/*
* linux/drivers/block/hd.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*/
/*
* This is the low-level hd interrupt support. It traverses the
* request-list, using interrupts to jump between functions. As
* all the functions are called within interrupts, we may not
* sleep. Special care is recommended.
*
* modified by Drew Eckhardt to check nr of hd's from the CMOS.
*
* Thanks to Branko Lankester, lankeste@fwi.uva.nl, who found a bug
* in the early extended-partition checks and added DM partitions
*
* IRQ-unmask, drive-id, multiple-mode, support for ">16 heads",
* and general streamlining by mlord@bnr.ca (Mark Lord).
*/
#define DEFAULT_MULT_COUNT 0 /* set to 0 to disable multiple mode at boot */
#define DEFAULT_UNMASK_INTR 0 /* set to 0 to *NOT* unmask irq's more often */
#include <asm/irq.h>
#include <linux/errno.h>
#include <linux/signal.h>
#include <linux/sched.h>
#include <linux/timer.h>
#include <linux/fs.h>
#include <linux/kernel.h>
#include <linux/hdreg.h>
#include <linux/genhd.h>
#include <linux/malloc.h>
#include <linux/string.h>
#include <linux/ioport.h>
#include <linux/mc146818rtc.h> /* CMOS defines */
#define REALLY_SLOW_IO
#include <asm/system.h>
#include <asm/io.h>
#include <asm/segment.h>
#define MAJOR_NR HD_MAJOR
#include "blk.h"
#define HD_IRQ 14
static int revalidate_hddisk(int, int);
#define HD_DELAY 0
#define MAX_ERRORS 16 /* Max read/write errors/sector */
#define RESET_FREQ 8 /* Reset controller every 8th retry */
#define RECAL_FREQ 4 /* Recalibrate every 4th retry */
#define MAX_HD 2
#define STAT_OK (READY_STAT|SEEK_STAT)
#define OK_STATUS(s) (((s)&(STAT_OK|(BUSY_STAT|WRERR_STAT|ERR_STAT)))==STAT_OK)
static void recal_intr(void);
static void bad_rw_intr(void);
static char recalibrate[MAX_HD] = { 0, };
static char special_op[MAX_HD] = { 0, };
static int access_count[MAX_HD] = {0, };
static char busy[MAX_HD] = {0, };
static struct wait_queue * busy_wait = NULL;
static int reset = 0;
static int hd_error = 0;
/*
* This struct defines the HD's and their types.
*/
struct hd_i_struct {
unsigned int head,sect,cyl,wpcom,lzone,ctl;
};
static struct hd_driveid *hd_ident_info[MAX_HD] = {0, };
#ifdef HD_TYPE
static struct hd_i_struct hd_info[] = { HD_TYPE };
struct hd_i_struct bios_info[] = { HD_TYPE };
static int NR_HD = ((sizeof (hd_info))/(sizeof (struct hd_i_struct)));
#else
static struct hd_i_struct hd_info[] = { {0,0,0,0,0,0},{0,0,0,0,0,0} };
struct hd_i_struct bios_info[] = { {0,0,0,0,0,0},{0,0,0,0,0,0} };
static int NR_HD = 0;
#endif
static struct hd_struct hd[MAX_HD<<6]={{0,0},};
static int hd_sizes[MAX_HD<<6] = {0, };
static int hd_blocksizes[MAX_HD<<6] = {0, };
#if (HD_DELAY > 0)
unsigned long last_req;
unsigned long read_timer(void)
{
unsigned long t, flags;
int i;
save_flags(flags);
cli();
t = jiffies * 11932;
outb_p(0, 0x43);
i = inb_p(0x40);
i |= inb(0x40) << 8;
restore_flags(flags);
return(t - i);
}
#endif
void hd_setup(char *str, int *ints)
{
int hdind = 0;
if (ints[0] != 3)
return;
if (bios_info[0].head != 0)
hdind=1;
bios_info[hdind].head = hd_info[hdind].head = ints[2];
bios_info[hdind].sect = hd_info[hdind].sect = ints[3];
bios_info[hdind].cyl = hd_info[hdind].cyl = ints[1];
bios_info[hdind].wpcom = hd_info[hdind].wpcom = 0;
bios_info[hdind].lzone = hd_info[hdind].lzone = ints[1];
bios_info[hdind].ctl = hd_info[hdind].ctl = (ints[2] > 8 ? 8 : 0);
NR_HD = hdind+1;
}
static void dump_status (char *msg, unsigned int stat)
{
unsigned long flags;
char devc;
devc = CURRENT ? 'a' + DEVICE_NR(CURRENT->dev) : '?';
save_flags (flags);
sti();
printk("hd%c: %s: status=0x%02x { ", devc, msg, stat & 0xff);
if (stat & BUSY_STAT) printk("Busy ");
if (stat & READY_STAT) printk("DriveReady ");
if (stat & WRERR_STAT) printk("WriteFault ");
if (stat & SEEK_STAT) printk("SeekComplete ");
if (stat & DRQ_STAT) printk("DataRequest ");
if (stat & ECC_STAT) printk("CorrectedError ");
if (stat & INDEX_STAT) printk("Index ");
if (stat & ERR_STAT) printk("Error ");
printk("}\n");
if ((stat & ERR_STAT) == 0) {
hd_error = 0;
} else {
hd_error = inb(HD_ERROR);
printk("hd%c: %s: error=0x%02x { ", devc, msg, hd_error & 0xff);
if (hd_error & BBD_ERR) printk("BadSector ");
if (hd_error & ECC_ERR) printk("UncorrectableError ");
if (hd_error & ID_ERR) printk("SectorIdNotFound ");
if (hd_error & ABRT_ERR) printk("DriveStatusError ");
if (hd_error & TRK0_ERR) printk("TrackZeroNotFound ");
if (hd_error & MARK_ERR) printk("AddrMarkNotFound ");
printk("}");
if (hd_error & (BBD_ERR|ECC_ERR|ID_ERR|MARK_ERR)) {
printk(", CHS=%d/%d/%d", (inb(HD_HCYL)<<8) + inb(HD_LCYL),
inb(HD_CURRENT) & 0xf, inb(HD_SECTOR));
if (CURRENT)
printk(", sector=%ld", CURRENT->sector);
}
printk("\n");
}
restore_flags (flags);
}
void check_status(void)
{
int i = inb_p(HD_STATUS);
if (!OK_STATUS(i)) {
dump_status("check_status", i);
bad_rw_intr();
}
}
static int controller_busy(void)
{
int retries = 100000;
unsigned char status;
do {
status = inb_p(HD_STATUS);
} while ((status & BUSY_STAT) && --retries);
return status;
}
static int status_ok(void)
{
unsigned char status = inb_p(HD_STATUS);
if (status & BUSY_STAT)
return 1; /* Ancient, but does it make sense??? */
if (status & WRERR_STAT)
return 0;
if (!(status & READY_STAT))
return 0;
if (!(status & SEEK_STAT))
return 0;
return 1;
}
static int controller_ready(unsigned int drive, unsigned int head)
{
int retry = 100;
do {
if (controller_busy() & BUSY_STAT)
return 0;
outb_p(0xA0 | (drive<<4) | head, HD_CURRENT);
if (status_ok())
return 1;
} while (--retry);
return 0;
}
static void hd_out(unsigned int drive,unsigned int nsect,unsigned int sect,
unsigned int head,unsigned int cyl,unsigned int cmd,
void (*intr_addr)(void))
{
unsigned short port;
#if (HD_DELAY > 0)
while (read_timer() - last_req < HD_DELAY)
/* nothing */;
#endif
if (reset)
return;
if (!controller_ready(drive, head)) {
reset = 1;
return;
}
SET_INTR(intr_addr);
outb_p(hd_info[drive].ctl,HD_CMD);
port=HD_DATA;
outb_p(hd_info[drive].wpcom>>2,++port);
outb_p(nsect,++port);
outb_p(sect,++port);
outb_p(cyl,++port);
outb_p(cyl>>8,++port);
outb_p(0xA0|(drive<<4)|head,++port);
outb_p(cmd,++port);
}
static void hd_request (void);
static unsigned int identified [MAX_HD] = {0,}; /* 1 = drive ID already displayed */
static unsigned int unmask_intr [MAX_HD] = {0,}; /* 1 = unmask IRQs during I/O */
static unsigned int max_mult [MAX_HD] = {0,}; /* max sectors for MultMode */
static unsigned int mult_req [MAX_HD] = {0,}; /* requested MultMode count */
static unsigned int mult_count [MAX_HD] = {0,}; /* currently enabled MultMode count */
static struct request WCURRENT;
static void fixstring (unsigned char *s, int bytecount)
{
unsigned char *p, *end = &s[bytecount &= ~1]; /* bytecount must be even */
/* convert from big-endian to little-endian */
for (p = end ; p != s;) {
unsigned short *pp = (unsigned short *) (p -= 2);
*pp = (*pp >> 8) | (*pp << 8);
}
/* strip leading blanks */
while (s != end && *s == ' ')
++s;
/* compress internal blanks and strip trailing blanks */
while (s != end && *s) {
if (*s++ != ' ' || (s != end && *s && *s != ' '))
*p++ = *(s-1);
}
/* wipe out trailing garbage */
while (p != end)
*p++ = '\0';
}
static void identify_intr(void)
{
unsigned int dev = DEVICE_NR(CURRENT->dev);
unsigned short stat = inb_p(HD_STATUS);
struct hd_driveid *id = hd_ident_info[dev];
if (unmask_intr[dev])
sti();
if (stat & (BUSY_STAT|ERR_STAT)) {
printk (" hd%c: non-IDE device, %dMB, CHS=%d/%d/%d\n", dev+'a',
hd_info[dev].cyl*hd_info[dev].head*hd_info[dev].sect / 2048,
hd_info[dev].cyl, hd_info[dev].head, hd_info[dev].sect);
if (id != NULL) {
hd_ident_info[dev] = NULL;
kfree_s (id, 512);
}
} else {
insw(HD_DATA, id, 256); /* get ID info */
max_mult[dev] = id->max_multsect;
if ((id->field_valid&1) && id->cur_cyls && id->cur_heads && (id->cur_heads <= 16) && id->cur_sectors) {
/*
* Extract the physical drive geometry for our use.
* Note that we purposely do *not* update the bios_info.
* This way, programs that use it (like fdisk) will
* still have the same logical view as the BIOS does,
* which keeps the partition table from being screwed.
*/
hd_info[dev].cyl = id->cur_cyls;
hd_info[dev].head = id->cur_heads;
hd_info[dev].sect = id->cur_sectors;
}
fixstring (id->serial_no, sizeof(id->serial_no));
fixstring (id->fw_rev, sizeof(id->fw_rev));
fixstring (id->model, sizeof(id->model));
printk (" hd%c: %.40s, %dMB w/%dKB Cache, CHS=%d/%d/%d, MaxMult=%d\n",
dev+'a', id->model, id->cyls*id->heads*id->sectors/2048,
id->buf_size/2, bios_info[dev].cyl, bios_info[dev].head,
bios_info[dev].sect, id->max_multsect);
/*
* Early model Quantum drives go weird at this point,
* but doing a recalibrate seems to "fix" them.
* (Doing a full reset confuses some other model Quantums)
*/
if (!strncmp(id->model, "QUANTUM", 7))
special_op[dev] = recalibrate[dev] = 1;
}
#if (HD_DELAY > 0)
last_req = read_timer();
#endif
hd_request();
return;
}
static void set_multmode_intr(void)
{
unsigned int dev = DEVICE_NR(CURRENT->dev), stat = inb_p(HD_STATUS);
if (unmask_intr[dev])
sti();
if (stat & (BUSY_STAT|ERR_STAT)) {
mult_req[dev] = mult_count[dev] = 0;
dump_status("set multmode failed", stat);
} else {
if ((mult_count[dev] = mult_req[dev]))
printk (" hd%c: enabled %d-sector multiple mode\n",
dev+'a', mult_count[dev]);
else
printk (" hd%c: disabled multiple mode\n", dev+'a');
}
#if (HD_DELAY > 0)
last_req = read_timer();
#endif
hd_request();
return;
}
static int drive_busy(void)
{
unsigned int i;
unsigned char c;
for (i = 0; i < 500000 ; i++) {
c = inb_p(HD_STATUS);
if ((c & (BUSY_STAT | READY_STAT | SEEK_STAT)) == STAT_OK)
return 0;
}
dump_status("reset timed out", c);
return 1;
}
static void reset_controller(void)
{
int i;
outb_p(4,HD_CMD);
for(i = 0; i < 1000; i++) nop();
outb_p(hd_info[0].ctl & 0x0f,HD_CMD);
for(i = 0; i < 1000; i++) nop();
if (drive_busy())
printk("hd: controller still busy\n");
else if ((hd_error = inb(HD_ERROR)) != 1)
printk("hd: controller reset failed: %02x\n",hd_error);
}
static void reset_hd(void)
{
static int i;
repeat:
if (reset) {
reset = 0;
i = -1;
reset_controller();
} else {
check_status();
if (reset)
goto repeat;
}
if (++i < NR_HD) {
special_op[i] = recalibrate[i] = 1;
if (unmask_intr[i]) {
unmask_intr[i] = DEFAULT_UNMASK_INTR;
printk("hd%c: reset irq-unmasking to %d\n",i+'a',
DEFAULT_UNMASK_INTR);
}
if (mult_req[i] || mult_count[i]) {
mult_count[i] = 0;
mult_req[i] = DEFAULT_MULT_COUNT;
printk("hd%c: reset multiple mode to %d\n",i+'a',
DEFAULT_MULT_COUNT);
}
hd_out(i,hd_info[i].sect,hd_info[i].sect,hd_info[i].head-1,
hd_info[i].cyl,WIN_SPECIFY,&reset_hd);
if (reset)
goto repeat;
} else
hd_request();
}
/*
* Ok, don't know what to do with the unexpected interrupts: on some machines
* doing a reset and a retry seems to result in an eternal loop. Right now I
* ignore it, and just set the timeout.
*
* On laptops (and "green" PCs), an unexpected interrupt occurs whenever the
* drive enters "idle", "standby", or "sleep" mode, so if the status looks
* "good", we just ignore the interrupt completely.
*/
void unexpected_hd_interrupt(void)
{
unsigned int stat = inb_p(HD_STATUS);
if (stat & (BUSY_STAT|DRQ_STAT|ECC_STAT|ERR_STAT)) {
dump_status ("unexpected interrupt", stat);
SET_TIMER;
}
}
/*
* bad_rw_intr() now tries to be a bit smarter and does things
* according to the error returned by the controller.
* -Mika Liljeberg (liljeber@cs.Helsinki.FI)
*/
static void bad_rw_intr(void)
{
int dev;
if (!CURRENT)
return;
dev = DEVICE_NR(CURRENT->dev);
if (++CURRENT->errors >= MAX_ERRORS || (hd_error & BBD_ERR)) {
end_request(0);
special_op[dev] = recalibrate[dev] = 1;
} else if (CURRENT->errors % RESET_FREQ == 0)
reset = 1;
else if ((hd_error & TRK0_ERR) || CURRENT->errors % RECAL_FREQ == 0)
special_op[dev] = recalibrate[dev] = 1;
/* Otherwise just retry */
}
static inline int wait_DRQ(void)
{
int retries = 100000, stat;
while (--retries > 0)
if ((stat = inb_p(HD_STATUS)) & DRQ_STAT)
return 0;
dump_status("wait_DRQ", stat);
return -1;
}
static void read_intr(void)
{
unsigned int dev = DEVICE_NR(CURRENT->dev);
int i, retries = 100000, msect = mult_count[dev], nsect;
if (unmask_intr[dev])
sti(); /* permit other IRQs during xfer */
do {
i = (unsigned) inb_p(HD_STATUS);
if (i & BUSY_STAT)
continue;
if (!OK_STATUS(i))
break;
if (i & DRQ_STAT)
goto ok_to_read;
} while (--retries > 0);
dump_status("read_intr", i);
bad_rw_intr();
hd_request();
return;
ok_to_read:
if (msect) {
if ((nsect = CURRENT->current_nr_sectors) > msect)
nsect = msect;
msect -= nsect;
} else
nsect = 1;
insw(HD_DATA,CURRENT->buffer,nsect<<8);
CURRENT->sector += nsect;
CURRENT->buffer += nsect<<9;
CURRENT->errors = 0;
i = (CURRENT->nr_sectors -= nsect);
#ifdef DEBUG
printk("hd%c: read: sectors(%ld-%ld), remaining=%ld, buffer=0x%08lx\n",
dev+'a', CURRENT->sector, CURRENT->sector+nsect,
CURRENT->nr_sectors, (unsigned long) CURRENT->buffer+(nsect<<9));
#endif
if ((CURRENT->current_nr_sectors -= nsect) <= 0)
end_request(1);
if (i > 0) {
if (msect)
goto ok_to_read;
SET_INTR(&read_intr);
return;
}
(void) inb_p(HD_STATUS);
#if (HD_DELAY > 0)
last_req = read_timer();
#endif
if (CURRENT)
hd_request();
return;
}
static inline void multwrite (unsigned int dev)
{
unsigned int mcount = mult_count[dev];
while (mcount--) {
outsw(HD_DATA,WCURRENT.buffer,256);
if (!--WCURRENT.nr_sectors)
return;
WCURRENT.buffer += 512;
if (!--WCURRENT.current_nr_sectors) {
WCURRENT.bh = WCURRENT.bh->b_reqnext;
if (WCURRENT.bh == NULL)
panic("buffer list corrupted\n");
WCURRENT.current_nr_sectors = WCURRENT.bh->b_size>>9;
WCURRENT.buffer = WCURRENT.bh->b_data;
}
}
}
static void multwrite_intr(void)
{
int i;
unsigned int dev = DEVICE_NR(WCURRENT.dev);
if (unmask_intr[dev])
sti();
if (OK_STATUS(i=inb_p(HD_STATUS))) {
if (i & DRQ_STAT) {
if (WCURRENT.nr_sectors) {
multwrite(dev);
SET_INTR(&multwrite_intr);
return;
}
} else {
if (!WCURRENT.nr_sectors) { /* all done? */
for (i = CURRENT->nr_sectors; i > 0;){
i -= CURRENT->current_nr_sectors;
end_request(1);
}
#if (HD_DELAY > 0)
last_req = read_timer();
#endif
if (CURRENT)
hd_request();
return;
}
}
}
dump_status("multwrite_intr", i);
bad_rw_intr();
hd_request();
}
static void write_intr(void)
{
int i;
int retries = 100000;
if (unmask_intr[DEVICE_NR(WCURRENT.dev)])
sti();
do {
i = (unsigned) inb_p(HD_STATUS);
if (i & BUSY_STAT)
continue;
if (!OK_STATUS(i))
break;
if ((CURRENT->nr_sectors <= 1) || (i & DRQ_STAT))
goto ok_to_write;
} while (--retries > 0);
dump_status("write_intr", i);
bad_rw_intr();
hd_request();
return;
ok_to_write:
CURRENT->sector++;
i = --CURRENT->nr_sectors;
--CURRENT->current_nr_sectors;
CURRENT->buffer += 512;
if (!i || (CURRENT->bh && !SUBSECTOR(i)))
end_request(1);
if (i > 0) {
SET_INTR(&write_intr);
outsw(HD_DATA,CURRENT->buffer,256);
sti();
} else {
#if (HD_DELAY > 0)
last_req = read_timer();
#endif
hd_request();
}
return;
}
static void recal_intr(void)
{
tcheck_status();
#if (HD_DELAY > 0)
last_req = read_timer();
#endif
hd_request();
}
/*
* This is another of the error-routines I don't know what to do with. The
* best idea seems to just set reset, and start all over again.
*/
static void hd_times_out(void)
{
unsigned int dev;
DEVICE_INTR = NULL;
if (!CURRENT)
return;
disable_irq(HD_IRQ);
sti();
reset = 1;
dev = DEVICE_NR(CURRENT->dev);
printk("hd%c: timeout\n", dev+'a');
if (++CURRENT->errors >= MAX_ERRORS) {
#ifdef DEBUG
printk("hd%c: too many errors\n", dev+'a');
#endif
end_request(0);
}
cli();
hd_request();
enable_irq(HD_IRQ);
}
int do_special_op (unsigned int dev)
{
if (recalibrate[dev]) {
recalibrate[dev] = 0;
hd_out(dev,hd_info[dev].sect,0,0,0,WIN_RESTORE,&recal_intr);
return reset;
}
if (!identified[dev]) {
identified[dev] = 1;
unmask_intr[dev] = DEFAULT_UNMASK_INTR;
mult_req[dev] = DEFAULT_MULT_COUNT;
hd_out(dev,0,0,0,0,WIN_IDENTIFY,&identify_intr);
return reset;
}
if (mult_req[dev] != mult_count[dev]) {
hd_out(dev,mult_req[dev],0,0,0,WIN_SETMULT,&set_multmode_intr);
return reset;
}
if (hd_info[dev].head > 16) {
printk ("hd%c: cannot handle device with more than 16 heads - giving up\n", dev+'a');
end_request(0);
}
special_op[dev] = 0;
return 1;
}
/*
* The driver enables interrupts as much as possible. In order to do this,
* (a) the device-interrupt is disabled before entering hd_request(),
* and (b) the timeout-interrupt is disabled before the sti().
*
* Interrupts are still masked (by default) whenever we are exchanging
* data/cmds with a drive, because some drives seem to have very poor
* tolerance for latency during I/O. For devices which don't suffer from
* that problem (most don't), the unmask_intr[] flag can be set to unmask
* other interrupts during data/cmd transfers (by defining DEFAULT_UNMASK_INTR
* to 1, or by using "hdparm -u1 /dev/hd?" from the shell).
*/
static void hd_request(void)
{
unsigned int dev, block, nsect, sec, track, head, cyl;
if (CURRENT && CURRENT->dev < 0) return;
if (DEVICE_INTR)
return;
repeat:
timer_active &= ~(1<<HD_TIMER);
sti();
INIT_REQUEST;
if (reset) {
cli();
reset_hd();
return;
}
dev = MINOR(CURRENT->dev);
block = CURRENT->sector;
nsect = CURRENT->nr_sectors;
if (dev >= (NR_HD<<6) || block >= hd[dev].nr_sects || ((block+nsect) > hd[dev].nr_sects)) {
#ifdef DEBUG
if (dev >= (NR_HD<<6))
printk("hd: bad minor number: device=0x%04x\n", CURRENT->dev);
else
printk("hd%c: bad access: block=%d, count=%d\n",
(CURRENT->dev>>6)+'a', block, nsect);
#endif
end_request(0);
goto repeat;
}
block += hd[dev].start_sect;
dev >>= 6;
if (special_op[dev]) {
if (do_special_op(dev))
goto repeat;
return;
}
sec = block % hd_info[dev].sect + 1;
track = block / hd_info[dev].sect;
head = track % hd_info[dev].head;
cyl = track / hd_info[dev].head;
#ifdef DEBUG
printk("hd%c: %sing: CHS=%d/%d/%d, sectors=%d, buffer=0x%08lx\n",
dev+'a', (CURRENT->cmd == READ)?"read":"writ",
cyl, head, sec, nsect, (unsigned long) CURRENT->buffer);
#endif
if (!unmask_intr[dev])
cli();
if (CURRENT->cmd == READ) {
unsigned int cmd = mult_count[dev] > 1 ? WIN_MULTREAD : WIN_READ;
hd_out(dev,nsect,sec,head,cyl,cmd,&read_intr);
if (reset)
goto repeat;
return;
}
if (CURRENT->cmd == WRITE) {
if (mult_count[dev])
hd_out(dev,nsect,sec,head,cyl,WIN_MULTWRITE,&multwrite_intr);
else
hd_out(dev,nsect,sec,head,cyl,WIN_WRITE,&write_intr);
if (reset)
goto repeat;
if (wait_DRQ()) {
bad_rw_intr();
goto repeat;
}
if (mult_count[dev]) {
WCURRENT = *CURRENT;
multwrite(dev);
} else
outsw(HD_DATA,CURRENT->buffer,256);
return;
}
panic("unknown hd-command");
}
static void do_hd_request (void)
{
disable_irq(HD_IRQ);
hd_request();
enable_irq(HD_IRQ);
}
static int hd_ioctl(struct inode * inode, struct file * file,
unsigned int cmd, unsigned long arg)
{
struct hd_geometry *loc = (struct hd_geometry *) arg;
int dev, err;
unsigned long flags;
if ((!inode) || (!inode->i_rdev))
return -EINVAL;
dev = DEVICE_NR(inode->i_rdev);
if (dev >= NR_HD)
return -EINVAL;
switch (cmd) {
case HDIO_GETGEO:
if (!loc) return -EINVAL;
err = verify_area(VERIFY_WRITE, loc, sizeof(*loc));
if (err)
return err;
put_fs_byte(bios_info[dev].head,
(char *) &loc->heads);
put_fs_byte(bios_info[dev].sect,
(char *) &loc->sectors);
put_fs_word(bios_info[dev].cyl,
(short *) &loc->cylinders);
put_fs_long(hd[MINOR(inode->i_rdev)].start_sect,
(long *) &loc->start);
return 0;
case BLKRASET:
if(!suser()) return -EACCES;
if(arg > 0xff) return -EINVAL;
read_ahead[MAJOR(inode->i_rdev)] = arg;
return 0;
case BLKRAGET:
if (!arg) return -EINVAL;
err = verify_area(VERIFY_WRITE, (long *) arg, sizeof(long));
if (err)
return err;
put_fs_long(read_ahead[MAJOR(inode->i_rdev)],(long *) arg);
return 0;
case BLKGETSIZE: /* Return device size */
if (!arg) return -EINVAL;
err = verify_area(VERIFY_WRITE, (long *) arg, sizeof(long));
if (err)
return err;
put_fs_long(hd[MINOR(inode->i_rdev)].nr_sects, (long *) arg);
return 0;
case BLKFLSBUF:
if(!suser()) return -EACCES;
fsync_dev(inode->i_rdev);
invalidate_buffers(inode->i_rdev);
return 0;
case BLKRRPART: /* Re-read partition tables */
return revalidate_hddisk(inode->i_rdev, 1);
case HDIO_SET_UNMASKINTR:
if (!suser()) return -EACCES;
if ((arg > 1) || (MINOR(inode->i_rdev) & 0x3F))
return -EINVAL;
unmask_intr[dev] = arg;
return 0;
case HDIO_GET_UNMASKINTR:
if (!arg) return -EINVAL;
err = verify_area(VERIFY_WRITE, (long *) arg, sizeof(long));
if (err)
return err;
put_fs_long(unmask_intr[dev], (long *) arg);
return 0;
case HDIO_GET_MULTCOUNT:
if (!arg) return -EINVAL;
err = verify_area(VERIFY_WRITE, (long *) arg, sizeof(long));
if (err)
return err;
put_fs_long(mult_count[dev], (long *) arg);
return 0;
case HDIO_SET_MULTCOUNT:
if (!suser()) return -EACCES;
if (MINOR(inode->i_rdev) & 0x3F) return -EINVAL;
save_flags(flags);
cli(); /* a prior request might still be in progress */
if (arg > max_mult[dev])
err = -EINVAL; /* out of range for device */
else if (mult_req[dev] != mult_count[dev]) {
special_op[dev] = 1;
err = -EBUSY; /* busy, try again */
} else {
mult_req[dev] = arg;
special_op[dev] = 1;
err = 0;
}
restore_flags(flags);
return err;
case HDIO_GET_IDENTITY:
if (!arg) return -EINVAL;
if (MINOR(inode->i_rdev) & 0x3F) return -EINVAL;
if (hd_ident_info[dev] == NULL) return -ENOMSG;
err = verify_area(VERIFY_WRITE, (char *) arg, sizeof(struct hd_driveid));
if (err)
return err;
memcpy_tofs((char *)arg, (char *) hd_ident_info[dev], sizeof(struct hd_driveid));
return 0;
RO_IOCTLS(inode->i_rdev,arg);
default:
return -EINVAL;
}
}
static int hd_open(struct inode * inode, struct file * filp)
{
int target;
target = DEVICE_NR(inode->i_rdev);
if (target >= NR_HD)
return -ENODEV;
while (busy[target])
sleep_on(&busy_wait);
access_count[target]++;
return 0;
}
/*
* Releasing a block device means we sync() it, so that it can safely
* be forgotten about...
*/
static void hd_release(struct inode * inode, struct file * file)
{
int target;
sync_dev(inode->i_rdev);
target = DEVICE_NR(inode->i_rdev);
access_count[target]--;
}
static void hd_geninit(void);
static struct gendisk hd_gendisk = {
MAJOR_NR, /* Major number */
"hd", /* Major name */
6, /* Bits to shift to get real from partition */
1 << 6, /* Number of partitions per real */
MAX_HD, /* maximum number of real */
hd_geninit, /* init function */
hd, /* hd struct */
hd_sizes, /* block sizes */
0, /* number */
(void *) bios_info, /* internal */
NULL /* next */
};
static void hd_interrupt(int irq, struct pt_regs *regs)
{
void (*handler)(void) = DEVICE_INTR;
DEVICE_INTR = NULL;
timer_active &= ~(1<<HD_TIMER);
if (!handler)
handler = unexpected_hd_interrupt;
handler();
sti();
}
/*
* This is the harddisk IRQ description. The SA_INTERRUPT in sa_flags
* means we run the IRQ-handler with interrupts disabled: this is bad for
* interrupt latency, but anything else has led to problems on some
* machines...
*
* We enable interrupts in some of the routines after making sure it's
* safe.
*/
static void hd_geninit(void)
{
int drive, i;
extern struct drive_info drive_info;
unsigned char *BIOS = (unsigned char *) &drive_info;
int cmos_disks;
if (!NR_HD) {
for (drive=0 ; drive<2 ; drive++) {
bios_info[drive].cyl = hd_info[drive].cyl = *(unsigned short *) BIOS;
bios_info[drive].head = hd_info[drive].head = *(2+BIOS);
bios_info[drive].wpcom = hd_info[drive].wpcom = *(unsigned short *) (5+BIOS);
bios_info[drive].ctl = hd_info[drive].ctl = *(8+BIOS);
bios_info[drive].lzone = hd_info[drive].lzone = *(unsigned short *) (12+BIOS);
bios_info[drive].sect = hd_info[drive].sect = *(14+BIOS);
#ifdef does_not_work_for_everybody_with_scsi_but_helps_ibm_vp
if (hd_info[drive].cyl && NR_HD == drive)
NR_HD++;
#endif
BIOS += 16;
}
/*
We query CMOS about hard disks : it could be that
we have a SCSI/ESDI/etc controller that is BIOS
compatible with ST-506, and thus showing up in our
BIOS table, but not register compatible, and therefore
not present in CMOS.
Furthermore, we will assume that our ST-506 drives
<if any> are the primary drives in the system, and
the ones reflected as drive 1 or 2.
The first drive is stored in the high nibble of CMOS
byte 0x12, the second in the low nibble. This will be
either a 4 bit drive type or 0xf indicating use byte 0x19
for an 8 bit type, drive 1, 0x1a for drive 2 in CMOS.
Needless to say, a non-zero value means we have
an AT controller hard disk for that drive.
*/
if ((cmos_disks = CMOS_READ(0x12)) & 0xf0)
if (cmos_disks & 0x0f)
NR_HD = 2;
else
NR_HD = 1;
}
i = NR_HD;
while (i-- > 0) {
/*
* The newer E-IDE BIOSs handle drives larger than 1024
* cylinders by increasing the number of logical heads
* to keep the number of logical cylinders below the
* sacred INT13 limit of 1024 (10 bits). If that is
* what's happening here, we'll find out and correct
* it later when "identifying" the drive.
*/
hd[i<<6].nr_sects = bios_info[i].head *
bios_info[i].sect * bios_info[i].cyl;
hd_ident_info[i] = (struct hd_driveid *) kmalloc(512,GFP_KERNEL);
special_op[i] = 1;
}
if (NR_HD) {
if (request_irq(HD_IRQ, hd_interrupt, SA_INTERRUPT, "hd")) {
printk("hd: unable to get IRQ%d for the harddisk driver\n",HD_IRQ);
NR_HD = 0;
} else {
request_region(HD_DATA, 8, "hd");
request_region(HD_CMD, 1, "hd(cmd)");
}
}
hd_gendisk.nr_real = NR_HD;
for(i=0;i<(MAX_HD << 6);i++) hd_blocksizes[i] = 1024;
blksize_size[MAJOR_NR] = hd_blocksizes;
}
static struct file_operations hd_fops = {
NULL, /* lseek - default */
block_read, /* read - general block-dev read */
block_write, /* write - general block-dev write */
NULL, /* readdir - bad */
NULL, /* select */
hd_ioctl, /* ioctl */
NULL, /* mmap */
hd_open, /* open */
hd_release, /* release */
block_fsync /* fsync */
};
unsigned long hd_init(unsigned long mem_start, unsigned long mem_end)
{
if (register_blkdev(MAJOR_NR,"hd",&hd_fops)) {
printk("hd: unable to get major %d for harddisk\n",MAJOR_NR);
return mem_start;
}
blk_dev[MAJOR_NR].request_fn = DEVICE_REQUEST;
read_ahead[MAJOR_NR] = 8; /* 8 sector (4kB) read-ahead */
hd_gendisk.next = gendisk_head;
gendisk_head = &hd_gendisk;
timer_table[HD_TIMER].fn = hd_times_out;
return mem_start;
}
#define DEVICE_BUSY busy[target]
#define USAGE access_count[target]
#define CAPACITY (bios_info[target].head*bios_info[target].sect*bios_info[target].cyl)
/* We assume that the the bios parameters do not change, so the disk capacity
will not change */
#undef MAYBE_REINIT
#define GENDISK_STRUCT hd_gendisk
/*
* This routine is called to flush all partitions and partition tables
* for a changed scsi disk, and then re-read the new partition table.
* If we are revalidating a disk because of a media change, then we
* enter with usage == 0. If we are using an ioctl, we automatically have
* usage == 1 (we need an open channel to use an ioctl :-), so this
* is our limit.
*/
static int revalidate_hddisk(int dev, int maxusage)
{
int target, major;
struct gendisk * gdev;
int max_p;
int start;
int i;
long flags;
target = DEVICE_NR(dev);
gdev = &GENDISK_STRUCT;
save_flags(flags);
cli();
if (DEVICE_BUSY || USAGE > maxusage) {
restore_flags(flags);
return -EBUSY;
};
DEVICE_BUSY = 1;
restore_flags(flags);
max_p = gdev->max_p;
start = target << gdev->minor_shift;
major = MAJOR_NR << 8;
for (i=max_p - 1; i >=0 ; i--) {
sync_dev(major | start | i);
invalidate_inodes(major | start | i);
invalidate_buffers(major | start | i);
gdev->part[start+i].start_sect = 0;
gdev->part[start+i].nr_sects = 0;
};
#ifdef MAYBE_REINIT
MAYBE_REINIT;
#endif
gdev->part[start].nr_sects = CAPACITY;
resetup_one_dev(gdev, target);
DEVICE_BUSY = 0;
wake_up(&busy_wait);
return 0;
}