
String Covers of a Tree Revisited

Łukasz Kondraciuk[0000−0002−7332−6533]

University of Warsaw, Poland
lk385775@students.mimuw.edu.pl

Abstract. We consider covering labeled trees with a collection of paths
with the same string label, called a (string) cover of a tree. This prob-
lem was originated by Radoszewski et al. (SPIRE 2021), who show how to
compute all covers of a directed rooted labeled tree in O(n logn/ log log n)
time and all covers of an undirected labeled tree in O(n2) time and space,
or O(n2 logn) time and O(n)-space. (Here n denotes the number of nodes
of a given tree.) We improve those results by proposing a linear time al-
gorithm for reporting all covers of a directed tree, and showing an O(n2)
time and O(n)-space algorithm for computing undirected tree covers.
Both algorithms assume that labeling characters come from an integer
alphabet.

1 Introduction

String C is a cover of string S if every character of S belongs to at least one
substring of S equal to C. Cover-related problems have been studied since at
least 1990. Apostolico and Ehrenfeucht introduced this feature of a string in [2].
Apostolico, Farach, and Iliopoulos in [3] discovered an algorithm for checking
if string S contains any covers, other than S, in O(|S|) time. They called S
superprimitive if it doesn’t contain any cover other than itself. Dany Breslauer
in [4] extended this algorithm to work online - it tests if each prefix of the input
string is superprimitive as soon as the prefix is given. Please note that cover
and quasiperiod are equivalent terms. However, it is not clear how to define
periodicity when we switch from words to trees, thus later in this paper we will
only use the term cover.

Moore and Smyth [15] were the first to discover a way to report all covers
of a string S in O(|S|) time – our algorithm and the previous algorithm [16]
use their result as a starting point for the directed cover problem. Czajka and
Radoszewski in [8] evaluated the practical performance of algorithms computing
covers of strings. For a very recent survey on other variants of covers, see [14].

Let us consider a rooted tree T , consisting of n nodes. Each of its edges
is labeled by a single character ∈ Σ. A simple directed path (let us denote it
as p) is a non-repeating sequence of nodes. Each pair of consecutive nodes is
connected by an edge. The first node of this sequence is a start point of p - let
us denote it as s. The last node is an endpoint of p - let us denote it as e. We
will define s → e as a sequence of nodes on a single path from s to e, equivalent
to p. Any simple directed path of T is uniquely identified by a two-element tuple

2 Ł. Kondraciuk

(aka ordered pair) (startpoint, endpoint). The label of a directed simple path is a
string constructed by concatenating characters on edges connecting consecutive
nodes. String C is a cover of a tree T , if there exists a set of simple paths M ,
each of them having a label equal to C, so that each edge of T belongs to at
least one path from M . We will consider two variants of this problem, which
were first proposed and studied by Radoszewski et al. in [16]. Similar problems,
involving labeled trees and computing their runs, powers, and palindromes, were
extensively studied in [5], [7], [9], [10], [12], [13], [19], and most recently in [11].

(a) (b) (c) (d)

Fig. 1: a) and b): aba is a directed cover of this tree, ab is not: 3 edges cannot
be covered by this string. c) and d): abb, bba = (abb)R, and ba = (ab)R are
undirected covers this tree (only aab and bba are visualized).

For the directed cover problem the considered tree is rooted at some node,
and we add a restriction that all paths from M should be only going up. It means
that for any p ∈ M its endpoint is an ancestor of its startpoint. The algorithm
presented in [16] runs in time O(n log n/ log log n) time and O(n)-space, and
requires the labeling character alphabet to be integer. Our improvement involves
preprocessing the input tree by compacting branchless paths, which later bounds
the total number of iterations of an inner loop of an algorithm, instead of utilizing
a data structure for the dynamic marked ancestor problem. This gives us O(n)
time and space algorithm. Unfortunately, it still requires the labeling alphabet
to be integer.

For the undirected cover problem, there are no more restrictions. Algorithms
described in [16] were O(n2) time O(n2) space (divides paths of a tree between
cover-candidates all at once), and O(n2 log n) time O(n)-space (this one verifies
only one cover-candidate at the time). Our algorithm will combine both ideas by,
for one candidate at a time, finding a compressed set of paths that this candidate
covers. This way we can achieve O(n2) time O(n)-space complexity.

Figure 1 shows examples of a directed and an undirected cover. Each cover
will be reported by our algorithms as an ordered pair of nodes. (v, w) will be
representing a string - label on a path v → w. This way we can report all covers
(we will later prove that in both variants there are at most O(n) of them) in
o(n2) time, even though their straightforward representation can be as large as

String Covers of a Tree Revisited 3

Θ(n2). This is the case for instance when a given tree forms a simple path, and
all of its edges are labeled by the same letter.

We provide reference Python implementations of the described algorithms.1

2 Preliminaries

A string S is a sequence of characters S[1], S[2], ..., S[|S|] ∈ Σ. A substring of S
is any string of the form S[i..j] = S[i], S[i + 1], . . . , S[j]. If i = 1 (j = |S|), it is
called a prefix (a suffix, respectively), SR = S[|S|], S[|S| − 1], ..., S[1].

Let us consider any string S. A cover C is a substring of S, which occurs at
some positions of S, and each letter of S is covered by at least one occurrence
of C. Formally, string C is a cover of S, if there exists a set of positions M ⊆
{1, . . . , |S| − |C| + 1}, such that for every i ∈ M , S[i..(i + |C| − 1)] = C (M
represents a – not necessarily proper – subset of occurrences of C), and for every
1 ≤ i ≤ |S|, there exists j ∈ M , such that i− |C|+ 1 ≤ j ≤ i (every letter of S
should be covered by an occurrence).

When we consider a rooted tree and algorithms processing it, it is helpful
to define a few properties of a tree and its nodes. path(u → v) is a simple
path connecting nodes u and v. Sometimes to simplify notation we will omit
path(∗) and denote it as u → v. |p| denotes the number of nodes in a path p.
parent(v) is the first node on the path from v to the root (parent(root) = null).
children(v) = {u |parent(v) = u}. dist(u, v) is the number of edges on a simple
path connecting u and v. Please note that dist(v, u) = dist(u, v) = |u → v| − 1,
depth(v) = dist(v, root), subtree(v) = {u | v ∈ path(u → root)}, height(v) =

max
l∈subtree(v)

dist(v, l), label(u → v) is a label of path(u → v) constructed as a

concatenation of characters labeling its consecutive edges, labeld(u → v) =
label(u → v)[1..d]. Figures 2, 3, 4, 5, 6, 7 and 8 show examples of those no-
tations.

Fig. 2: path(v, u) consists of 6 nodes and 5 edges. |path(v, u)| = 5

1 https://students.mimuw.edu.pl/~lk385775/string_tree_covers_ref_impl.zip

https://students.mimuw.edu.pl/~lk385775/string_tree_covers_ref_impl.zip

4 Ł. Kondraciuk

Fig. 3: children(x) = {u, v}, parent(u) = parent(v) = x

Fig. 4: |path(u → v)| = |path(v → u)| = dist(u, v) + 1 = 5

Let us define childrenHeights(v) =
∑

w∈children(v) height(w),
maxChildHeight(v) = maxw∈children(v) height(w) (0 if children(v) = ∅),
and superHeight(v) = childrenHeights(v)−maxChildHeight(v).

Lemma 1 For a rooted tree T with n nodes, we have∑
v

superHeight(v) =
∑
v

(childrenHeights(v)−maxChildHeight(v)) ≤ n

Proof. The following proof is based on Second Heights lemma proof from [16].
For a node v we define MaxPath(v) as the longest path from v to a leaf in
subtree(v). (|MaxPath(v)| = height(v)). Initially, we choose (one of possibly
many) MaxPath(root), then we remove this path (both nodes and edges) and
choose the longest paths for roots of resulting subtrees. We continue in this way
and obtain a decomposition of the tree into node-disjoint longest paths.

String Covers of a Tree Revisited 5

Fig. 5: depth(u) = 3, depth(v) = 4

Fig. 6: subtree(u) = {u, v, w, x, y}

Fig. 7: height(u) = 3, height(v) = 2

6 Ł. Kondraciuk

Fig. 8: label(u → v) = abbb, label(v → u) = bbba = (abbb)R, label2(u → v) = ab

Let FirstChild(v) denote a child of v which belongs to the same path in the
decomposition and OtherChildren(v) = {w ∈ children(v) : w ̸= FirstChild(v)}.
We have

∑
v superHeight(v) =

∑
v;w∈OtherChildren(v) |MaxPath(w)| ≤ n since all

selected longest paths are node-disjoint. This sum is a sum of the lengths of all
removed paths, excluding the one removed in the first step of the algorithm. ⊓⊔

Let us define secondHeight(v) as the height of a second highest child of v
(or 0 if | children(v)| < 2). We have childrenHeights(v) −maxChildHeight(v) ≥
secondHeight(v), so

Lemma 2 (Second height lemma, also used in [16])For a rooted tree T with n
nodes, the following inequality holds:∑

v

secondHeight(v) ≤ n.

Pref table is a data structure that is used to store and retrieve information
about prefixes of a given string. It is defined as

PrefS [i] = max{d ≥ 0 : S[i..(i+ d− 1)] = S[1..d]}

This data structure can be generalized to rooted trees with character-labeled
edges. For a string S, rooted tree T and node v ∈ T , we denote

TreePrefS [v] = max{d ≥ 0 : labeld(v → root) = S[1..d]}

Lemma 3 ([16] using [17]) TreePrefS can be computed in O(n) time for a rooted
tree T with n nodes over an integer alphabet.

3 Directed tree cover

Let us consider a directed variant of the string tree cover. For a given rooted
tree T , we direct each edge towards the root. For this problem, we will assume

String Covers of a Tree Revisited 7

that all edge labels are characters over an integer alphabet. Let us fix some leaf
node l. An edge between l and parent(l) can only be covered by a path starting
in l and going upwards.

Observation 1 [16] The cover must be a prefix of label(l → root).

Let L = label(l → root). Let us define up(v, k) = parent(up(v, k − 1)),
up(v, 0) = v. For each 1 ≤ d ≤ |L|, we will check if L[1..d] covers all edges of the
tree. Let us calculate TreePrefL. Set {v : TreePrefL[v] ≥ d} contains nodes (let
us denote any of those nodes as v), for which label(v → root) matches L on the
first d positions. If labeld(v → root) = L[1..d] holds, then then the first d edges
on path v → root are covered by path v → up(v, d).

For each fixed d, we will consider L[1..d]. Let us mark all w’s, for which
TreePrefL[w] ≥ d. Edge w → parent(w) is covered (by a path having label =
L[1..d]), if and only if there exists a marked node u ∈ subtree(w), having
dist(w, u) < d.

We will maintain a data structure to store marked nodes. It will be able to:

– initialize itself with any set of marked nodes (all leaves need to be in this
set),

– unmark a marked node,
– query for the largest distance between any node and its closest marked de-

scendant.

3.1 Gaps

All leaves have to be marked at all times - it is the only way to cover leaf edges.
For a set M of marked nodes we define gap(v) = min

u∈M∩ subtree(v)
dist(v, u) and

MaxGap = max
v∈nodes\{root}

gap(v).

In a data structure, nodes will keep (either directly or indirectly) their current
gap value. Let v be any marked node, which is not a leaf. Let M ′ = M \
{v} be the set of marked nodes after unmarking v. Let us define gap′(w) =

min
u∈M ′∩ subtree(w)

dist(w, u) – it is a gap function after unmarking v.

Observation 2 If gap(w) ̸= gap′(w), then w ∈ path(v → root).

Proof. A gap could change only for those nodes w, for which v ∈ subtree(w). ⊓⊔

Lemma 4 Let u,w ∈ path(v → root), and depth(u) > depth(w). If gap′(u) =
gap(u), then gap′(w) = gap(w).

Proof. If dist(w, v) ̸= gap(w) then there exists x ∈ subtree(w) ∩M (x ̸= v), for
which dist(w, x) = gap(w). Since x ∈ M ′ = M \{v}, then gap′(w) = dist(w, x) =
gap(w).

Otherwise, if dist(w, v) = gap(w), then dist(u, v) = gap(u). Since gap′(u) =
gap(u), then there exists x ∈ subtree(u)∩M ′, for which dist(u, x) = dist(u, v) =

8 Ł. Kondraciuk

gap(u). dist(w, x) = dist(w, u) + dist(u, x) = dist(w, u) + dist(u, v) = dist(w, v).
And since x ∈ subtree(u) ∩M ′ ⊆ subtree(w) ∩M ′, then gap′(w) = dist(w, x) =
dist(w, v) = gap(w). ⊓⊔

Corollary 1 After unmarking v, we only need to update gap for some prefix of
nodes on path(v → root).

3.2 Binarisation and path compaction

For the data structure representation, we apply two transformations on tree T :

1. binarisation - we will insert artificially created nodes, so that every node,
except for the root, has at most 2 children. Let us denote the resulting tree
as T ′. The number of inserted nodes is

∑
v ̸=root min(0, degree(v) − 3) ≤ n,

so |T ′| ≤ 2n = O(n).
2. path compaction - we will replace each non-branching path of T ′ by a single

entity, called compacted path. Here by non-branching path, we refer to a
group of nodes, forming a simple path, each of them having only one child.

The result of those transformations will be called a pseudotree.
The defined gap function will be invariant to those transformations. We will

calculate and update its values as if all nodes were located in the original input
tree T . We will not take into account gap values calculated for nodes added
during binarisation.

The resulting pseudotree will consist of four types of nodes: root, leaves,
binary nodes, and implicit nodes. Each non-branching vertical path will be re-
placed by a compacted path. The remaining edges will be replaced by trivial
(that is not having any implicit nodes inside) compacted paths.

Each binary node holds two compacted paths going down and one going up.
The root holds some number (possibly one) of compacted paths going down.
Each leaf holds only one compacted path going up. Implicit nodes are connected
together and contained inside compacted paths. Compacted paths will hold both:
nodes they are connected to, and a collection of implicit nodes inside of it.

3.3 Updates

The key observation here is that we do not need to explicitly keep and update
the gap sizes of implicit nodes.

unmark(v) is an update entry point of the data structure, please refer to
Listing 1 for its pseudocode.

On Listing 2 we attach the pseudocode of walkAndUpdate function, which is
called by unmark to propagate new gap values upwards.

Let us denote any implicit node v, and its compacted path as p. When we
unmark v:

– If v is the only marked node on p, then the new gap value for p.top is
p.length+p.nodeDown.gap and this value needs to be passed to walkAndUpdate
to propagate it upwards.

String Covers of a Tree Revisited 9

Listing 1: Unmark function pseudocode.
function unmark (v)

if isBinary(v) then
v.isMarked = false
walkAndUpdate(v)

else if isImplicit(v) then
markedUp = v.markedUp
markedDown = v.markedDown
v.markedUp = v.markedDown = null
if markedUp ̸= null then

markedUp.markedDown = markedDown
if markedDown ̸= null then

markedDown.markedUp = markedUp
path = v.path
if path.lowestMarked = v then

path.lowestMarked = markedUp
if markedUp ̸= null then

gap = path.nodeDown.gap + dist(markedUp, path.bottom)
maxGap = max(maxGap, gap)

if path.highestMarked = v then
path.highestMarked = markedDown
if path.highestMarked ̸= null then

gap = dist(path.highestMarked, path.top)
else

gap = path.length + path.nodeDown.gap
path.topGap = gap
maxGap = max(maxGap, gap)
walkAndUpdate(path.nodeUp)

if markedUp ̸= null and markedDown ̸= null then
maxGap = max(maxGap, dist(markedUp, markedDown) - 1)

10 Ł. Kondraciuk

Listing 2: Auxilary functions needed for gap values updates.
global maxGap = 1
function calcGapBinaryNode (v)

if v.isMarked then
return 0

else
return min(v.pathLeft.topGap, v.pathRight.topGap)+!v.isFake;

function walkAndUpdate (v)
while (not isRoot(v)) and v.gap < calcGapBinaryNode(v) do

v.gap = calcGapBinaryNode(v)
path = v.pathUp
if path.lowestMarked ̸= null then

gap = v.gap + dist(path.bottom, path.lowestMarked) + 1
maxGap = max(maxGap, gap)
break

else
path.topGap = v.gap + dist(path.top, path.bottom) + 1
maxGap = max(maxGap, path.topGap)
v = path.nodeUp

– Otherwise, if v is the highest marked node on p, then we can calculate the
new longest gap as a distance between p.top and the new highest marked
node on p. Then it needs to be propagated upwards using walkAndUpdate.

– Otherwise, if v is the lowest marked node on p, then the longest new gap
is equal to p.nodeDown.gap plus the distance between p.bottom and child
of the new lowest marked node on p. This value does not get propagated
upwards, since there exist marked nodes on p, other than v.

– Otherwise, v is located between two other marked implicit nodes. We can
calculate the longest new gap using the distance between them.

Similarly, whenever walkAndUpdate tries to traverse a compacted path p (to
proceed from a binary node on its lower end to the one on its upper end), it
checks if there exists any marked node on this path. It can use the gap calculated
for the binary node connected to the lower end of that path, in order to calculate
the new gap size for implicit nodes of p. It needs this value to update maxGap.

Listing 3 contains the final high-level algorithm for computing all directed
covers of a given rooted tree.

Lemma 5 The total amortized time cost of maintaining the gap data structure
is O(n).

Proof. unmark itself does only O(1) amount of work. walkAndUpdate runs in
time proportional to the number of touched binary nodes. By touched nodes,
we refer to those nodes, for which node.gap has changed. Since node.gap can
only increase, the total amount of time used by walkAndUpdate is limited by∑

v∈binary nodes FinalGap(v). (By FinalGap(v) we refer to v.gap after termina-
tion of the algorithm.)

String Covers of a Tree Revisited 11

Listing 3: Computing all directed covers of a given rooted tree.
Fix any leaf l. Let us denote L = label(l → root)
Calculate TreePrefL - this can be done in O(n) as we are working with integer
alphabet

Initialize gap data structure - apply binarization and path compression
Set all real nodes (that is those which were not created during binarisation) as
marked

for k := 0 to minv∈leaves TreePrefL[v]− 1 do
for v ∈ nodes and TreePrefL[v] = k do

unmark(v)
if maxGap < k then

report that L[1..k] is a cover

All leaves are always marked, so FinalGap(v) ≤ minl∈leaves∩subtree(v) dist(v, l)
(here we refer to leaves, subtree, and dist in regards to T ′). Each binary node
v has two children, so FinalGap(v) ≤ secondHeight(v). Second heights lemma
(Lemma 2) applied to T ′ implies that

∑
v secondHeight(v) ≤ 2n. This indicates

that the total number of binary node gap updates done by walkAndUpdate is
bounded by 2n. This also proves the complexity of the complete directed cover
computing algorithm. ⊓⊔

Theorem 1. All covers of a directed rooted tree labeled with characters over an
integer alphabet can be computed in O(n) time and O(n)-space.

The only step of the algorithm, which requires characters labeling edges to
be over an integer alphabet, is the subroutine computing TreePrefL 3 from [17].
Thus

Corollary 2 Covers of a directed tree labeled with characters over a general
alphabet can be computed in O(n) time and O(n)-space if TreePrefL, for L =
label of some path from a leaf to the root, is given.

Comparison with the algorithm from [16]. Instead of maintaining gap data
structure over a transformed tree – they maintain the so-called chain decompo-
sition of an input tree, where each marked node is an end of some chain, and the
chain from any unmarked node leads to the closest marked node in its subtree –
our maxGap is equal to the length of the longest chain in their data structure.
Chain description is stored in the top node of each chain. None of the other
chain nodes store any information about the chain they currently belong to. A
data structure from [1] is used to query for a top node of each chain. The time
complexity of such a query is O(log n/ log log n). This impacts the overall time
complexity of their algorithm, which is O(n log n/ log log n).

4 Undirected tree cover

The cover of an undirected tree is quite a different problem than that of a directed
tree. String S is a cover of an undirected tree T , if we can pick a set of simple

12 Ł. Kondraciuk

paths M , each of them having a label equal to S, such that for each edge from
the tree, there should exist at least one path from M , going through that edge.

Let us root the input tree in any node.

Observation 3 For any leaf l, edge l → parent(l) can only be covered by a path
starting or finishing in l.

We will fix some leaf l. Let us denote set of paths that can cover edge l →
parent(l) as P = {l → v | v ∈ T \ {l}} ∪ {v → l | v ∈ T \ {l}}. We have
|P | = 2n− 2.

The set of candidates for a cover is naturally induced by P . Let us denote it
by C = {label(p) | p ∈ P }. Thus |C| ≤ 2n− 2 = O(n).

Corollary 3 ([16]) The set of candidates has O(n) elements.

4.1 Match tables

Let us fix a candidate S. For each node v we will consider those paths, for which
v is the highest point (v is the highest point of p if it has the smallest depth
among all its nodes). We will try to match a prefix of S, coming from a subtree of
some u ∈ children(v), with a prefix of SR coming from another subtree. A prefix
of S concatenated with the reverse of a prefix of SR of proper length makes S.
Found matches-paths will be saved on the side.

We will be going from the bottom to the top of the tree (the top being root,
and the bottom being leaves). For each node v we will compute two match tables:
dynamic arrays of linked lists: A and B. They have the following properties:

– |A| = |B| = height(v)
– A[i] and B[i] contain nodes from subtree(v).
– For each u ∈ A[i] (and for each u ∈ B[i]), dist(u, v) = i.
– If there exists node u having label(u → v) = S[1..i], then A[i] is not empty

and contains a node y such that label(y → v) = S[1..i]. Otherwise, it might
be empty or might contain some nodes with label different than S[1..i].

– If there exists node u having label(u → v) = SR[1..i], then B[i] is not empty
and contains a node y such that label(y → v) = SR[1..i]. Otherwise, it might
be empty or might contain some nodes having label different than SR[1..i].

– For all nodes u ∈ A[i], label(u → v) is the same.
– For all nodes u ∈ B[i], label(u → v) is the same.

Each table is held by a data structure, which allows amortized O(1)-time
insertions to the front and O(1)-time random access. Such data structure can be
implemented similarly to std::vector from C++ STL [18] or Dynamic Table
from [6]: by keeping a pointer to a chunk of allocating memory, and lazily moving
its content to a chunk twice as big when space runs out. The only difference is
that we will push to the front, not to the back, and use the current size to
calculate the offset for O(1)-time random access. We will call it FrontVector.

String Covers of a Tree Revisited 13

If v is a leaf, then match tables for v are trivial: A.size() = B.size() = 1, and
A[0] = B[0] = {v}. (By V.size() we denote the number of elements of a table
V . For the match table represented by FrontVector it is the difference between
its capacity and offset.) Otherwise, we need to calculate A and B for v. At
first we "claim" match tables calculated for the highest child. That is from the
child, whose subtree is the highest among all v’s children, in case of ambiguity,
whichever child can be picked. Match tables calculated for a node will be used
only by its parent, so we can immediately claim its ownership.

Then we need to push {v} to the front of A and B, iterate over the remaining
children, and join its match tables. We will be also looking for matches during
that process.

At the beginning of the algorithm, we precalculate TreePrefS and TreePrefSR ,
which per Lemma 3 can be done in O(n) [17].

This lemma requires the labeling alphabet to be integer. If this is not the
case, then we can convert it to an equivalent integer alphabet in O(n2) time
and O(n)-space. Equivalent in the sense, that equivalence relation on edges,
based on equality of their labeling characters, will look exactly the same. Since
we represent a cover as an ordered pair of endpoints of a path having its la-
bel as an actual cover, the output of our algorithms will not change after this
transformation. Now we are able for a given v and u ∈ subtree(v) check if
label(u → v) is a prefix of S (or SR). This condition is equivalent to checking if
TreePrefS [u] ≥ dist(u, v) (TreePrefSR [u] ≥ dist(u, v)).

Listing 4: auxiliary procedures used to find matches in match tables
and mark found matches.

function matchAndMark (v, A, B, i, j)
// i + j == len(W)
clearA(v, A, i)
clearB(v, B, j)
if !A[i].empty() and !B[j].empty() then

for u ∈ (A[i] ∪ B[j]) do
markVerticalPath(u, v) // markVerticalPath works in O(1) and
will be described later

clearButOne(A, i)
clearButOne(B, j)

function findMatches (v, A, B, A’, B’, height)
lowerBound = max(len(S) - A.size() + 1, 0)
upperBound = min(height, len(S)) + 1
for i := lowerBound to upperBound do

matchAndMark(v, A, B’, len(S) - i, i)
matchAndMark(v, A’, B, i, len(S) - i)

Let us denote current tables as A and B, and match tables calculated for some
other child as A′ and B′. Let h = A′.size() = B′.size() = height of the subtree
rooted in that child. For 1 ≤ i ≤ h, we consider matches between A′[i] and

14 Ł. Kondraciuk

B[|S|−i]. To do that we first need to check if A′[i] contains valid candidates, that
is nodes u, for which label(u → v) = S[1..i]. Please recall that every u ∈ A′[i] has
the same label(u → v), so it is sufficient to check that condition for any element
of A′[i] - we will use the first one. In our pseudocode, we will use clearA (and
clearB for match table B) procedures to refer to this step. Please refer to Listing
for its pseudocode.
Listing 5: Procedures responsible for removing invalid or redundant
nodes from match table entries.
function clearA (v, A, i)

if not A[i].empty() then
// O(1) by precalculated TreePref_S
if label(A[i].front() → v) ̸= S[1..i] then

A[i].clear() // O(|A[i]|)
function clearB (v, B, i)

if not B[i].empty() then
// O(1) by precalculated TreePref_SR
if label(B[i].front() → v) ̸= SR[1..i] then

B[i].clear() // O(|B[i]|)
function clearButOne (matchTable, i)

while matchTable[i].size() > 1 do
matchTable[i].pop_back()

Similar procedure must be performed for B[|S| − i] - it should contain nodes
u having label(u → v) = SR[1..(|S| − i)].

After that step, for each u1 ∈ A′[i] and u2 ∈ B[1..(|S|−i)] we have label(u1 →
u2) = S, so we can mark both u1 → v and u2 → v as covered. If both A′[i] and
B[1..(|S| − i)] are not empty, then we will delete all elements of A′[i] except for
one and B[1..(|S| − i)] except for one. This a crucial step to the complexity of
the algorithm. Here we will only present simplified intuition why we can do this,
proof of correctness will be discussed later.

Imagine that we would not delete any elements of A′[i]. When seeking matches
for some v′ - ancestor of v, in terms of A′[i] we will care about two things:

– A′[i] (which will become A[i + dist(v, v′)]) is not empty - then we can find
match it with some B[j] coming from some other child of v′ and, as a con-
sequence mark all paths v′ → u for u ∈ B[j].

– if we indeed find a match, all paths v′ → u for u ∈ A′[i] will become marked.

Please note that since each path v → u is already marked, if we mark v′ → v
then all paths v′ → u will become marked, so marking any path v′ → u marks
all of them.

Both of those objectives will still be satisfied if we delete all but one element of
A′[i]. Similar argument can be conducted for B[i], A[i] and B′[i]. In pseudocodes,
we will use clearButOne subroutine to refer to this step, please refer to the 5
its pseudocode.

Then we follow the same procedure to find matches between B′[i] and A[|S|−
i].

String Covers of a Tree Revisited 15

After we have considered all valid matches, we can merge A′ into A, and
B′ into B. For 1 ≤ i ≤ h, we have to check if A[i] contains nodes u, having
label(u → v) = S[1..i]. To do that, it is enough to check that condition for u =
first element of A[i] (all nodes in A[i] have the same path to the root). If not,
we can clear A[i]. We apply the exact same procedure to A′[i]. After that, both
A′[i] and A[i] contain only valid candidates, so we can move all nodes from A′[i]
into A[i] (in O(1)-time).

To merge B′ into B we execute the same algorithm, but instead of comparing
labels of paths to root with S, we compare them with SR.

4.2 Complexity and correctness

Let us denote calcAB(root) as an entry point for the entire procedure. It calls
recursively itself, resulting in a call to calcAB(v) once for every v of the tree
(O(n) calls). It also iterates over all children (O(|edges|) = O(n) in total). A
single call consumes amortized constant time for inserting {v} to the front of
match tables - implemented as a push_front on an instance of FrontVector.
So O(|edges|) +O(|nodes|) = O(n) of total time consumed.

For each other child (let us denote its height as h) it calls: findMatches once,
and clearA, clearB h times - to clear each entry of match tables propagated from
that child. findMatches calls matchAndMark h times. If we disregard time spent
on clearA, clearB, clearButOne and matchAndMark, then total time spent in
findMatches and calcAB is bounded by O(

∑
v superHeight(v)) +O(n) = O(n)

(by Sum of heights, Lemma 1).
clearA, clearB, and clearButOne run in time proportional to the number

of deleted nodes. Each node is inserted only twice - each node v is inserted only
in calcAB(v). When a node is deleted, it is deleted permanently. Match tables
are never copied - only moved and merged. It implies that the total number of
deletions is bounded by the total number of insertions = 2n, so the time cost of
clearing functions is bounded by O(n). Please refer to the 5 for pseudocodes of
those functions.

matchAndMark calls: clearA, clearB, and clearButOne. If we disregard that,
it runs in time proportional to the number of deleted nodes by auxiliary sub-
routines: loop for u ∈ (A[i] ∪ B[j]) iterates over |A[i]| + |B[j]| elements. Calls
to clearButOne(A, i) delete |A[i]| − 1 elements, calls to clearButOne(B, j)
delete |B[j]| − 1 elements. Thus the total cost of matchAndMark is also bounded
by O(n).

Corollary 4 We can compute match tables for all nodes of a tree using O(n)
time.

Finally, we verify if the found set of marked paths indeed covers the whole
tree. This procedure comes from [16], we repeat it here for completeness. We
will store a counter for each node. All marked paths are vertical - one of their
ends is a descendant of the other. For each marked path we will add 1 to the
counter of the lower, and add -1 to the counter of the higher end - this is what

16 Ł. Kondraciuk

markVerticalPath from pseudocode serves for. Let us fix any node v. The sum
of counters in the subtree rooted in v is equal to the number of marked paths
going through the edge from v to its parent. With a single DFS from the root
we can calculate sums for every subtree. All edges of a tree are covered if and
only if

∑
u∈subtree(v) counter(u) is positive for every node v except for the root.

Now all that is left, is the proof of correctness.

Lemma 6 matchAndMark marks only simple paths p having label(p) = S.

Proof. Merge function maintains invariant, that for any i, every u ∈ A[i] (B[i])
has the same label(u → root). This implies that after calling clearA(v, A, i)
(clearB(v, B, i)), for all nodes u ∈ A[i] (B[i]), label(u → v) is a prefix of
S (SR for u ∈ B[i]). Thus in matchAndMark, after clearing A and B, for any
u ∈ A[i] and any x ∈ B[j], we have label(u → x) = S, and all marked paths
have label S. And since matchAndMark matches nodes coming from different
subtrees, then all marked paths are simple. ⊓⊔

Lemma 7 If matchAndMark did not delete nodes using clearButOne subroutine,
then we would mark every path p in the tree having label(p) = S.

Proof. Let us fix any path p: x → y, label(x → y) = S. Let v = LCA(x, y) (LCA
is the lowest common ancestor of two nodes) be the lowest node on that path
(the closest to the root).

Let us assume that x, y ̸= v. Let i = dist(x, v) and j = dist(y, v) (i + j =
|S|). Since labeli(x → root) = S[1..i], then x ∈ A[i] calculated for v. Since
label(y → root)[1..j] = SR[1..j] then y ∈ B[j]. Since x and y come from subtrees
of different children of v, then at some point of calcAB we will have x ∈ A[i− 1]
and y ∈ B′[j − 1] (or x ∈ A′[i − 1] and y ∈ B[j − 1]). And at that point
matchAndMark, called by findMatches, would mark path x → y.

If x = v then label(y → v) = SR, y ∈ B[|S|], and x → y will be marked by
function matchAndMark(v, A, B, 0, |S|), called by calcAB(v).

If y = v then label(x → v) = S, x ∈ A[|S|], and x → y will be marked by
function matchAndMark(v, A, B, |S|), 0) called by calcAB(v). ⊓⊔

The next lemma establishes that deleting some nodes in matchAndMark and
leaving only one representative, even if labels of their paths to v are still valid
prefixes of S/SR, is indeed a correct action.

Lemma 8 If label(a → v) = label(b → v) and both a → v and b → v are
marked, then we can skip propagating either one upwards.

Proof. We have depth(a) = depth(b), and for any v′ being ancestor of v, we
have label(a → v′) = label(b → v′). Thus we cannot tell apart a and b after
propagating them upwards - when we later look for matches only labels matter.
Moreover if at some point later we will decide to mark a → v′, then b → v′ will
become fully marked as well. This is because b → v′ can be decomposed into
two edge-disjoint paths: b → v and v → v′. Similarly a → v′ can be decomposed
into edge-disjoint a → v and v → v′. This means that v → v′ becomes marked
when a → v is marked. All edges on path b → v are already marked. ⊓⊔

String Covers of a Tree Revisited 17

Those three lemmas combined together prove that matchAndMark will mark
all, and only edges covered by S. Thus they are completing a proof of the main
theorem of this section.

Theorem 2. We can compute all undirected covers in O(n2) time and O(n)-
space.

The general idea of the presented algorithm is similar to the centroid decom-
position algorithm from [16]. We rely on the same set of candidates, and in the
same way, we check if the set of marked paths covers all edges of the tree. How-
ever, calculating match tables A and B to mark all covered edges is a completely
new idea.

Achieved O(n2) time O(n)-space complexity improves results from [16] (O(n2)
time and space, or O(n2 log n) time O(n)-space), but is still superlinear. Further
work will be focused on research on o(n2) time algorithm or finding a conditional
lower bound.

References

1. Stephen Alstrup, Thore Husfeldt, and Theis Rauhe. Marked ancestor problems. In
39th Annual Symposium on Foundations of Computer Science, FOCS ’98, Novem-
ber 8-11, 1998, Palo Alto, California, USA, pages 534–544. IEEE Computer Soci-
ety, 1998.

2. Alberto Apostolico and Andrzej Ehrenfeucht. Efficient detection of quasiperiodic-
ities in strings. Theor. Comput. Sci., 119(2):247–265, 1993.

3. Alberto Apostolico, Martin Farach, and Costas S. Iliopoulos. Optimal superprim-
itivity testing for strings. Inf. Process. Lett., 39(1):17–20, 1991.

4. Dany Breslauer. An on-line string superprimitivity test. Inf. Process. Lett.,
44(6):345–347, 1992.

5. Srecko Brlek, Nadia Lafrenière, and Xavier Provençal. Palindromic complexity
of trees. In Igor Potapov, editor, Developments in Language Theory - 19th In-
ternational Conference, DLT 2015, Liverpool, UK, July 27-30, 2015, Proceedings,
volume 9168 of Lecture Notes in Computer Science, pages 155–166. Springer, 2015.

6. Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. The MIT Press, 2nd edition, 2001.

7. Maxime Crochemore, Costas S. Iliopoulos, Tomasz Kociumaka, Marcin Kubica,
Jakub Radoszewski, Wojciech Rytter, Wojciech Tyczyński, and Tomasz Waleń.
The maximum number of squares in a tree. In Juha Kärkkäinen and Jens Stoye,
editors, Combinatorial Pattern Matching - 23rd Annual Symposium, CPM 2012,
Helsinki, Finland, July 3-5, 2012. Proceedings, volume 7354 of Lecture Notes in
Computer Science, pages 27–40. Springer, 2012.

8. Patryk Czajka and Jakub Radoszewski. Experimental evaluation of algorithms for
computing quasiperiods. Theor. Comput. Sci., 854:17–29, 2021.

9. Mitsuru Funakoshi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and
Masayuki Takeda. Computing maximal palindromes and distinct palindromes in a
trie. In Jan Holub and Jan Zdárek, editors, Prague Stringology Conference 2019,
Prague, Czech Republic, August 26-28, 2019, pages 3–15. Czech Technical Uni-
versity in Prague, Faculty of Information Technology, Department of Theoretical
Computer Science, 2019.

18 Ł. Kondraciuk

10. Pawel Gawrychowski, Tomasz Kociumaka, Wojciech Rytter, and Tomasz Waleń.
Tight bound for the number of distinct palindromes in a tree. In Costas S. Iliopou-
los, Simon J. Puglisi, and Emine Yilmaz, editors, String Processing and Information
Retrieval - 22nd International Symposium, SPIRE 2015, London, UK, September
1-4, 2015, Proceedings, volume 9309 of Lecture Notes in Computer Science, pages
270–276. Springer, 2015.

11. Pawel Gawrychowski, Tomasz Kociumaka, Wojciech Rytter, and Tomasz Waleń.
Tight bound for the number of distinct palindromes in a tree. The Electronic
Journal of Combinatorics, 30, 04 2023.

12. Tomasz Kociumaka, Jakub Pachocki, Jakub Radoszewski, Wojciech Rytter, and
Tomasz Waleń. Efficient counting of square substrings in a tree. Theor. Comput.
Sci., 544:60–73, 2014.

13. Tomasz Kociumaka, Jakub Radoszewski, Wojciech Rytter, and Tomasz Waleń.
String powers in trees. Algorithmica, 79(3):814–834, 2017.

14. Neerja Mhaskar and William F. Smyth. String covering: A survey. CoRR,
abs/2211.11856, 2022.

15. Dennis W. G. Moore and William F. Smyth. A correction to "An optimal algorithm
to compute all the covers of a string". Inf. Process. Lett., 54(2):101–103, 1995.

16. Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński, Tomasz Waleń, and
Wiktor Zuba. String covers of a tree. In Thierry Lecroq and Hélène Touzet,
editors, String Processing and Information Retrieval - 28th International Sympo-
sium, SPIRE 2021, Lille, France, October 4-6, 2021, Proceedings, volume 12944 of
Lecture Notes in Computer Science, pages 68–82. Springer, 2021.

17. Tetsuo Shibuya. Constructing the suffix tree of a tree with a large alphabet. In
Algorithms and Computation, pages 225–236, Berlin, Heidelberg, 1999. Springer
Berlin Heidelberg.

18. Bjarne Stroustrup. The C++ programming language - special edition (3. ed.).
Addison-Wesley, 2007.

19. Ryo Sugahara, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai, and Masayuki
Takeda. Efficiently computing runs on a trie. Theor. Comput. Sci., 887:143–151,
2021.

	String Covers of a Tree Revisited

