/************************************************************************|
|       Skomentowany plik drivers/char/random.c                          |
|       Komentował Piotr Hoffman                                         |
|       Plik zawiera kod urządzenia znakowego - generatora liczb losowych|
|************************************************************************/
/*
 * random.c -- A strong random number generator
 *
 * Version 1.00, last modified 26-May-96
 * 
 * Copyright Theodore Ts'o, 1994, 1995, 1996.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, and the entire permission notice in its entirety,
 *    including the disclaimer of warranties.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. The name of the author may not be used to endorse or promote
 *    products derived from this software without specific prior
 *    written permission.
 * 
 * ALTERNATIVELY, this product may be distributed under the terms of
 * the GNU Public License, in which case the provisions of the GPL are
 * required INSTEAD OF the above restrictions.  (This clause is
 * necessary due to a potential bad interaction between the GPL and
 * the restrictions contained in a BSD-style copyright.)
 * 
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT,
 * INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
 * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
 * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED
 * OF THE POSSIBILITY OF SUCH DAMAGE.
 */

/*
 * (now, with legal B.S. out of the way.....) 
 * 
 * This routine gathers environmental noise from device drivers, etc.,
 * and returns good random numbers, suitable for cryptographic use.
 * Besides the obvious cryptographic uses, these numbers are also good
 * for seeding TCP sequence numbers, and other places where it is
 * desirable to have numbers which are not only random, but hard to
 * predict by an attacker.
 *
 * Theory of operation
 * ===================
 * 
 * Computers are very predictable devices.  Hence it is extremely hard
 * to produce truly random numbers on a computer --- as opposed to
 * pseudo-random numbers, which can easily generated by using a
 * algorithm.  Unfortunately, it is very easy for attackers to guess
 * the sequence of pseudo-random number generators, and for some
 * applications this is not acceptable.  So instead, we must try to
 * gather "environmental noise" from the computer's environment, which
 * must be hard for outside attackers to observe, and use that to
 * generate random numbers.  In a Unix environment, this is best done
 * from inside the kernel.
 * 
 * Sources of randomness from the environment include inter-keyboard
 * timings, inter-interrupt timings from some interrupts, and other
 * events which are both (a) non-deterministic and (b) hard for an
 * outside observer to measure.  Randomness from these sources are
 * added to an "entropy pool", which is mixed using a CRC-like function.
 * This is not cryptographically strong, but it is adequate assuming
 * the randomness is not chosen maliciously, and it is fast enough that
 * the overhead of doing it on every interrupt is very reasonable.
 * As random bytes are mixed into the entropy pool, the routines keep
 * an *estimate* of how many bits of randomness have been stored into
 * the random number generator's internal state.
 * 
 * When random bytes are desired, they are obtained by taking the MD5
 * hash of the contents of the "entropy pool".  The MD5 hash avoids
 * exposing the internal state of the entropy pool.  It is believed to
 * be computationally infeasible to derive any useful information
 * about the input of MD5 from its output.  Even if it is possible to
 * analyze MD5 in some clever way, as long as the amount of data
 * returned from the generator is less than the inherent entropy in
 * the pool, the output data is totally unpredictable.  For this
 * reason, the routine decreases its internal estimate of how many
 * bits of "true randomness" are contained in the entropy pool as it
 * outputs random numbers.
 * 
 * If this estimate goes to zero, the routine can still generate
 * random numbers; however, an attacker may (at least in theory) be
 * able to infer the future output of the generator from prior
 * outputs.  This requires successful cryptanalysis of MD5, which is
 * not believed to be feasible, but there is a remote possibility.
 * Nonetheless, these numbers should be useful for the vast majority
 * of purposes.
 * 
 * Exported interfaces ---- output
 * ===============================
 * 
 * There are three exported interfaces; the first is one designed to
 * be used from within the kernel:
 *
 * 	void get_random_bytes(void *buf, int nbytes);
 *
 * This interface will return the requested number of random bytes,
 * and place it in the requested buffer.
 * 
 * The two other interfaces are two character devices /dev/random and
 * /dev/urandom.  /dev/random is suitable for use when very high
 * quality randomness is desired (for example, for key generation or
 * one-time pads), as it will only return a maximum of the number of
 * bits of randomness (as estimated by the random number generator)
 * contained in the entropy pool.
 * 
 * The /dev/urandom device does not have this limit, and will return
 * as many bytes as are requested.  As more and more random bytes are
 * requested without giving time for the entropy pool to recharge,
 * this will result in random numbers that are merely cryptographically
 * strong.  For many applications, however, this is acceptable.
 *
 * Exported interfaces ---- input
 * ==============================
 * 
 * The current exported interfaces for gathering environmental noise
 * from the devices are:
 * 
 * 	void add_keyboard_randomness(unsigned char scancode);
 * 	void add_mouse_randomness(__u32 mouse_data);
 * 	void add_interrupt_randomness(int irq);
 * 	void add_blkdev_randomness(int irq);
 * 
 * add_keyboard_randomness() uses the inter-keypress timing, as well as the
 * scancode as random inputs into the "entropy pool".
 * 
 * add_mouse_randomness() uses the mouse interrupt timing, as well as
 * the reported position of the mouse from the hardware.
 *
 * add_interrupt_randomness() uses the inter-interrupt timing as random
 * inputs to the entropy pool.  Note that not all interrupts are good
 * sources of randomness!  For example, the timer interrupts is not a
 * good choice, because the periodicity of the interrupts is to
 * regular, and hence predictable to an attacker.  Disk interrupts are
 * a better measure, since the timing of the disk interrupts are more
 * unpredictable.
 * 
 * add_blkdev_randomness() times the finishing time of block requests.
 * 
 * All of these routines try to estimate how many bits of randomness a
 * particular randomness source.  They do this by keeping track of the
 * first and second order deltas of the event timings.
 *
 * Ensuring unpredictability at system startup
 * ============================================
 * 
 * When any operating system starts up, it will go through a sequence
 * of actions that are fairly predictable by an adversary, especially
 * if the start-up does not involve interaction with a human operator.
 * This reduces the actual number of bits of unpredictability in the
 * entropy pool below the value in entropy_count.  In order to
 * counteract this effect, it helps to carry information in the
 * entropy pool across shut-downs and start-ups.  To do this, put the
 * following lines an appropriate script which is run during the boot
 * sequence: 
 *
 *	echo "Initializing random number generator..."
 *	# Carry a random seed from start-up to start-up
 *	# Load and then save 512 bytes, which is the size of the entropy pool
 * 	if [ -f /etc/random-seed ]; then
 *		cat /etc/random-seed >/dev/urandom
 * 	fi
 *	dd if=/dev/urandom of=/etc/random-seed count=1
 *
 * and the following lines in an appropriate script which is run as
 * the system is shutdown:
 * 
 *	# Carry a random seed from shut-down to start-up
 *	# Save 512 bytes, which is the size of the entropy pool
 *	echo "Saving random seed..."
 *	dd if=/dev/urandom of=/etc/random-seed count=1
 * 
 * For example, on many Linux systems, the appropriate scripts are
 * usually /etc/rc.d/rc.local and /etc/rc.d/rc.0, respectively.
 * 
 * Effectively, these commands cause the contents of the entropy pool
 * to be saved at shut-down time and reloaded into the entropy pool at
 * start-up.  (The 'dd' in the addition to the bootup script is to
 * make sure that /etc/random-seed is different for every start-up,
 * even if the system crashes without executing rc.0.)  Even with
 * complete knowledge of the start-up activities, predicting the state
 * of the entropy pool requires knowledge of the previous history of
 * the system.
 *
 * Configuring the /dev/random driver under Linux
 * ==============================================
 *
 * The /dev/random driver under Linux uses minor numbers 8 and 9 of
 * the /dev/mem major number (#1).  So if your system does not have
 * /dev/random and /dev/urandom created already, they can be created
 * by using the commands:
 *
 * 	mknod /dev/random c 1 8
 * 	mknod /dev/urandom c 1 9
 * 
 * Acknowledgements:
 * =================
 *
 * Ideas for constructing this random number generator were derived
 * from the Pretty Good Privacy's random number generator, and from
 * private discussions with Phil Karn.  Colin Plumb provided a faster
 * random number generator, which speed up the mixing function of the
 * entropy pool, taken from PGP 3.0 (under development).  It has since
 * been modified by myself to provide better mixing in the case where
 * the input values to add_entropy_word() are mostly small numbers.
 * Dale Worley has also contributed many useful ideas and suggestions
 * to improve this driver.
 * 
 * Any flaws in the design are solely my responsibility, and should
 * not be attributed to the Phil, Colin, or any of authors of PGP.
 * 
 * The code for MD5 transform was taken from Colin Plumb's
 * implementation, which has been placed in the public domain.  The
 * MD5 cryptographic checksum was devised by Ronald Rivest, and is
 * documented in RFC 1321, "The MD5 Message Digest Algorithm".
 * 
 * Further background information on this topic may be obtained from
 * RFC 1750, "Randomness Recommendations for Security", by Donald
 * Eastlake, Steve Crocker, and Jeff Schiller.
 */

#include < linux/utsname.h>
#include < linux/kernel.h>
#include < linux/major.h>
#include < linux/string.h>
#include < linux/fcntl.h>
#include < linux/malloc.h>
#include < linux/random.h>

#include < asm/segment.h>
#include < asm/irq.h>
#include < asm/io.h>

/*
 * Configuration information
 */
#undef RANDOM_BENCHMARK
#undef BENCHMARK_NOINT

/*******************************************************************************|
|       Mamy pojemnik z POOLWORDS słowami. Dodając kolejne słowo do             |
|       pojemnika mieszamy w pojemniku, żeby to słowo miało wpływ na jak        |
|       najwięcej różnych bitów w pojemniku.                                    |
|       Będziemy korzystać z wielomianu nad ciałem dwuelementowym.              |
|       Jeżeli wielomian f(x)=-ak-ak-1x-ak-2x^2-...-a1x^k-1+x^k ma                |
|       tę własność, że ciąg Xn=(a1Xn-1+a2Xn-2+...+akXn-k)mod 2                    |
|       jest okresowy o okresie (2^k)-1, to nazwiemy go pierwotnym              |
|       (ang. primitive).                                                       |       
|       Zwykle inaczej się to definiuje, ale tak będzie wygodniej.              |
|       Poniżej zapisany wielomian jest właśnie pierwotny.                      |
|       Stałe TAP1,...,TAP5 zawierają numery niezerowych współczynników         |
|       Pozostałe współczynniki są zero (to jest nad ciałem {0,1})              |
|       Dodając słowo do pojemnika będziemy wstawiali właśnie liczbę            |
|       wyliczoną z podobnego do powyższego wzoru.                              |
********************************************************************************/
/*
 * The pool is stirred with a primitive polynomial of degree 128
 * over GF(2), namely x^128 + x^99 + x^59 + x^31 + x^9 + x^7 + 1.
 * For a pool of size 64, try x^64+x^62+x^38+x^10+x^6+x+1.
 */
#define POOLWORDS 128    /* Power of 2 - note that this is 32-bit words */
#define POOLBITS (POOLWORDS*32)
#if POOLWORDS == 128
#define TAP1    99     /* The polynomial taps */
#define TAP2    59
#define TAP3    31
#define TAP4    9
#define TAP5    7
#elif POOLWORDS == 64
#define TAP1    62      /* The polynomial taps */
#define TAP2    38
#define TAP3    10
#define TAP4    6
#define TAP5    1
#else
#error No primitive polynomial available for chosen POOLWORDS
#endif

********************************************************************************|
|       Ile prawdziwie losowych bitów musimy mieć, żeby móc zwolnić kogoś       |
|       z oczekiwania na losowe bity? Dajemy 8, bo będziemy dawać liczby        |
|       losowe po bajcie.                                                       |
********************************************************************************/
/*
 * The minimum number of bits to release a "wait on input".  Should
 * probably always be 8, since a /dev/random read can return a single
 * byte.
 */
#define WAIT_INPUT_BITS 8
/* 
 * The limit number of bits under which to release a "wait on
 * output".  Should probably always be the same as WAIT_INPUT_BITS, so
 * that an output wait releases when and only when a wait on input
 * would block.
 */
#define WAIT_OUTPUT_BITS WAIT_INPUT_BITS

/****************************************************************|
|       Nasz pojemnik losowych bajtów                            |
*****************************************************************/
/* There is actually only one of these, globally. */
struct random_bucket {
        unsigned add_ptr;               /* indeks w pojemniku. Nowe słowo dodajemy  
                                                w miejscu pool[add_ptr-1]               */
        unsigned entropy_count;         /* liczba losowych bitów                     */
        int input_rotate;               /* o ile przesuwamy nowe słowo zanim je      */
                                        /* wstawimy do pojemnika (zmienne)           */
        __u32 *pool;                    /* wskaźnik do pojemnika ze słowami          */
};

#ifdef RANDOM_BENCHMARK
/* For benchmarking only */
struct random_benchmark {
	unsigned long long 	start_time;
	int			times;		/* # of samples */
	unsigned long		min;
	unsigned long		max;
	unsigned long		accum;		/* accumulator for average */
	const char		*descr;
	int			unit;
	unsigned long		flags;
};

#define BENCHMARK_INTERVAL 500

static void initialize_benchmark(struct random_benchmark *bench,
				 const char *descr, int unit);
static void begin_benchmark(struct random_benchmark *bench);
static void end_benchmark(struct random_benchmark *bench);

struct random_benchmark timer_benchmark;
#endif

/************************************************************************|
|       Dla każdego źródła losowości pamiętamy informację o ostatnich    |
|       słowach otrzymanych z tego źródła.                               |
|       Faktycznie do losowości najbardziej przyczyniają się u nas czasy |
|       między kolejnymi wywołaniami przerwań, więc tu trzymamy tylko    |
|       informacje o czasie (ten czas jest podstawowym elementem losowym)|
*************************************************************************/
/* There is one of these per entropy source */
struct timer_rand_state {
        unsigned long   last_time;              /* czas otrzymania poprzedniej losowej danej */
        int             last_delta,             /* różnica między last_time a poprzednią     */
                                                /* wartością last_time                       */
                        last_delta2;            /* różnica między last_delta a poprzednią    */
                                                /* wartością last_delta                      */ 
        int             dont_count_entropy:1;   /* czy liczyć dane stąd do entropii?         */
};
/* to jest nasz pojemnik     */
static struct random_bucket random_state;
/* i jego dane               */
static __u32 random_pool[POOLWORDS];

/* to są informacje o ostatnich przekazanych danych dla klawiatury, myszy               */
/* przerwań IRQ (ale tak naprawdę używa się tylko tych, które mają ustawioną flagę      */
/* SA_SAMPLE_RANDOM), dla urządzeń blokowych                                            */
static struct timer_rand_state keyboard_timer_state;
static struct timer_rand_state mouse_timer_state;
/* a te dane mówią o czasach pobierania liczb losowych z tego generatora        */
static struct timer_rand_state extract_timer_state;

/* NULL w pod danym indeksem oznacza, że ze źródła o tym numerze nie będziemy   */
/* dostawać losowych danych                                                     */
static struct timer_rand_state *irq_timer_state[NR_IRQS];
static struct timer_rand_state *blkdev_timer_state[MAX_BLKDEV];

/* tu będą czekać chętni na losowe bajty, jeśli tych bajtów nie będzie dość, a  */
/* oni będą woleli się zablokować niż dostać liczby pseudolosowe                */
static struct wait_queue *random_wait;

/* interfejs dla użytkowników - funkcje ze struktury typu file_operations.      */
/* czytanie blokujące...                                                        */
static int random_read(struct inode * inode, struct file * file,
		       char * buf, int nbytes);

/* ...i czytanie nieblokujące - może wyjść pseudolosowe                          */
static int random_read_unlimited(struct inode * inode, struct file * file,
				 char * buf, int nbytes);
static int random_select(struct inode *inode, struct file *file,
			 int sel_type, select_table * wait);
static int random_write(struct inode * inode, struct file * file,
			const char * buffer, int count);
static int random_ioctl(struct inode * inode, struct file * file,
			unsigned int cmd, unsigned long arg);

/* do pojemnika r dodaje losowe słowo od urządzenia                             */
static inline void fast_add_entropy_word(struct random_bucket *r,
					 const __u32 input);

/* to samo, co wyżej, ale nie jest inline                                       */
static void add_entropy_word(struct random_bucket *r,
				    const __u32 input);

#ifndef MIN
#define MIN(a,b) (((a) < (b)) ? (a) : (b))
#endif
/************************************************************************
|       rotate_left(i, x) po prostu dokonuje cyklicznego przesunięcia x |
|       o i bitów w lewo, a następnie zwraca tę wartość.                |
************************************************************************/
/*
 * Unfortunately, while the GCC optimizer for the i386 understands how
 * to optimize a static rotate left of x bits, it doesn't know how to
 * deal with a variable rotate of x bits.  So we use a bit of asm magic.
 */
#if (!defined (__i386__))
extern inline __u32 rotate_left(int i, __u32 word)
{
	return (word << i) | (word >> (32 - i));
	
}
#else
extern inline __u32 rotate_left(int i, __u32 word)
{
	__asm__("roll %%cl,%0"
		:"=r" (word)
		:"0" (word),"c" (i));
	return word;
}
#endif

/************************************************************************
|       Zoptymalizowany na i386 logarytm dwójkowy z liczby 32-bitowej   |
************************************************************************/
/*
 * More asm magic....
 * 
 * For entropy estimation, we need to do an integral base 2
 * logarithm.  By default, use an open-coded C version, although we do
 * have a version which takes advantage of the Intel's x86's "bsr"
 * instruction.
 */
#if (!defined (__i386__))
static inline __u32 int_ln(__u32 word)
{
	__u32 nbits = 0;
	
	while (1) {
		word >>= 1;
		if (!word)
			break;
		nbits++;
	}
	return nbits;
}
#else
static inline __u32 int_ln(__u32 word)
{	
        /* BSR szuka w %1 pierwszego ustawionego bitu (licząc od lewej) */
        /* i zapisuje jego numer do %0. Jeżeli takiego bitu nie ma, to  */
        /* zeruje ZF                                                    */
	__asm__("bsrl %1,%0\n\t"
		"jnz 1f\n\t"
		"movl $0,%0\n"
		"1:"
		:"=r" (word)
		:"r" (word));
	return word;
}
#endif


/************************************************************************
|       Zapisuje do pojemnika "przypadkowe" dane: czas i informację     |
|       o systemie                                                      |
************************************************************************/
/*
 * Initialize the random pool with standard stuff.
 *
 * NOTE: This is an OS-dependent function.
 */
static void init_std_data(struct random_bucket *r)
{
	__u32 word, *p;
	int i;
	struct timeval 	tv;

/*	najpierw dodajemy dwa słowa dotyczące czasu		*/
	do_gettimeofday(&tv);
	add_entropy_word(r, tv.tv_sec);
	add_entropy_word(r, tv.tv_usec);

/* następnie dodajemy jeszcze informacje systemowe              */
/* Obecnie te informacje zapełnią pojemnik w całości            */
	for (p = (__u32 *) &system_utsname,
	     i = sizeof(system_utsname) / sizeof(__u32);
	     i ; i--, p++) {
		memcpy(&word, p, sizeof(__u32));
		add_entropy_word(r, word);
	}
	
}

/************************************************************************
|       Zerujemy pojemnik i zapełniamy standardowymi danymi             |
************************************************************************/
/* Clear the entropy pool and associated counters. */
static void rand_clear_pool(void)
{
	random_state.add_ptr = 0;
	random_state.entropy_count = 0;
	random_state.pool = random_pool;
	random_state.input_rotate = 0;
	memset(random_pool, 0, sizeof(random_pool));
	init_std_data(&random_state);
}

/************************************************************************
|       Zerujemy pojemnik, zapełniamy standardowymi danymi, zapisujemy, |
|       że na razie nie dostajmy niczego od przerwań ani urządzeń       |
|       blokowych.                                                      |
|       Inne inicjalizacje                                              |
************************************************************************/
void rand_initialize(void)
{
	int i;

	rand_clear_pool();
	for (i = 0; i < NR_IRQS; i++)
		irq_timer_state[i] = NULL;
	for (i = 0; i < MAX_BLKDEV; i++)
		blkdev_timer_state[i] = NULL;

/* czasy między naciśnięciami klawiszy itp. - na razie wszystko zerujemy	*/
	memset(&keyboard_timer_state, 0, sizeof(struct timer_rand_state));
	memset(&mouse_timer_state, 0, sizeof(struct timer_rand_state));
	memset(&extract_timer_state, 0, sizeof(struct timer_rand_state));
#ifdef RANDOM_BENCHMARK
	initialize_benchmark(&timer_benchmark, "timer", 0);
#endif

/* to nie jest dobre źródło entropii                                            */
	extract_timer_state.dont_count_entropy = 1;

/* kolejka do wieszania się w oczekiwaniu na entropię                           */
	random_wait = NULL;
}


/************************************************************************
|	Inicjalizujemy nowe źródło entropii wśród przerwań IRQ		|
************************************************************************/
void rand_initialize_irq(int irq)
{
	struct timer_rand_state *state;
	

/* jeżeli już dostajemy od nich informację to nic nie zmieniamy	*/
	if (irq >= NR_IRQS || irq_timer_state[irq])
		return;

	/*
	 * If kmalloc returns null, we just won't use that entropy
	 * source.
	 */

/* alokowane dynamicznie - jeżeli brak miejsca to trudno       */
	state = kmalloc(sizeof(struct timer_rand_state), GFP_KERNEL);
	if (state) {
		irq_timer_state[irq] = state;
		memset(state, 0, sizeof(struct timer_rand_state));
	}
}
/************************************************************************
| Analogiczna funkcja dla urządzeń blokowych                            |
************************************************************************/
void rand_initialize_blkdev(int major, int mode)
{
	struct timer_rand_state *state;
	
	if (major >= MAX_BLKDEV || blkdev_timer_state[major])
		return;

	/*
	 * If kmalloc returns null, we just won't use that entropy
	 * source.
	 */
	state = kmalloc(sizeof(struct timer_rand_state), mode);
	if (state) {
		blkdev_timer_state[major] = state;
		memset(state, 0, sizeof(struct timer_rand_state));
	}
}

/*
 * This function adds a byte into the entropy "pool".  It does not
 * update the entropy estimate.  The caller must do this if appropriate.
 *
 * The pool is stirred with a primitive polynomial of degree 128
 * over GF(2), namely x^128 + x^99 + x^59 + x^31 + x^9 + x^7 + 1.
 * For a pool of size 64, try x^64+x^62+x^38+x^10+x^6+x+1.
 * 
 * We rotate the input word by a changing number of bits, to help
 * assure that all bits in the entropy get toggled.  Otherwise, if we
 * consistently feed the entropy pool small numbers (like jiffies and
 * scancodes, for example), the upper bits of the entropy pool don't
 * get affected. --- TYT, 10/11/95
 */

/*******************************************************************************|
|       Ta funkcja dodaje do pojemnika r słowo input.                           |
|       Za każdym razem obraca input o inną liczbę bitów w lewo.                |
|       Ustawia i na miejsce, które zostało zmienione najdawniej.               |
|       Wylicza następnie wartość w[j]=x(i)[j]+x(7+i)[j]+x(9+i)[j]+             |
|       +x(31+i)[j]+x(59+i)[j]+x(99+i)[j] dla j=0..31, gdzie                    |
|       x(a+i) oznacza (a+i)-ty element pojemnika (dodawania modulo 128)        |
|       x(a+i)[j] oznacza jego j-ty bit                                         |
|       natomiast dodwania jest modulo 2.                                       |
|       Następnie po przesunięciu w o bit w lewo (po co?), zapisuje             |
|       się wynik na x(i)                                                       |
|       Ilość zachowanej entropii nie jest tu zmieniana                         |
********************************************************************************/
static inline void fast_add_entropy_word(struct random_bucket *r,
					 const __u32 input)
{
	unsigned i;
	int new_rotate;
	__u32 w;

/* obracamy input o input_rotate bitów                                  */
	w = rotate_left(r->input_rotate, input);

/* zmniejszamy add_ptr  (czyli add_ptr krąży z lewa w prawo (cyklicznie)*/
	i = r->add_ptr = (r->add_ptr - 1) & (POOLWORDS-1);
	/*
	 * Normally, we add 7 bits of rotation to the pool.  At the
	 * beginning of the pool, add an extra 7 bits rotation, so
	 * that successive passes spread the input bits across the
	 * pool evenly.
	 */
/* wstawiając n-te słowo do pojemnika przy i=0 przesunięcie wynosi:     
        ( n*128*7+(n/32)*7 ) mod 32= ( (n/32)*7 ) mod 32                
Gdybyśmy nie dodawali jeszcze siedmiu bitów przesunięcia przy i=0, to byłoby to:
        ( n*128*7 ) mod 32 = 0                                          
zatem na przykład otrzymując jedynie liczby, których dolne bajty są zero, nigdy
byśmy nie umieścili niczego ciekawego na początku pojemnika. Dlatego przy i=0
dodajemy dodatkowe 7 bitów przesunięcia                                 */
	new_rotate = r->input_rotate + 14;
	if (i)
		new_rotate = r->input_rotate + 7;
	r->input_rotate = new_rotate & 31;

        /* XOR in the various taps */
/* zapomocą operacji XOR wykonujemy dodawania w ciele dwuelementowym po współrzędnych   */
	w ^= r->pool[(i+TAP1)&(POOLWORDS-1)];
	w ^= r->pool[(i+TAP2)&(POOLWORDS-1)];
	w ^= r->pool[(i+TAP3)&(POOLWORDS-1)];
	w ^= r->pool[(i+TAP4)&(POOLWORDS-1)];
	w ^= r->pool[(i+TAP5)&(POOLWORDS-1)];
	w ^= r->pool[i];

/* wynik jest taki, że j-ty bit w ma wartość w+x(i)+... (jak opisane wyżej)             */
/* Na koniec zapisujemy w obrócone o 1 bit pod najdłużej nie wymienianą pozycją i       */
/* nie bardzo wiem, po co jeszcze obracamy o ten bit                                    */
	/* Rotate w left 1 bit (stolen from SHA) and store */
	r->pool[i] = (w << 1) | (w >> 31);
}

/*
 * For places where we don't need the inlined version
 */
static void add_entropy_word(struct random_bucket *r,
				    const __u32 input)
{
	fast_add_entropy_word(r, input);
}

/*
 * This function adds entropy to the entropy "pool" by using timing
 * delays.  It uses the timer_rand_state structure to make an estimate
 * of how many bits of entropy this call has added to the pool.
 *
 * The number "num" is also added to the pool - it should somehow describe
 * the type of event which just happened.  This is currently 0-255 for
 * keyboard scan codes, and 256 upwards for interrupts.
 * On the i386, this is assumed to be at most 16 bits, and the high bits
 * are used for a high-resolution timer.
 *
 */
/************************************************************************
|       Parametr num oznacza wydarzenie, które właśnie			|
|       nastąpiło, np. kod naciśniętego klawisza itp.                   |
|       Jako wartość losową wkłada się ten kod oraz, przede wszystkim,  |
|       czas wystąpienia zdarzenia.                                     |
|       Na x86 coś kombinujemy z górnymi bitami w celu obliczenia       |
|       dokładniejszego czasu - normalnie używamy jiffies.              |
|       Następnie badamy, ile bitów entropii to dodało.                 |
************************************************************************/
static void add_timer_randomness(struct random_bucket *r,
				 struct timer_rand_state *state, unsigned num)
{
	int	delta, delta2, delta3;
	__u32		time;

#ifdef RANDOM_BENCHMARK
	begin_benchmark(&timer_benchmark);
#endif
#if defined (__i386__)
	if (x86_capability & 16) {
		unsigned long low, high;
		__asm__(".byte 0x0f,0x31"
			:"=a" (low), "=d" (high));
		time = (__u32) low;
		num ^= (__u32) high;
	} else {
		time = jiffies;
	}
#else
	time = jiffies;
#endif
/* tutaj time to czas zajścia zdarzenia, zaś num to zdarzenie	*/
	fast_add_entropy_word(r, (__u32) num);
	fast_add_entropy_word(r, time);
	
	/*
	 * Calculate number of bits of randomness we probably
	 * added.  We take into account the first and second order
	 * deltas in order to make our estimate.
	 */
	if (!state->dont_count_entropy &&
	    (r->entropy_count < POOLBITS)) {
/* Jeżeli flaga jest ustawiona (czyli możemy uznać, że mamy jako tako dobre źródło
losowości), to liczymy zwiększoną entropię. Do tej entropii używamy tylko czasu
zdarzenia, a nie używamy wartości num (nie wiadomo bowiem na ile jest losowa).
	Metoda liczenia jest następująca:
	Ponieważ staramy się sprawdzić, ile bitów naszego zdarzenia (czyli time) jest
	niezależnych od poprzednich zdarzeń, więc po pierwsze liczymy różnicę:	*/
		delta = time - state->last_time;
		state->last_time = time;
		if (delta < 0) delta = -delta;
/*	Uznajemy, że jeżeli wynikiem jest np. delta=0000xxxx, to wiodących zer nie
można uznać za niezależne od poprzedniego czasu (bo zależność jest - pochodzi po
prostu stąd, że zdarzenie następne zwykle następuje po niedługim czasie od	
poprzedniego. Jeżeli na przykład ktoś pisze na klawiaturze, to nie można uznać
bitów odpowiadających minutom, w których klawisze są naciskane, za niezależne 
zdarzenia. Natomiast już milisekundy można (być może) uznać za niezależne).*/

/* Dalej liczymy różnicę między długościami przerw: */
		delta2 = delta - state->last_delta;
		state->last_delta = delta;
		if (delta2 < 0) delta2 = -delta2;

/* Również tu uznamy wiodące zera w tej różnicy za nielosowe. Kontynuując przykład
z klawiaturą, jeżeli ktoś uderza w klawisze z pewną w miarę stałą częstością, to
nie są to zdarzenia niezależne. Np. jeżeli uderzenia wykonano w sekundach 0, 2, 4, to
ostatnie z tych uderzeń nie zwiększy w naszym modelu entropii, gdyż co prawda 4-2 ma bit
drugi ustawiony, ale (4-2)-(2-0)=0 - jest to dość heurystyczny sposób liczenia entropii, 
ale może coś w tym jest */

/* Robimy to samo co poprzednio z różnicami kolejnego rzędu. Nie opisuję tego już w sposób
bardziej szczegółowy */
		delta3 = delta2 - state->last_delta2;
		state->last_delta2 = delta2;
		if (delta3 < 0) delta3 = -delta3;

/* Pozycja, od której bity uznajemy za losowe, to druga niezerowa pozycja
(założenie chyba rozsądne), zatem dzielimy przez 2 i wybieramy minimum */
		delta = MIN(MIN(delta, delta2), delta3) >> 1;

		/* Limit entropy estimate to 12 bits */
/* zakładamy, że z 32 bitów czasu nie da się otrzymać więcej, jak 12 bitów naprawdę
losowych */
		delta &= (1 << 12) - 1;

/* dodajemy liczbę nowych bitów entropii - jest to numer skrajnie lewego
ustawionego bitu, czyli logarytm dwójkowy */
		r->entropy_count += int_ln(delta);

		/* Prevent overflow */
/* nie może być więcej bitów entropii, niż jest bitów w ogóle */
		if (r->entropy_count > POOLBITS)
			r->entropy_count = POOLBITS;
	}
		
	/* Wake up waiting processes, if we have enough entropy. */
/* budzimy proces, o ile mamy przynajmniej najmniejszą porcję danych (bajt) */
	if (r->entropy_count >= WAIT_INPUT_BITS)
		wake_up_interruptible(&random_wait);
#ifdef RANDOM_BENCHMARK
	end_benchmark(&timer_benchmark);
#endif
}


/************************************************************************
|       poniższe funkcje są wywoływane w innych miejscach i wszystkie   |
|       sprowadzają się do funkcji wyżej opisanej                       |
************************************************************************/
void add_keyboard_randomness(unsigned char scancode)
{
	add_timer_randomness(&random_state, &keyboard_timer_state, scancode);
}

void add_mouse_randomness(__u32 mouse_data)
{
	add_timer_randomness(&random_state, &mouse_timer_state, mouse_data);
}
/* wołane w pliku irq.c */
void add_interrupt_randomness(int irq)
{
	if (irq >= NR_IRQS || irq_timer_state[irq] == 0)
		return;

	add_timer_randomness(&random_state, irq_timer_state[irq], 0x100+irq);
}

void add_blkdev_randomness(int major)
{
	if (major >= MAX_BLKDEV)
		return;

	if (blkdev_timer_state[major] == 0) {
		rand_initialize_blkdev(major, GFP_ATOMIC);
		if (blkdev_timer_state[major] == 0)
			return;
	}
		
	add_timer_randomness(&random_state, blkdev_timer_state[major],
			     0x200+major);
}

/************************************************************************
|       Poniższy kod algorytmów SHA i MD5 daje nam do ręki funkcję      |
|       HASH_TRANSFORM, która jest dobrą kryptograficznie funkcją       |
|       mieszającą                                                      |
************************************************************************/

/************************************************************************
|       Poniżej znajduje się implementacja algorytmu SHA                |
|       Informacje o tym algorytmie umieściłem w opisie,                |
|       nie podejmuję się bowiem dokładnie wyjaśnić, o co tu chodzi     |
************************************************************************/

#define USE_SHA

#ifdef USE_SHA

#define HASH_BUFFER_SIZE 5
#define HASH_TRANSFORM SHATransform

/*
 * SHA transform algorithm, taken from code written by Peter Gutman,
 * and apparently in the public domain.
 */

/* The SHA f()-functions.  */

#define f1(x,y,z)   ( z ^ ( x & ( y ^ z ) ) )           /* Rounds  0-19 */
#define f2(x,y,z)   ( x ^ y ^ z )                       /* Rounds 20-39 */
#define f3(x,y,z)   ( ( x & y ) | ( z & ( x | y ) ) )   /* Rounds 40-59 */
#define f4(x,y,z)   ( x ^ y ^ z )                       /* Rounds 60-79 */

/* The SHA Mysterious Constants */

#define K1  0x5A827999L                                 /* Rounds  0-19 */
#define K2  0x6ED9EBA1L                                 /* Rounds 20-39 */
#define K3  0x8F1BBCDCL                                 /* Rounds 40-59 */
#define K4  0xCA62C1D6L                                 /* Rounds 60-79 */

#define ROTL(n,X)  ( ( ( X ) << n ) | ( ( X ) >> ( 32 - n ) ) )

#define expand(W,i) ( W[ i & 15 ] = \
		     ROTL( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \
			        W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) )

#define subRound(a, b, c, d, e, f, k, data) \
    ( e += ROTL( 5, a ) + f( b, c, d ) + k + data, b = ROTL( 30, b ) )


void SHATransform(__u32 *digest, __u32 *data)
    {
    __u32 A, B, C, D, E;     /* Local vars */
    __u32 eData[ 16 ];       /* Expanded data */

    /* Set up first buffer and local data buffer */
    A = digest[ 0 ];
    B = digest[ 1 ];
    C = digest[ 2 ];
    D = digest[ 3 ];
    E = digest[ 4 ];
    memcpy( eData, data, 16*sizeof(__u32));

    /* Heavy mangling, in 4 sub-rounds of 20 iterations each. */
    subRound( A, B, C, D, E, f1, K1, eData[  0 ] );
    subRound( E, A, B, C, D, f1, K1, eData[  1 ] );
    subRound( D, E, A, B, C, f1, K1, eData[  2 ] );
    subRound( C, D, E, A, B, f1, K1, eData[  3 ] );
    subRound( B, C, D, E, A, f1, K1, eData[  4 ] );
    subRound( A, B, C, D, E, f1, K1, eData[  5 ] );
    subRound( E, A, B, C, D, f1, K1, eData[  6 ] );
    subRound( D, E, A, B, C, f1, K1, eData[  7 ] );
    subRound( C, D, E, A, B, f1, K1, eData[  8 ] );
    subRound( B, C, D, E, A, f1, K1, eData[  9 ] );
    subRound( A, B, C, D, E, f1, K1, eData[ 10 ] );
    subRound( E, A, B, C, D, f1, K1, eData[ 11 ] );
    subRound( D, E, A, B, C, f1, K1, eData[ 12 ] );
    subRound( C, D, E, A, B, f1, K1, eData[ 13 ] );
    subRound( B, C, D, E, A, f1, K1, eData[ 14 ] );
    subRound( A, B, C, D, E, f1, K1, eData[ 15 ] );
    subRound( E, A, B, C, D, f1, K1, expand( eData, 16 ) );
    subRound( D, E, A, B, C, f1, K1, expand( eData, 17 ) );
    subRound( C, D, E, A, B, f1, K1, expand( eData, 18 ) );
    subRound( B, C, D, E, A, f1, K1, expand( eData, 19 ) );

    subRound( A, B, C, D, E, f2, K2, expand( eData, 20 ) );
    subRound( E, A, B, C, D, f2, K2, expand( eData, 21 ) );
    subRound( D, E, A, B, C, f2, K2, expand( eData, 22 ) );
    subRound( C, D, E, A, B, f2, K2, expand( eData, 23 ) );
    subRound( B, C, D, E, A, f2, K2, expand( eData, 24 ) );
    subRound( A, B, C, D, E, f2, K2, expand( eData, 25 ) );
    subRound( E, A, B, C, D, f2, K2, expand( eData, 26 ) );
    subRound( D, E, A, B, C, f2, K2, expand( eData, 27 ) );
    subRound( C, D, E, A, B, f2, K2, expand( eData, 28 ) );
    subRound( B, C, D, E, A, f2, K2, expand( eData, 29 ) );
    subRound( A, B, C, D, E, f2, K2, expand( eData, 30 ) );
    subRound( E, A, B, C, D, f2, K2, expand( eData, 31 ) );
    subRound( D, E, A, B, C, f2, K2, expand( eData, 32 ) );
    subRound( C, D, E, A, B, f2, K2, expand( eData, 33 ) );
    subRound( B, C, D, E, A, f2, K2, expand( eData, 34 ) );
    subRound( A, B, C, D, E, f2, K2, expand( eData, 35 ) );
    subRound( E, A, B, C, D, f2, K2, expand( eData, 36 ) );
    subRound( D, E, A, B, C, f2, K2, expand( eData, 37 ) );
    subRound( C, D, E, A, B, f2, K2, expand( eData, 38 ) );
    subRound( B, C, D, E, A, f2, K2, expand( eData, 39 ) );

    subRound( A, B, C, D, E, f3, K3, expand( eData, 40 ) );
    subRound( E, A, B, C, D, f3, K3, expand( eData, 41 ) );
    subRound( D, E, A, B, C, f3, K3, expand( eData, 42 ) );
    subRound( C, D, E, A, B, f3, K3, expand( eData, 43 ) );
    subRound( B, C, D, E, A, f3, K3, expand( eData, 44 ) );
    subRound( A, B, C, D, E, f3, K3, expand( eData, 45 ) );
    subRound( E, A, B, C, D, f3, K3, expand( eData, 46 ) );
    subRound( D, E, A, B, C, f3, K3, expand( eData, 47 ) );
    subRound( C, D, E, A, B, f3, K3, expand( eData, 48 ) );
    subRound( B, C, D, E, A, f3, K3, expand( eData, 49 ) );
    subRound( A, B, C, D, E, f3, K3, expand( eData, 50 ) );
    subRound( E, A, B, C, D, f3, K3, expand( eData, 51 ) );
    subRound( D, E, A, B, C, f3, K3, expand( eData, 52 ) );
    subRound( C, D, E, A, B, f3, K3, expand( eData, 53 ) );
    subRound( B, C, D, E, A, f3, K3, expand( eData, 54 ) );
    subRound( A, B, C, D, E, f3, K3, expand( eData, 55 ) );
    subRound( E, A, B, C, D, f3, K3, expand( eData, 56 ) );
    subRound( D, E, A, B, C, f3, K3, expand( eData, 57 ) );
    subRound( C, D, E, A, B, f3, K3, expand( eData, 58 ) );
    subRound( B, C, D, E, A, f3, K3, expand( eData, 59 ) );

    subRound( A, B, C, D, E, f4, K4, expand( eData, 60 ) );
    subRound( E, A, B, C, D, f4, K4, expand( eData, 61 ) );
    subRound( D, E, A, B, C, f4, K4, expand( eData, 62 ) );
    subRound( C, D, E, A, B, f4, K4, expand( eData, 63 ) );
    subRound( B, C, D, E, A, f4, K4, expand( eData, 64 ) );
    subRound( A, B, C, D, E, f4, K4, expand( eData, 65 ) );
    subRound( E, A, B, C, D, f4, K4, expand( eData, 66 ) );
    subRound( D, E, A, B, C, f4, K4, expand( eData, 67 ) );
    subRound( C, D, E, A, B, f4, K4, expand( eData, 68 ) );
    subRound( B, C, D, E, A, f4, K4, expand( eData, 69 ) );
    subRound( A, B, C, D, E, f4, K4, expand( eData, 70 ) );
    subRound( E, A, B, C, D, f4, K4, expand( eData, 71 ) );
    subRound( D, E, A, B, C, f4, K4, expand( eData, 72 ) );
    subRound( C, D, E, A, B, f4, K4, expand( eData, 73 ) );
    subRound( B, C, D, E, A, f4, K4, expand( eData, 74 ) );
    subRound( A, B, C, D, E, f4, K4, expand( eData, 75 ) );
    subRound( E, A, B, C, D, f4, K4, expand( eData, 76 ) );
    subRound( D, E, A, B, C, f4, K4, expand( eData, 77 ) );
    subRound( C, D, E, A, B, f4, K4, expand( eData, 78 ) );
    subRound( B, C, D, E, A, f4, K4, expand( eData, 79 ) );

    /* Build message digest */
    digest[ 0 ] += A;
    digest[ 1 ] += B;
    digest[ 2 ] += C;
    digest[ 3 ] += D;
    digest[ 4 ] += E;
    }

#else

/************************************************************************
|       Poniżej znajduje się implementacja algorytmu MD5                |
|       Informacje o tym algorytmie umieściłem w opisie,               |
|       nie podejmuję się bowiem dokładnie wyjaśnić, o co tu chodzi     |
************************************************************************/

#define HASH_BUFFER_SIZE 4
#define HASH_TRANSFORM MD5Transform
	
/*
 * MD5 transform algorithm, taken from code written by Colin Plumb,
 * and put into the public domain
 *
 * QUESTION: Replace this with SHA, which as generally received better
 * reviews from the cryptographic community?
 */

/* The four core functions - F1 is optimized somewhat */

/* #define F1(x, y, z) (x & y | ~x & z) */
#define F1(x, y, z) (z ^ (x & (y ^ z)))
#define F2(x, y, z) F1(z, x, y)
#define F3(x, y, z) (x ^ y ^ z)
#define F4(x, y, z) (y ^ (x | ~z))

/* This is the central step in the MD5 algorithm. */
#define MD5STEP(f, w, x, y, z, data, s) \
	( w += f(x, y, z) + data,  w = w< < s | w > >(32-s),  w += x )

/*
 * The core of the MD5 algorithm, this alters an existing MD5 hash to
 * reflect the addition of 16 longwords of new data.  MD5Update blocks
 * the data and converts bytes into longwords for this routine.
 */
static void MD5Transform(__u32 buf[4],
			 __u32 const in[16])
{
	__u32 a, b, c, d;

	a = buf[0];
	b = buf[1];
	c = buf[2];
	d = buf[3];

	MD5STEP(F1, a, b, c, d, in[ 0]+0xd76aa478,  7);
	MD5STEP(F1, d, a, b, c, in[ 1]+0xe8c7b756, 12);
	MD5STEP(F1, c, d, a, b, in[ 2]+0x242070db, 17);
	MD5STEP(F1, b, c, d, a, in[ 3]+0xc1bdceee, 22);
	MD5STEP(F1, a, b, c, d, in[ 4]+0xf57c0faf,  7);
	MD5STEP(F1, d, a, b, c, in[ 5]+0x4787c62a, 12);
	MD5STEP(F1, c, d, a, b, in[ 6]+0xa8304613, 17);
	MD5STEP(F1, b, c, d, a, in[ 7]+0xfd469501, 22);
	MD5STEP(F1, a, b, c, d, in[ 8]+0x698098d8,  7);
	MD5STEP(F1, d, a, b, c, in[ 9]+0x8b44f7af, 12);
	MD5STEP(F1, c, d, a, b, in[10]+0xffff5bb1, 17);
	MD5STEP(F1, b, c, d, a, in[11]+0x895cd7be, 22);
	MD5STEP(F1, a, b, c, d, in[12]+0x6b901122,  7);
	MD5STEP(F1, d, a, b, c, in[13]+0xfd987193, 12);
	MD5STEP(F1, c, d, a, b, in[14]+0xa679438e, 17);
	MD5STEP(F1, b, c, d, a, in[15]+0x49b40821, 22);

	MD5STEP(F2, a, b, c, d, in[ 1]+0xf61e2562,  5);
	MD5STEP(F2, d, a, b, c, in[ 6]+0xc040b340,  9);
	MD5STEP(F2, c, d, a, b, in[11]+0x265e5a51, 14);
	MD5STEP(F2, b, c, d, a, in[ 0]+0xe9b6c7aa, 20);
	MD5STEP(F2, a, b, c, d, in[ 5]+0xd62f105d,  5);
	MD5STEP(F2, d, a, b, c, in[10]+0x02441453,  9);
	MD5STEP(F2, c, d, a, b, in[15]+0xd8a1e681, 14);
	MD5STEP(F2, b, c, d, a, in[ 4]+0xe7d3fbc8, 20);
	MD5STEP(F2, a, b, c, d, in[ 9]+0x21e1cde6,  5);
	MD5STEP(F2, d, a, b, c, in[14]+0xc33707d6,  9);
	MD5STEP(F2, c, d, a, b, in[ 3]+0xf4d50d87, 14);
	MD5STEP(F2, b, c, d, a, in[ 8]+0x455a14ed, 20);
	MD5STEP(F2, a, b, c, d, in[13]+0xa9e3e905,  5);
	MD5STEP(F2, d, a, b, c, in[ 2]+0xfcefa3f8,  9);
	MD5STEP(F2, c, d, a, b, in[ 7]+0x676f02d9, 14);
	MD5STEP(F2, b, c, d, a, in[12]+0x8d2a4c8a, 20);

	MD5STEP(F3, a, b, c, d, in[ 5]+0xfffa3942,  4);
	MD5STEP(F3, d, a, b, c, in[ 8]+0x8771f681, 11);
	MD5STEP(F3, c, d, a, b, in[11]+0x6d9d6122, 16);
	MD5STEP(F3, b, c, d, a, in[14]+0xfde5380c, 23);
	MD5STEP(F3, a, b, c, d, in[ 1]+0xa4beea44,  4);
	MD5STEP(F3, d, a, b, c, in[ 4]+0x4bdecfa9, 11);
	MD5STEP(F3, c, d, a, b, in[ 7]+0xf6bb4b60, 16);
	MD5STEP(F3, b, c, d, a, in[10]+0xbebfbc70, 23);
	MD5STEP(F3, a, b, c, d, in[13]+0x289b7ec6,  4);
	MD5STEP(F3, d, a, b, c, in[ 0]+0xeaa127fa, 11);
	MD5STEP(F3, c, d, a, b, in[ 3]+0xd4ef3085, 16);
	MD5STEP(F3, b, c, d, a, in[ 6]+0x04881d05, 23);
	MD5STEP(F3, a, b, c, d, in[ 9]+0xd9d4d039,  4);
	MD5STEP(F3, d, a, b, c, in[12]+0xe6db99e5, 11);
	MD5STEP(F3, c, d, a, b, in[15]+0x1fa27cf8, 16);
	MD5STEP(F3, b, c, d, a, in[ 2]+0xc4ac5665, 23);

	MD5STEP(F4, a, b, c, d, in[ 0]+0xf4292244,  6);
	MD5STEP(F4, d, a, b, c, in[ 7]+0x432aff97, 10);
	MD5STEP(F4, c, d, a, b, in[14]+0xab9423a7, 15);
	MD5STEP(F4, b, c, d, a, in[ 5]+0xfc93a039, 21);
	MD5STEP(F4, a, b, c, d, in[12]+0x655b59c3,  6);
	MD5STEP(F4, d, a, b, c, in[ 3]+0x8f0ccc92, 10);
	MD5STEP(F4, c, d, a, b, in[10]+0xffeff47d, 15);
	MD5STEP(F4, b, c, d, a, in[ 1]+0x85845dd1, 21);
	MD5STEP(F4, a, b, c, d, in[ 8]+0x6fa87e4f,  6);
	MD5STEP(F4, d, a, b, c, in[15]+0xfe2ce6e0, 10);
	MD5STEP(F4, c, d, a, b, in[ 6]+0xa3014314, 15);
	MD5STEP(F4, b, c, d, a, in[13]+0x4e0811a1, 21);
	MD5STEP(F4, a, b, c, d, in[ 4]+0xf7537e82,  6);
	MD5STEP(F4, d, a, b, c, in[11]+0xbd3af235, 10);
	MD5STEP(F4, c, d, a, b, in[ 2]+0x2ad7d2bb, 15);
	MD5STEP(F4, b, c, d, a, in[ 9]+0xeb86d391, 21);

	buf[0] += a;
	buf[1] += b;
	buf[2] += c;
	buf[3] += d;
}

#undef F1
#undef F2
#undef F3
#undef F4
#undef MD5STEP

#endif

/************************************************************************
|       Od tego miejsca już wszystko staje się bardziej zrozumiałe      |
************************************************************************/

#if POOLWORDS % 16
#error extract_entropy() assumes that POOLWORDS is a multiple of 16 words.
#endif
/***********************************************************************|
|       To jest najistotniejsza funkcja łącząca już z użytkownikiem     |
|       Pozwala na wzięcie z pojemnika r tylu liczb losowych, ile wynosi|
|       argument n_bytes. Są one kopiowane do buf. to_user wskazuje     |
|       czy bufor jest w przestrzeni użytkownika, czy nie               |
|***********************************************************************/
/*
 * This function extracts randomness from the "entropy pool", and
 * returns it in a buffer.  This function computes how many remaining
 * bits of entropy are left in the pool, but it does not restrict the
 * number of bytes that are actually obtained.
 */
static int extract_entropy(struct random_bucket *r, char * buf,
				  int nbytes, int to_user)
{
	int ret, i;
	__u32 tmp[HASH_BUFFER_SIZE];
	char *cp,*dp;

/* bronimy się przed ewentualnym błędem segmentacji                     */

	if (to_user) {
		ret = verify_area(VERIFY_WRITE, (void *) buf, nbytes);
		if (ret)
			return(ret);
	}
/* to zgłoszenie też jest przecież warte zanotowania...                 */
	
	add_timer_randomness(r, &extract_timer_state, nbytes);
	
	/* Redundant, but just in case... */
/* Niemożliwe, bo dbamy o to już przy dodawaniu słów entropii           */

	if (r->entropy_count > POOLBITS) 
		r->entropy_count = POOLBITS;

	ret = nbytes;
/* uaktualniamy wartość licznika bitów entropii                         */

	if (r->entropy_count / 8 >= nbytes)
		r->entropy_count -= nbytes*8;
	else
		r->entropy_count = 0;

/* w pętli pobieramy i wysyłamy bajty losowe, zmniejszając nbytes,      */
/* aż dojdzie do 0                                                      */

	while (nbytes) {
		/* Hash the pool to get the output */
		tmp[0] = 0x67452301;
		tmp[1] = 0xefcdab89;
		tmp[2] = 0x98badcfe;
		tmp[3] = 0x10325476;
#ifdef USE_SHA
		tmp[4] = 0xc3d2e1f0;
#endif

/* WAŻNE! Tutaj przekształcamy funkcją mieszającą po 16 bajtów z pojemnika*/
/* To jest jedno z najważniejszych miejsc                                 */
		for (i = 0; i < POOLWORDS; i += 16)
			HASH_TRANSFORM(tmp, r->pool+i);

/* Tutaj działamy właściwie jak generator liczb pseudolosowych oparty na  */
/* funkcji mieszającej silnej kryptograficznie                            */
/* Jeżeli jednak było dość dużo entropii, to to nawet nie jest potrzebne  */
            /* Modify pool so next hash will produce different results*/
		add_entropy_word(r, tmp[0]);
		add_entropy_word(r, tmp[1]);
		add_entropy_word(r, tmp[2]);
		add_entropy_word(r, tmp[3]);
#ifdef USE_SHA
		add_entropy_word(r, tmp[4]);
#endif
		/*
		 * Run the hash transform one more time, since we want
		 * to add at least minimal obscuring of the inputs to
		 * add_entropy_word().
		 */
/* To też jest działanie "pseudolosowe"                                 */
		HASH_TRANSFORM(tmp, r->pool);

		/*
		 * In case the hash function has some recognizable
		 * output pattern, we fold it in half.
		 */
/* na wszelki wypadek robimy XOR wyników - po przeczytaniu x bajtów     */
/* dostajemy tak naprawdę tylko x/2                                     */
		cp = (char *) tmp;
		dp = cp + (HASH_BUFFER_SIZE*sizeof(__u32)) - 1;
		for (i=0; i <  HASH_BUFFER_SIZE*sizeof(__u32)/2; i++) {
			*cp ^= *dp;
			cp++;  dp--;
		}
		
		/* Copy data to destination buffer */
/* Kopiujemy uzyskane bajty do bufora.                                  */
		i = MIN(nbytes, HASH_BUFFER_SIZE*sizeof(__u32)/2);
		if (to_user)
			memcpy_tofs(buf, (__u8 const *)tmp, i);
		else
			memcpy(buf, (__u8 const *)tmp, i);
/* uaktualniamy liczniki i wskaźniki                                    */
		nbytes -= i;
		buf += i;
/* może się zdarzyć, że to będzie losowe                                */
		add_timer_randomness(r, &extract_timer_state, nbytes);
/* cała ta zabawa może dość długo trwać, więc zgłaszamy się dobrowolnie do*/
/* szeregowania, o ile nie jesteśmy wywołani z jądra                      */
		if (to_user && need_resched)
			schedule();
	}

	/* Wipe data from memory */
	memset(tmp, 0, sizeof(tmp));
	
	return ret;
}

/*
 * This function is the exported kernel interface.  It returns some
 * number of good random numbers, suitable for seeding TCP sequence
 * numbers, etc.
 */
/************************************************************************|
|       Poniższa funkcja służy do pobierania liczb losowych przez funkcje|
|       jądra itp. Nie sprawdza ona, czy liczba bitów entropii jest      |
|       odpowiednia.                                                     |
*************************************************************************/

void get_random_bytes(void *buf, int nbytes)
{
	extract_entropy(&random_state, (char *) buf, nbytes, 0);
}

/***********************************************************************|
|       Interfejs z użytkownikami zwykłymi - funkcja read dla urządzenia|
|       /dev/random - blokująca.                                        |
|       Blokuje się, aż dostaniemy jakieś bajty losowe.                 |
|       Wraca po ich otrzymaniu, nawet jeżeli jest ich mniej, niż chcemy|
************************************************************************/

static int
random_read(struct inode * inode, struct file * file, char * buf, int nbytes)
{
	struct wait_queue 	wait = { current, NULL };
	int			n;
	int			retval = 0;
	int			count = 0;
	
	if (nbytes == 0)
		return 0;

	add_wait_queue(&random_wait, &wait);
	while (nbytes > 0) {
		current->state = TASK_INTERRUPTIBLE;
		
		n = nbytes;

		if (n > random_state.entropy_count / 8)
			n = random_state.entropy_count / 8;
/* jeżeli nie ma dla nas żadnego pełnego bajtu losowego...              */
		if (n == 0) {
/* ...to albo wracamy z błędem EAGAIN...                                */
			if (file->f_flags & O_NONBLOCK) {
				retval = -EAGAIN;
				break;
			}
/* ...albo z błędem ERESTARTSYS...                                      */
			if (current->signal & ~current->blocked) {
				retval = -ERESTARTSYS;
				break;
			}
/* ...albo czekamy na lepsze czasy                                      */
			schedule();
			continue;
		}

/* pobieramy losowe bajty - wszystkie są naprawdę losowe (o ile dobrze  */
/* liczymy entropię)                                                    */
		n = extract_entropy(&random_state, buf, n, 1);
/* to na wypadek np. błędu segmentacji - jeżeli coś jednak się udało    */
/* odczytać to zwracamy, ile tego było;                                 */
/* jeżeli nic nie odczytaliśmy, to zwracamy otrzymany błąd              */
		if (n < 0) {
			if (count == 0)
				retval = n;
			break;
		}
		count += n;
		buf += n;
		nbytes -= n;
/* tu wyskakujemy z pętli - oznacza to, że jeżeli coś się udało przeczytać,*/
/* to już jesteśmy zadowoleni - nie czekamy dalej                          */
		break;		/* This break makes the device work */
				/* like a named pipe */
	}
	current->state = TASK_RUNNING;
	remove_wait_queue(&random_wait, &wait);

	/*
	 * If we gave the user some bytes and we have an inode pointer,
	 * update the access time.
	 */
/* jeżeli ktoś ma do nas dostęp przez system plików, to poprawiamy      */
/* czas ostatniego odczytu                                              */
	if (inode && count != 0)
		UPDATE_ATIME(inode);
	
	return (count ? count : retval);
}

/***********************************************************************|
|       Funkcja odczytu bez sparwdzania poziomu entropii.               |
|       Dostęp do niej jest przez urządzenie /dev/urandom.              |
************************************************************************/
static int
random_read_unlimited(struct inode * inode, struct file * file,
		      char * buf, int nbytes)
{
/* Czy nie powinniśmy tutaj poprawić czasu odczytu dla inode?           */
	return extract_entropy(&random_state, buf, nbytes, 1);
}


/***********************************************************************|
|       Pozwala komuś robić select, aż będzie wolny bajt do wzięcia     |
|       (jeżeli sel_type jest SEL_IN) lub aż takiego bajtu nie będzie   |
|       (jeżeli sel_type jest SEL_OUT).                                 |
************************************************************************/

static int
random_select(struct inode *inode, struct file *file,
		      int sel_type, select_table * wait)
{
	switch (sel_type) {
	case SEL_IN:
		if (random_state.entropy_count >= 8)
			return 1;
		select_wait(&random_wait, wait);
		break;
	case SEL_OUT:
		if (random_state.entropy_count < WAIT_OUTPUT_BITS)
			return 1;
		select_wait(&random_wait, wait);
		break;
	}
	return 0;
}

/***********************************************************************|
|       Umieszczanie nowych wartości w pojemniku.                       |
|	UWAGA: Nawet umieszczenie dużej liczby np. samych zer nie pogarsza
|       entropii (o ile funkcja mieszająca jest OK). Dlatego nie ma     |
|       potrzeby zakazywania komuś pisania do /dev/random               |
************************************************************************/
static int
random_write(struct inode * inode, struct file * file,
	     const char * buffer, int count)
{
	int i;
	__u32 word, *p;

	if (count < 0)
		return -EINVAL;

	i = verify_area(VERIFY_READ, (void *) buffer, count);
	if (i)
		return i;
/* dokładamy słowa do pojemnika                                         */
	for (i = count, p = (__u32 *)buffer;
	     i >= sizeof(__u32);
	     i-= sizeof(__u32), p++) {
		memcpy_fromfs(&word, p, sizeof(__u32));
		add_entropy_word(&random_state, word);
	}
/* dodajemy jeszcze ostatnie bajty, które trzeba wyrównać zerami do 32 bitów*/
	if (i) {
		word = 0;
		memcpy_fromfs(&word, p, i);
		add_entropy_word(&random_state, word);
	}
/* uaktualniamy informację w i-węźle                                    */
	if (inode) {
		inode->i_mtime = CURRENT_TIME;
		inode->i_dirt = 1;
	}
	return count;
}

/***********************************************************************|
|       Pozwala między innymi manipulować licznikiem bitów              |
|       entropii                                                        |
************************************************************************/

static int
random_ioctl(struct inode * inode, struct file * file,
	     unsigned int cmd, unsigned long arg)
{
	int *p, size, ent_count;
	int retval;
	
	/*
	 * Translate old 1.3.XX values.
	 * Remove this code in 2.1.0.
	 * 
	 */
	switch (cmd) {
	case 0x01080000: cmd = RNDGETENTCNT;   break;
	case 0x01080001: cmd = RNDADDTOENTCNT; break;
	case 0x01080002: cmd = RNDGETPOOL;     break;
	case 0x01080003: cmd = RNDADDENTROPY;  break;
	case 0x01080004: cmd = RNDZAPENTCNT;   break;
	case 0x01080006: cmd = RNDCLEARPOOL;   break;
	}

	switch (cmd) {
/* pobieranie wartości licznika entropii                                */
	case RNDGETENTCNT:
		retval = verify_area(VERIFY_WRITE, (void *) arg, sizeof(int));
		if (retval)
			return(retval);
		ent_count = random_state.entropy_count;
		put_user(ent_count, (int *) arg);
		return 0;

/* zwiększanie licznika entropii                                        */
	case RNDADDTOENTCNT:
/* tylko dla root-a                                                     */
		if (!suser())
			return -EPERM;
		retval = verify_area(VERIFY_READ, (void *) arg, sizeof(int));
		if (retval)
			return(retval);
		ent_count = get_user((int *) arg);
		/*
		 * Add i to entropy_count, limiting the result to be
		 * between 0 and POOLBITS.
		 */
/* dodajemy argument od użytkownika (może być ujemny)                   */
		if (ent_count < -random_state.entropy_count)
			random_state.entropy_count = 0;
		else if (ent_count > POOLBITS)
			random_state.entropy_count = POOLBITS;
		else {
			random_state.entropy_count += ent_count;
			if (random_state.entropy_count > POOLBITS)
				random_state.entropy_count = POOLBITS;
			if (random_state.entropy_count < 0)
				random_state.entropy_count = 0;
		}
		/*
		 * Wake up waiting processes if we have enough
		 * entropy.
		 */
/* może to kogoś uratowało...                                           */
		if (random_state.entropy_count >= WAIT_INPUT_BITS)
			wake_up_interruptible(&random_wait);
		return 0;
/* pobieranie zawartości pojemnika - też tylko superużytkownik          */
	case RNDGETPOOL:
		if (!suser())
			return -EPERM;
		p = (int *) arg;
		retval = verify_area(VERIFY_WRITE, (void *) p, sizeof(int));
		if (retval)
			return(retval);
/* najpierw przekazujemy licznik entropii                               */
		ent_count = random_state.entropy_count;
		put_user(ent_count, p++);
		retval = verify_area(VERIFY_WRITE, (void *) p, sizeof(int));
		if (retval)
			return(retval);
/* pobieramy wielkość bufora użytkownika                                */
		size = get_user(p);
/* i przekazujemy mu wielkość naszego pojemnika                         */
		put_user(POOLWORDS, p++);
		if (size < 0)
			return -EINVAL;
		if (size > POOLWORDS)
			size = POOLWORDS;
		retval = verify_area(VERIFY_WRITE, (void *) p,
				     size * sizeof(__u32));
		if (retval)
			return retval;
/* przekazujemy użytkownikowi tyle słów z pojemnika, ile się mieści w jego buforze*/
		memcpy_tofs(p, random_state.pool, size*sizeof(__u32));
		return 0;
/* to pozwala naraz (atomowo) zapisać coś do pojemnika oraz             */
/* zwiększyć entropię o entropię tego czegoś - rozwiązanie typu:        */
/* najpierw zapisz, potem zwiększ oraz odwrotne mogą prowadzić          */
/* do niezdrowych sytuacji                                              */

	case RNDADDENTROPY:
		if (!suser())
			return -EPERM;
		p = (int *) arg;
		retval = verify_area(VERIFY_READ, (void *) p, 2*sizeof(int));
		if (retval)
			return(retval);
/* wartość entropii tego, co zapiszemy                                  */
		ent_count = get_user(p++);
		if (ent_count < 0)
			return -EINVAL;
/* wielkość tego, co zapiszemy                                          */
		size = get_user(p++);
/* zapisujemy                                                           */
		retval = random_write(0, file, (const char *) p, size);
		if (retval < 0)
			return retval;
		/*
		 * Add ent_count to entropy_count, limiting the result to be
		 * between 0 and POOLBITS.
		 */
/* aktualizujemy wartość entropii                                       */
		if (ent_count > POOLBITS)
			random_state.entropy_count = POOLBITS;
		else {
			random_state.entropy_count += ent_count;
			if (random_state.entropy_count > POOLBITS)
				random_state.entropy_count = POOLBITS;
			if (random_state.entropy_count < 0)
				random_state.entropy_count = 0;
		}
		/*
		 * Wake up waiting processes if we have enough
		 * entropy.
		 */
/* dopiero teraz budzimy procesy - dlatego to działa atomowo            */
		if (random_state.entropy_count >= WAIT_INPUT_BITS)
			wake_up_interruptible(&random_wait);
		return 0;
/* zerowanie entropii                                                   */
	case RNDZAPENTCNT:
		if (!suser())
			return -EPERM;
		random_state.entropy_count = 0;
		return 0;
/* czyszczenie całego pojemnika                                         */
	case RNDCLEARPOOL:
		/* Clear the entropy pool and associated counters. */
		if (!suser())
			return -EPERM;
		rand_clear_pool();
		return 0;
	default:
		return -EINVAL;
	}
}

/***********************************************************************|
|       Operacja dla urządzenia blokującego (/dev/random) oraz          |
|       nieblokującego (/dev/urandom).                                  |
|       Między nimi wybiera się na podstawie numeru drugorzędnego.      |
|       Robi to funkcja open urządzenia "mem", którego to są            |
|       podurządzenia.                                                  |
************************************************************************/

struct file_operations random_fops = {
	NULL,		/* random_lseek */
	random_read,
	random_write,
	NULL,		/* random_readdir */
	random_select,	/* random_select */
	random_ioctl,
	NULL,		/* random_mmap */
	NULL,		/* no special open code */
	NULL		/* no special release code */
};

struct file_operations urandom_fops = {
	NULL,		/* unrandom_lseek */
	random_read_unlimited,
	random_write,
	NULL,		/* urandom_readdir */
	NULL,		/* urandom_select */
	random_ioctl,
	NULL,		/* urandom_mmap */
	NULL,		/* no special open code */
	NULL		/* no special release code */
};


/***********************************************************************|
|       Dalej nie komentuję - te procedury dotyczą TCP                  |
|       oraz testowania prędkości generatora                            |
************************************************************************/



/*
 * TCP initial sequence number picking.  This uses the random number
 * generator to pick an initial secret value.  This value is hashed
 * along with the TCP endpoint information to provide a unique
 * starting point for each pair of TCP endpoints.  This defeats
 * attacks which rely on guessing the initial TCP sequence number.
 * This algorithm was suggested by Steve Bellovin.
 */
__u32 secure_tcp_sequence_number(__u32 saddr, __u32 daddr,
				 __u16 sport, __u16 dport)
{
	static int	is_init = 0;
	static __u32	secret[16];
	struct timeval 	tv;
	__u32 		tmp[16];
	__u32		seq;

	/*
	 * Pick a random secret the first time we open a TCP
	 * connection.
	 */
	if (is_init == 0) {
		get_random_bytes(&secret, sizeof(secret));
		is_init = 1;
	}

	memcpy(tmp, secret, sizeof(tmp));
	/*
	 * Pick a unique starting offset for each
	 * TCP connection endpoints (saddr, daddr, sport, dport)
	 */
	tmp[8]=saddr;
	tmp[9]=daddr;
	tmp[10]=(sport << 16) + dport;
	HASH_TRANSFORM(tmp, tmp);
	
	/*
	 *	As close as possible to RFC 793, which
	 *	suggests using a 250kHz clock.
	 *	Further reading shows this assumes 2MB/s networks.
	 *	For 10MB/s ethernet, a 1MHz clock is appropriate.
	 *	That's funny, Linux has one built in!  Use it!
	 */
	do_gettimeofday(&tv);
	seq = tmp[1] + tv.tv_usec+tv.tv_sec*1000000;
#if 0
	/*
	  ugh...we can only use in_ntoa once per printk, splitting
	  a single line of info into multiple printk's confuses klogd,
	  and Linus says in_ntoa sucks anyway :)
	*/
	printk("init_seq(%d.%d.%d.%d:%d, %d.%d.%d.%d:%d) = %d\n",
		NIPQUAD(saddr), sport, NIPQUAD(daddr), dport, seq);
#endif
	return (seq);
}

#ifdef CONFIG_RST_COOKIES
/*
 * TCP security probe sequence number picking. Losely based upon
 * secure sequence number algorithm above.
 */
__u32 secure_tcp_probe_number(__u32 saddr, __u32 daddr,
		 __u16 sport, __u16 dport, __u32 sseq, int validate)
{
	static int	is_init = 0;
	static int	valid_secret[2];
	static __u32	secret_timestamp[2];
	static __u32	secret[2][16];
	static int	offset = 0;
	__u32 		tmp[16];
	__u32		seq;

	/*
	 * Pick a random secret the first time we open a TCP
	 * connection, and expire secrets older than 5 minutes.
	 */
	if (is_init == 0 || jiffies-secret_timestamp[offset] > 600*HZ) {
		if (is_init == 0) valid_secret[0] = valid_secret[1] = 0;
		else offset = (offset+1)%2;
		get_random_bytes(&secret[offset], sizeof(secret[offset]));
		valid_secret[offset] = 1;
		secret_timestamp[offset] = jiffies;
		is_init = 1;
	}

	memcpy(tmp, secret[offset], sizeof(tmp));
	/*
	 * Pick a unique starting offset for each
	 * TCP connection endpoints (saddr, daddr, sport, dport)
	 */
	tmp[8]=saddr;
	tmp[9]=daddr;
	tmp[10]=(sport << 16) + dport;
	HASH_TRANSFORM(tmp, tmp);
	seq = tmp[1];

	if (!validate) {
		if (seq == sseq) seq++;
#if 0
		printk("init_seq(%d.%d.%d.%d:%d %d.%d.%d.%d:%d, %d) = %d\n",
			NIPQUAD(saddr), sport, NIPQUAD(daddr), dport, sseq, seq);
#endif
		return (seq);
	} else {
		if (seq == sseq || (seq+1) == sseq) {
			printk("validated probe(%d.%d.%d.%d:%d, %d.%d.%d.%d:%d, %d)\n",
				NIPQUAD(saddr), sport, NIPQUAD(daddr), dport, sseq);
			return 1;
		}
		if (jiffies-secret_timestamp[(offset+1)%2] <= 1200*HZ) {
			memcpy(tmp, secret[(offset+1)%2], sizeof(tmp));
			tmp[8]=saddr;
			tmp[9]=daddr;
			tmp[10]=(sport << 16) + dport;
			HASH_TRANSFORM(tmp, tmp);
			seq = tmp[1];
			if (seq == sseq || (seq+1) == sseq) {
#ifdef 0
				printk("validated probe(%d.%d.%d.%d:%d, %d.%d.%d.%d:%d, %d)\n",
					NIPQUAD(saddr), sport, NIPQUAD(daddr), dport, sseq);
#endif
				return 1;
			}
		}
#ifdef 0
		printk("failed validation on probe(%d.%d.%d.%d:%d, %d.%d.%d.%d:%d, %d)\n",
			NIPQUAD(saddr), sport, NIPQUAD(daddr), dport, sseq);
#endif
		return 0;
	}
}
#endif

#ifdef CONFIG_SYN_COOKIES
/*
 * Secure SYN cookie computation. This is the algorithm worked out by
 * Dan Bernstien and Eric Schenk.
 *
 * For linux I implement the 1 minute counter by looking at the jiffies clock.
 * The count is passed in as a parameter;
 *
 */
__u32 secure_tcp_syn_cookie(__u32 saddr, __u32 daddr,
		 __u16 sport, __u16 dport, __u32 sseq, __u32 count)
{
	static int	is_init = 0;
	static __u32	secret[2][16];
	__u32 		tmp[16];
	__u32		seq;

	/*
	 * Pick two random secret the first time we open a TCP connection.
	 */
	if (is_init == 0) {
		get_random_bytes(&secret[0], sizeof(secret[0]));
		get_random_bytes(&secret[1], sizeof(secret[1]));
		is_init = 1;
	}

	/*
	 * Compute the secure sequence number.
	 * The output should be:
   	 *   MD5(sec1,saddr,sport,daddr,dport,sec1) + their sequence number
         *      + (count * 2^24)
	 *      + (MD5(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
	 * Where count increases every minute by 1.
	 */

	memcpy(tmp, secret[0], sizeof(tmp));
	tmp[8]=saddr;
	tmp[9]=daddr;
	tmp[10]=(sport << 16) + dport;
	HASH_TRANSFORM(tmp, tmp);
	seq = tmp[1];

	memcpy(tmp, secret[1], sizeof(tmp));
	tmp[8]=saddr;
	tmp[9]=daddr;
	tmp[10]=(sport << 16) + dport;
	tmp[11]=count;	/* minute counter */
	HASH_TRANSFORM(tmp, tmp);

	seq += sseq + (count << 24) + (tmp[1] & 0x00ffffff);

	/* Zap lower 3 bits to leave room for the MSS representation */
	return (seq & 0xfffff8);
}
#endif

#ifdef RANDOM_BENCHMARK
/*
 * This is so we can do some benchmarking of the random driver, to see
 * how much overhead add_timer_randomness really takes.  This only
 * works on a Pentium, since it depends on the timer clock...
 *
 * Note: the results of this benchmark as of this writing (5/27/96)
 *
 * On a Pentium, add_timer_randomness() takes between 150 and 1000
 * clock cycles, with an average of around 600 clock cycles.  On a 75
 * MHz Pentium, this translates to 2 to 13 microseconds, with an
 * average time of 8 microseconds.  This should be fast enough so we
 * can use add_timer_randomness() even with the fastest of interrupts...
 */
static inline unsigned long long get_clock_cnt(void)
{
	unsigned long low, high;
	__asm__(".byte 0x0f,0x31" :"=a" (low), "=d" (high));
	return (((unsigned long long) high << 31) | low); 
}

static void initialize_benchmark(struct random_benchmark *bench,
				 const char *descr, int unit)
{
	bench->times = 0;
	bench->accum = 0;
	bench->max = 0;
	bench->min = 1 << 31;
	bench->descr = descr;
	bench->unit = unit;
}

static void begin_benchmark(struct random_benchmark *bench)
{
#ifdef BENCHMARK_NOINT
	save_flags(bench->flags); cli();
#endif
	bench->start_time = get_clock_cnt();
}

static void end_benchmark(struct random_benchmark *bench)
{
	unsigned long ticks;
	
	ticks = (unsigned long) (get_clock_cnt() - bench->start_time);
#ifdef BENCHMARK_NOINT
	restore_flags(bench->flags);
#endif
	if (ticks < bench->min)
		bench->min = ticks;
	if (ticks > bench->max)
		bench->max = ticks;
	bench->accum += ticks;
	bench->times++;
	if (bench->times == BENCHMARK_INTERVAL) {
		printk("Random benchmark: %s %d: %lu min, %lu avg, "
		       "%lu max\n", bench->descr, bench->unit, bench->min,
		       bench->accum / BENCHMARK_INTERVAL, bench->max);
		bench->times = 0;
		bench->accum = 0;
		bench->max = 0;
		bench->min = 1 << 31;
	}
}	
#endif /* RANDOM_BENCHMARK */

Autor: Piotr Hoffman