hypothesis...

Theorem. The Diophantine equation:

\[x^n + y^n = z^n, \]

where \(x, y, z, n \) are nonzero integers, has no nonzero solutions for \(n > 2 \).

I have discovered a truly marvellous proof of this, which this margin is too narrow to contain.

Pierre de Fermat – around 400 years before...

Proof [Wiles, 1995]. Every semistable elliptic curve over \(\mathbb{Q} \) is modular.
The spring of the year 1847
The spring of the year 1847

Lamé’s idea [The meeting of the Paris Academy, 1847]. We have to decompose $x^n + y^n$ completely into n linear factors – if $\zeta^n = 1$, $\zeta \neq 1$, n – odd then:

$$x^n + y^n = (x + y)(x + \zeta y)(x + \zeta^2 y) \cdots (x + \zeta^{n-1} y) = z^n. \quad (\star)$$
The spring of the year 1847

Lamé’s idea [The meeting of the Paris Academy, 1847]. We have to decompose $x^n + y^n$ completely into n linear factors – if $\zeta^n = 1$, $\zeta \neq 1$, $n – \text{odd}$ then:

\[x^n + y^n = (x + y)(x + \zeta y)(x + \zeta^2 y) \cdots (x + \zeta^{n-1} y) = z^n. \quad (\star) \]

Two possible cases:

1. x, y are such that $x + y, x + \zeta y, x + \zeta^2 y, \ldots, x + \zeta^{n-1} y$ are relatively prime.

2. They are not such, but there is a common factor m, that when divided by it, they are.
The spring of the year 1847

Lamé’s idea [The meeting of the Paris Academy, 1847]. We have to decompose $x^n + y^n$ completely into n linear factors – if $\zeta^n = 1$, $\zeta \neq 1$, n – odd then:

$$x^n + y^n = (x + y) (x + \zeta y) (x + \zeta^2 y) \cdots (x + \zeta^{n-1} y) = z^n. \quad (\star)$$

Two possible cases:

1. x, y are such that $x + y, x + \zeta y, x + \zeta^2 y, \ldots, x + \zeta^{n-1} y$ are relatively prime.

2. They are not such, but there is a common factor m, that when divided by it, they are.

Lamé’s corollary. From (\star), each of these relatively prime factors must itself be an n – th power, thus we can derive an impossible infinite descent.
The spring of the year 1847

Remark (Liouville). *The colorary is uncertain. We do not know whether the numbers of form:*

\[a_1 + a_2\zeta + a_3\zeta^2 + \ldots + a_{n-1}\zeta^{n-1}, a_i \in \mathbb{Z} \]

possess the property of unique factorization into irreducible elements.
The spring of the year 1847

Remark (Liouville). *The corollary is uncertain. We do not know whether the numbers of form:*

\[a_1 + a_2\zeta + a_3\zeta^2 + \ldots + a_{n-1}\zeta^{n-1}, a_i \in \mathbb{Z} \]

possess the property of unique factorization into irreducible elements.

Theorem (Kummer, 1844). *If \(\zeta \neq 1, \zeta^{23} = 1 \) then \(1 - \zeta + \zeta^{21} \in \mathbb{Z}[\zeta_{23}] \) is an irreducible element, which is not prime.*
The spring of the year 1847

Remark (Liouville). *The collorary is uncertain. We do not know whether the numbers of form:*

\[a_1 + a_2\zeta + a_3\zeta^2 + \ldots + a_{n-1}\zeta^{n-1}, a_i \in \mathbb{Z} \]

possess the property of unique factorization into irreducible elements.

Theorem (Kummer, 1844). *If \(\zeta \neq 1, \zeta^{23} = 1 \) then \(1 - \zeta + \zeta^{21} \in \mathbb{Z}[\zeta_{23}] \) is an irreducible element, which is not prime.*

Theorem (Masley, 1976). *There are only 29 values of \(n \in \mathbb{N}_+ \) such, that \(\mathbb{Z} [\zeta] \) is a UFD. The smallest \(n \), for which unique factorization fails, is 23.*
Example (Irreducible, but not prime). $\mathbb{Z}[\sqrt{-5}]$ is not UFD since:

$$6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).$$
Saving unique factorization

Example (Irreducible, but not prime). \(\mathbb{Z}[\sqrt{-5}] \) is not UFD since:

\[
6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}).
\]

Kummer’s idea. Extend the set of prime factors to have:

\[
6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}) = (P_1 \cdot P_2)(P_3 \cdot P_4)
\]

where \(P_1, P_2, P_3, P_4 \) are **ideal prime factors**.
Saving unique factorization

Example (Irreducible, but not prime). \(\mathbb{Z}[\sqrt{-5}] \) is not UFD since:

\[6 = 2 \cdot 3 = (1 + \sqrt{-5})(1 - \sqrt{-5}). \]

Kummer's idea. Extend the set of prime factors to have:

\[6 = 2 \cdot 3 = 1 + \sqrt{-5} \cdot 1 - \sqrt{-5} = (P_1 \cdot P_2) \cdot (P_3 \cdot P_4) = (P_1 \cdot P_3) \cdot (P_2 \cdot P_4), \]

where \(P_1, P_2, P_3, P_4 \) are **ideal prime factors**.

HOW TO CONSTRUCT THESE 'IDEAL FACTORS'?
Kummer’s ideal factors [1846]. *We expect that:*

\[
P \mid 0, \\
P \mid x, P \mid y \Rightarrow P \mid x \pm y, \\
P \mid x \Rightarrow P \mid xy, \text{ for all } y \in \mathbb{Z}[\sqrt{-5}].
\]
Kummer’s ideal factors [1846]. We expect that:

\[P \mid 0, \]
\[P \mid x, P \mid y \Rightarrow P \mid x \pm y, \]
\[P \mid x \Rightarrow P \mid xy, \text{ for all } y \in \mathbb{Z}[\sqrt{-5}]. \]

The additional property of prime ideal factor should be:

\[P \mid xy \Rightarrow P \mid x \text{ or } P \mid y. \]
Ideal factors

Kummer’s ideal factors [1846]. We expect that:

\[P|0, \]
\[P|x, P|y \Rightarrow P|x \pm y, \]
\[P|x \Rightarrow P|xy, \text{ for all } y \in \mathbb{Z}[^5]. \]

The additional property of prime ideal factor should be:

\[P|xy \Rightarrow P|x \text{ or } P|y. \]

Theorem (Kummer, 1846). If two cyclotomic integers \(g(\zeta) \) and \(h(\zeta) \) are divisible by exactly the same prime ideal divisors with exactly the same multiplicities, then they differ only by a unit multiple.
Ideal factors

Dedekind’s ideals [1871]. A subset P of the considered ring R, that satisfies:

- $0 \in P$,
- $x \in P, y \in P \Rightarrow x \pm y \in P$,
- $x \in P \Rightarrow xy \in P$, for all $y \in R$.

The additional property of prime ideal is:

- $xy \in P \Rightarrow x \in P$ or $y \in P$.

Ideal factors

Dedekind’s ideals [1871]. A subset P of the considered ring R, that satisfies:

- $0 \in P$,
- $x \in P, y \in P \implies x \pm y \in P$,
- $x \in P \implies xy \in P$, for all $y \in R$.

The additional property of prime ideal is:

- $xy \in P \implies x \in P$ or $y \in P$.

Remark. Dedekind proved the generalization of Kummer’s theorem on unique factorization for a wider class of rings, later called Dedekind domains. Noether proved that it is the only class of rings with that property.
Kummer’s idea. *Extend the set of prime factors to have:*

\[
6 = 2 \cdot 3 = 1 + \sqrt{-5} \cdot 1 - \sqrt{-5} \\
= (P_1 \cdot P_2) \cdot (P_3 \cdot P_4) = (P_1 \cdot P_3) \cdot (P_2 \cdot P_4).
\]
Ideal factors

Kummer’s idea. *Extend the set of prime factors to have:*

\[
6 = 2 \cdot 3 = 1 + \sqrt{-5} \cdot 1 - \sqrt{-5} = (P_1 \cdot P_2) \cdot (P_3 \cdot P_4) = (P_1 \cdot P_3) \cdot (P_2 \cdot P_4).
\]

Dedekind’s idea. *Exchange numbers for ideals. Then:*

\[
(6) = (2) \cdot (3) = (1 + \sqrt{-5}) \cdot (1 - \sqrt{-5}) = (P_1 \cdot P_2) \cdot (P_3 \cdot P_4) = (P_1 \cdot P_3) \cdot (P_2 \cdot P_4).
\]

where:

\[
P_1 = (2, 1 + \sqrt{-5}), \quad P_2 = (2, 1 - \sqrt{-5}),
\]

\[
P_3 = (3, 1 + \sqrt{-5}), \quad P_4 = (3, 1 - \sqrt{-5}).
\]
This is not enough...

Lamé's idea [The meeting of the Paris Academy, 1847]. We have to decompose $x^n + y^n$ completely into n linear factors – if $\zeta^n = 1$, $\zeta \neq 1$, n – odd then:

$$x^n + y^n = (x + y)(x + \zeta y)(x + \zeta^2 y) \cdots (x + \zeta^{n-1} y) = z^n.$$

Even if we exchange numbers for ideals:

$$(x + y)(x + \zeta y)(x + \zeta^2 y) \cdots (x + \zeta^{n-1} y) = (z)^n,$$

and even if they are relatively prime, all we get from the unique factorization is:

$$(x + \zeta^k y) = J_k^n,$$

for some J_k - ideals of $\mathbb{Z}[\zeta_n]$.
Equivalent ideals

Definition (Ideal class). Let R be any integral domain. We say that two nontrivial ideals A, B of R are in the same ideal class (which we denote as $A \sim B$) if and only if there exist principal ideals I, J such that $AI = BJ$.
Equivalent ideals

Definition (Ideal class). Let R be any integral domain. We say that two nontrivial ideals A, B of R are in the same ideal class (which we denote as $A \sim B$) if and only if there exist principal ideals I, J such that $AI = BJ$.

Ideal classes can be multiplied:

1. The multiplication $[A][B] = [AB]$ is well defined and commutative.
2. The principal ideals form the ideal class, which serves as an identity element for this multiplication.
Equivalent ideals

Definition (Ideal class). Let R be any integral domain. We say that two nontrivial ideals A, B of R are in the same ideal class (which we denote as $A \sim B$) if and only if there exist principal ideals I, J such that $AI = BJ$.

Ideal classes can be multiplied:

1. The multiplication $[A][B] = [AB]$ is well defined and commutative.
2. The principal ideals form the ideal class, which serves as an identity element for this multiplication.

Remark. In every Dedekind domain R, if A is a nontrivial ideal, then there exists an ideal B such that AB is principal.
Equivalent ideals

Definition (Ideal class). Let \(R \) be any integral domain. We say that two nontrivial ideals \(A, B \) of \(R \) are in the same ideal class (which we denote as \(A \sim B \)) if and only if there exist principal ideals \(I, J \) such that \(AI = BJ \).

Ideal classes can be multiplied:

1. The multiplication \([A][B] = [AB]\) is well defined and commutative.
2. The principal ideals form the ideal class, which serves as an identity element for this multiplication.

Remark. In every Dedekind domain \(R \), if \(A \) is a nontrivial ideal, then there exists an ideal \(B \) such that \(AB \) is principal.

Corollary. For every Dedekind domain \(R \), the set of its ideal classes forms an abelian group called: **ideal class group**. If it is finite (not truth in general), its order is called **class number**.
Observation. The order of the ideal class group tells us how much ‘non – UFD’ can a particular Dedekind domain be.
Observation. The order of the ideal class group tells us how much 'non-UFD' can a particular Dedekind domain be.

Unique factorization domain. Let R be a Dedekind domain. We say that R is an UFD if and only if $a_1 a_2 \ldots a_n = b_1 b_2 \ldots b_m$, a_i, b_j - irreducibles, implies that:

1. $n = m$,
2. There exists $\sigma \in S_n$ such that $a_i, b_{\sigma(i)}$ are associates.
Half-factorial domains

Observation. The order of the ideal class group tells us how much 'non – UFD' can a particular Dedekind domain be.

Unique factorization domain. Let R be a Dedekind domain. We say that R is an UFD if and only if $a_1 a_2 \ldots a_n = b_1 b_2 \ldots b_m$, a_i, b_j - irreducibles, implies that:

1. $n = m$,
2. There exists $\sigma \in S_n$ such that $a_i, b_{\sigma(i)}$ are associates.

Half-factorial domain. A Dedekind domain R that satisfies only (1).
Half-factorial domains

Observation. The order of the ideal class group tells us how much ‘non – UFD’ can a particular Dedekind domain be.

Unique factorization domain. Let R be a Dedekind domain. We say that R is an UFD if and only if $a_1 a_2 \ldots a_n = b_1 b_2 \ldots b_m$, a_i, b_j - irreducibles, implies that:

1. $n = m$,
2. There exists $\sigma \in S_n$ such that $a_i, b_{\sigma(i)}$ are associates.

Half-factorial domain. A Dedekind domain R that satisfies only (1).

Theorem (Carlitz, 1960). Let R be a Dedekind domain. Then R has class number less or equal to 2 if and only if R is HFD.
The class number of cyclotomic integers

Theorem (Masley, 1976). Let m be an integer greater than 2, $m \neq 2 \mod 4$. Then all the values of m, for which the cyclotomic integers $\mathbb{Z}[\zeta_m]$ have class number h_m with $2 \leq h_m \leq 10$ are listed in the table:

<table>
<thead>
<tr>
<th>h_m</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>m</td>
<td>39</td>
<td>23</td>
<td>120</td>
<td>51</td>
<td>none</td>
<td>63</td>
<td>29</td>
<td>31</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>56</td>
<td>52</td>
<td>80</td>
<td>63</td>
<td>68</td>
<td>57</td>
<td>96</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Furthermore, all the other values of m with $\phi(m) = [\mathbb{Q}[\zeta_m] : \mathbb{Q}] \leq 24$ give the twenty-nine values of m for which $h_m = 1$:

3, 4, 5, 7, 8, 9, 11, 12, 13, 15, 16, 17, 19, 20, 21, 24, 25, 27, 28, 32, 33, 35, 36, 40, 44, 45, 48, 60, 84.
FLT for regular primes
FLT for regular primes

Definition (Regular prime). An odd prime \(p \) is called **regular** if \(p \) does not divide the class number of \(\mathbb{Z}[\zeta_p] \).

Announcement (Kummer, 1847). **FLT holds for regular primes.**
FLT for regular primes

Definition (Regular prime). An odd prime p is called **regular** if p does not divide the class number of $\mathbb{Z}[\zeta_p]$.

Announcement (Kummer, 1847). FLT holds for regular primes.

The key idea. If we restrict ourselves to the 'first case' of FLT, we can prove that $x + \zeta^k y$ are relatively prime for $0 \leq k \leq p - 1$. Thus, in terms of ideals we have:

$$(x + y) (x + \zeta y) (x + \zeta^2 y) \cdots (x + \zeta^{p-1} y) = (z)^p.$$
FLT for regular primes

Definition (Regular prime). An odd prime p is called **regular** if p does not divide the class number of $\mathbb{Z}[\zeta_p]$.

Announcement (Kummer, 1847). FLT holds for regular primes.

The key idea. If we restrict ourselves to the ‘first case’ of FLT, we can prove that $x + \zeta^k y$ are relatively prime for $0 \leq k \leq p - 1$. Thus, in terms of ideals we have:

$$(x + y) \left(x + \zeta y\right) \left(x + \zeta^2 y\right) \cdots \left(x + \zeta^{p-1} y\right) = (z)^p.$$

From the unique factorization we can deduce that: $\left(x + \zeta^k y\right) = J_k^p.$
FLT for regular primes

Definition (Regular prime). An odd prime \(p \) is called **regular** if \(p \) does not divide the class number of \(\mathbb{Z}[\zeta_p] \).

Announcement (Kummer, 1847). FLT holds for regular primes.

The key idea. If we restrict ourselves to the 'first case' of FLT, we can prove that \(x + \zeta^k y \) are relatively prime for \(0 \leq k \leq p - 1 \). Thus, in terms of ideals we have:

\[
(x + y) (x + \zeta y) (x + \zeta^2 y) \cdots (x + \zeta^{p-1} y) = (z)^p.
\]

From the unique factorization we can deduce that: \((x + \zeta^k y) = J_k^p \).

In the class group:

\[
[(x + \zeta^k y)] = [J_k]^p.
\]

The order of \([J_k]\) divides \(|Cl(\mathbb{Z}[\zeta_p])| \). But it cannot, since \(p \) is regular! Thus \(J_k \) are principal.
FLT for regular primes

Definition (Regular prime). *An odd prime* p *is called regular if* p *does not divide the class number of* $\mathbb{Z}[\zeta_p]$.

Announcement (Kummer, 1847). *FLT holds for regular primes.*

The key idea. If we restrict ourselves to the 'first case' of FLT, we can prove that $x + \zeta^k y$ are relatively prime for $0 \leq k \leq p - 1$. Thus, in terms of ideals we have:

$$(x + y) (x + \zeta y) (x + \zeta^2 y) \cdots (x + \zeta^{p-1} y) = (z)^p.$$

For some $\alpha_k \in \mathbb{Z}[\zeta_p]$ and invertible $u_k \in \mathbb{Z}[\zeta_p]^*$ we have:

$$x + \zeta^k y = u_k \alpha_k^p.$$
FLT for regular primes

Definition (Regular prime). An odd prime p is called **regular** if p does not divide the class number of $\mathbb{Z}[\zeta_p]$.

Announcement (Kummer, 1847). *FLT holds for regular primes.*

The key idea. *If we restrict ourselves to the 'first case' of FLT, we can prove that $x + \zeta^k y$ are relatively prime for $0 \leq k \leq p - 1$. Thus, in terms of ideals we have:*

\[
(x + y) (x + \zeta y) (x + \zeta^2 y) \cdots (x + \zeta^{p-1} y) = (z)^p.
\]

For some $\alpha_k \in \mathbb{Z}[\zeta_p]$ and invertible $u_k \in \mathbb{Z}[\zeta_p]^$ we have:*

\[
x + \zeta^k y = u_k \alpha_k^p.
\]

..
Theorem (Kummer, 1847). Prime p is regular if and only if it does not divide the numerator of any of the Bernoulli numbers B_k for $k = 2, 4, \ldots, p - 3$.
Theorem (Kummer, 1847). Prime p is regular if and only if it does not divide the numerator of any of the Bernoulli numbers B_k for $k = 2, 4, \ldots, p - 3$.

Bernoulli numbers. A sequence B_n of signed rational numbers that can be defined by the identity:

$$\frac{x}{e^x - 1} = \sum_{n=0}^{\infty} B_n x^n \cdot \frac{n!}{n!}.$$
Regular vs. Irregular

Theorem (Kummer, 1847). *Prime p is regular if and only if it does not divide the numerator of any of the Bernoulli numbers B_k for $k = 2, 4, \ldots, p - 3$.

Bernoulli numbers. A sequence B_n of signed rational numbers that can be defined by the identity:

$$\frac{x}{e^x - 1} = \sum_{n=0}^{\infty} \frac{B_n x^n}{n!}.$$

They can be also defined recursively by setting $B_0 = 1$, and then using:

$$\binom{k + 1}{1} B_k + \binom{k + 1}{2} B_{k-1} + \cdots + \binom{k + 1}{k} B_1 + B_0 = 0.$$
Regular vs. Irregular

Theorem (Kummer, 1847). *Prime p is regular if and only if it does not divide the numerator of any of the Bernoulli numbers B_k for $k = 2, 4, \ldots, p - 3$.*

Hypothesis. *There are only finitely many irregular primes. Up to year 1871 Kummer had found only 8 of them:*

Regular vs. Irregular

Theorem (Kummer, 1847). *Prime p is regular if and only if it does not divide the numerator of any of the Bernoulli numbers B_k for $k = 2, 4, \ldots, p - 3$.*

Theorem (Jensen, 1915). *There are infinitely many irregular primes.*
Regular vs. Irregular

Theorem (Kummer, 1847). Prime p is regular if and only if it does not divide the numerator of any of the Bernoulli numbers B_k for $k = 2, 4, \ldots, p - 3$.

Theorem (Jensen, 1915). There are infinitely many irregular primes.

Open question. Are there infinitely many regular primes? Are they exactly $e^{-\frac{1}{2}}$ of all primes?
Regular vs. Irregular

Theorem (Kummer, 1847). Prime p is regular if and only if it does not divide the numerator of any of the Bernoulli numbers B_k for $k = 2, 4, \ldots, p - 3$.

Theorem (Jensen, 1915). There are infinitely many irregular primes.

Open question. Are there infinitely many regular primes? Are they exactly $e^{-\frac{1}{2}}$ of all primes?

Definition (Irregularity index). A prime p has irregularity index s if p divides exactly s numerators of Bernoulli numbers B_k for $k = 2, 4, \ldots p - 3$.
Regular vs. Irregular

Theorem (Kummer, 1847). Prime \(p \) is regular if and only if it does not divide the numerator of any of the Bernoulli numbers \(B_k \) for \(k = 2, 4, \ldots, p - 3 \).

Theorem (Jensen, 1915). There are infinitely many irregular primes.

Open question. Are there infinitely many regular primes? Are they exactly \(e^{-\frac{1}{2}} \) of all primes?

Definition (Irregularity index). A prime \(p \) has *irregularity index* \(s \) if \(p \) divides exactly \(s \) numerators of Bernoulli numbers \(B_k \) for \(k = 2, 4, \ldots p - 3 \).

Conjecture (Johnson, Wooldridge, 1975). As \(p \to \infty \), the probability that \(p \) has index of irregularity \(r \) goes to:

\[
\left(\frac{1}{2} \right)^r \frac{e^{-\frac{1}{2}}}{r!}.
\]
Euler regular primes

Definition (E - regular number, 1940). A prime p is E – regular if it divides one of Euler numbers E_{2n} with $0 < 2n < p - 1$.
Euler regular primes

Definition (E - regular number, 1940). A prime p is E – regular if it divides one of Euler numbers E_{2n} with $0 < 2n < p - 1$.

Definition (Euler numbers). A sequence E_n of signed integral numbers that can be defined by the identity:

$$
\frac{1}{\cosh(x)} = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{E_n x^{2n}}{2n!}, \quad |x| < \frac{\pi}{2}.
$$
Euler regular primes

Definition (E - regular number, 1940). A prime \(p \) is \(E \) – regular if it divides one of Euler numbers \(E_{2n} \) with \(0 < 2n < p - 1 \).

Definition (Euler numbers). A sequence \(E_n \) of signed integral numbers that can be defined by the identity:

\[
\frac{1}{\cosh(x)} = \sum_{n=0}^{\infty} (-1)^n \cdot \frac{E_n x^{2n}}{2^n}, \quad |x| < \frac{\pi}{2}.
\]

Theorem (Vandiver, 1940). The first case of FLT holds for \(E \) – regular primes.

Theorem (Carlitz, 1954). There are infinitely many \(E \) – irregular primes.

Conjecture. The \(E \) - irregular primes of index \(r \) satisfy a Poisson distribution.
Fermat’s Hypothesis...

Theorem. The Diophantine equation:

\[x^n + y^n = z^n, \]

where \(x, y, z, n \) are nonzero integers, has no nonzero solutions for \(n > 2 \).

I have discovered a truly marvellous proof of this, which this margin is too narrow to contain.

Pierre de Fermat – around 350 years before...

Proof [Wiles, 1995]. Every semistable elliptic curve over \(\mathbb{Q} \) is modular.
THE END

Thank you for your attention!

Arkadiusz Męcel
University of Warsaw
am234204@students.mimuw.edu.pl

http://students.mimuw.edu.pl/~am234204/