

 NFS Version 4

Technical Brief

Please
Recycle

© 1999 Sun Microsystems, Inc. All rights reserved.

Printed in the United States of America.
901 San Antonio Road, Palo Alto, California 94303 U.S.A

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as set forth in
subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS 252.227-7013 and FAR
52.227-19.

TRADEMARKS
Sun, Sun Microsystems, the Sun logo, Solaris, ONC, and NFS are trademarks or registered trademarks of Sun
Microsystems, Inc. in the United States and other countries. UNIX is a registered trademark in the United States and other
countries, exclusively licensed through X/Open Company, Ltd.

All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc.
in the United States and other countries. Products bearing SPARC trademarks are based upon an architecture developed
by Sun Microsystems, Inc.

THIS PUBLICATION IS PROVIDED ÒAS ISÓ WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES
ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE INCORPORATED IN
NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE IMPROVEMENTS AND/OR
CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THIS PUBLICATION AT ANY TIME.

NFS Version 4
The NFSª distributed Þle system is an enterprise solution that provides
secure, high-performance, transparent access to information on worldwide,
heterogeneous networks.

When the NFS protocol was designed, machines were far less powerful than
today, networks were more commonly local area networks (LANs) than wide
area networks (WANs), and available security mechanisms were relatively easy
to exploit. Additionally, although NFS was designed to interoperate between
different operating systems, many of the protocol features have favored UNIX¨
Þle semantics. This history has led to problems in using NFS solutions over the
Internet, where security, performance, and interoperability are key. Version 4 of
NFS is designed to address these concerns by providing:

¥ Improved access and good performance on the Internet
¥ Strong security, with security negotiation built into the protocol
¥ Enhanced cross-platform interoperability
¥ Extensibility of the protocol

Stronger in its support of intranets and the Internet, NFS Version 4 will also
provide excellent service in environments currently standardized on earlier
versions of NFS. Unlike versions 2 or 3, NFS Version 4 can be an important
element in the strategy of enterprises to provide better support for global
networks.

This document contains an overview of the features and beneÞts that are
planned for NFS Version 4. It assumes the reader has a basic understanding of
NFS, and includes a glossary and a reference list for those readers wishing to
learn more.
1

Introduction
Worldwide, transparent access to information is a requirement for corporations
wishing to compete successfully in todayÕs global economy. As workgroups
become distributed around the world, they demand access to Þle systems that
are not dependent on geography. With the explosion of Internet-enabled
applications, distributed Þle services must be able to function across the
Internet as well as within private enterprise networks.

NFS on the Internet

Until now, there has been no reasonable solution to the lack of a functional
distributed Þle system on the Internet. Historical constraints on NFS have
limited the use of NFS over the Internet Ñ it was designed for high
bandwidth, low latency networks; its feature set was derived from the UNIX¨
operating system; and it lacks good security tools.

Despite these constraints, NFS is now the distributed Þle system of choice.
Since its Þrst introduction, NFS has continued to evolve, changing to meet the
distributed Þle sharing requirements of global enterprises. With NFS Version 4,
it is once again evolving to meet the demands of fast, reliable, secure, and
transparent service over the Internet.

SunÕs Commitment to Open Standards

Users are increasingly unwilling to pay the high costs of proprietary
technology. Understanding this, Sun pioneered the concept of open systems in
the early 1980s. Sun believes that open availability is critical to technological
success. Key to this strategy are multiple vendors and implementations to
foster competition and innovation, and broad technology licensing to ensure
unencumbered access. Together, these methodologies increase the open
availability of both speciÞcations and implementations.

Sun believes that by employing basic, standardized technologies, more parties
will develop, use, and innovate around those technologies, driving costs down.
By deploying standardized technologies, implementers can reduce
development costs and shorten time-to-market by leveraging open standards
for distributed Þle sharing.
2 October, 1999

Sun is committed to working with the Internet Engineering Task Force (IETF)
to increase the open availability of both the interface speciÞcations and
implementation of NFS Version 4. The IETF is an open international
community concerned with the evolution of the Internet architecture. As such,
it is the principal body engaged in the development of new Internet standards
and procedures.

Sun is an active participant in the IETF working group that is chartered to
advance the state of NFS technology by producing a speciÞcation for NFS
Version 4. This public process ensures that the NFS Version 4 protocol is openly
available, its speciÞcations are well written and freely available, and the
implementations based on those speciÞcations are interoperable.

The NFS Version 4 Charter

The IETFÕs NFS Version 4 working group is creating a protocol deÞnition for a
distributed Þle system that focuses on improved access and good performance
over the Internet, strong security with built-in negotiation, improved cross-
platform interoperability, and will easily accept protocol extensions.

Although NFS Version 4 owes its general design to previous versions of NFS, it
is a self-contained protocol that does not have any dependencies on the
previous versions. However, to address backward compatibility with the
installed base, Versions 2, 3, and 4 can be supported concurrently. Current
users of NFS Versions 2 and 3 may look forward to NFS Version 4 as a
reasonable, solid migration strategy to serve their Internet and intranet
distributed Þle system needs.

At the time of the publication of this white paper, the NFS Version 4 protocol is
still under development by the IETF, so, the Þnal standard may not incorporate
all of the features exactly as they are described here.

Improved Internet Access and Performance
The NFS protocol was originally designed for LANs where latency is low,
bandwidth is high, and the number of round-trip requests is not a signiÞcant
problem. As a consequence, NFS began to perform poorly when subjected to
the low bandwidths, high latency, and heavy congestion typical of the Internet.
NFS Version 4 3

As more and more applications are being deployed over the Internet, it has
become imperative that NFS not only be able to support distributed Þle
systems, but easily support them through Þrewalls and scale more effectively.
In addition, the global use of the Internet escalates the importance of
international Þle naming conventions and multi-language Þle descriptors.

Several new features are planned for implementation in NFS Version 4. These
include reducing turnarounds by combining requests, support of Þle caching,
use of a well-known port for NFS services, and support for a universal
character set.

Better Performance on High Latency Networks

Compound Requests

NFS traditionally has provided good throughput for the reading and writing of
Þle data. This throughput is commonly achieved by the clientÕs use of
pipelining or windowing multiple Remote Procedure Call (RPC)
READ/WRITE requests to the NFS server. The ßexibility inherent in the NFS
and RPC protocols has allowed implementations to provide efÞcient use of
network connections.

However, the large number of procedure calls required to accomplish some Þle
system operations, combined with high-latency networks like the Internet,
have led to sluggish single-user or single-client response times. By decreasing
the absolute number of procedure calls, NFS Version 4 will reduce the amount
of server processing overhead required, and lower the time spent on the client
side waiting for the serverÕs individual responses.

This reduction is accomplished by supporting compound requests, which
group multiple procedure calls into a single traditional RPC request,
decreasing the number of round trip messages required between client and
server. The grouping utilizes a new COMPOUND procedure that can be used
as a wrapper by all other procedures. Combined requests reduce protocol-
induced latency, shrink transport and security processing overhead, and allow
the client to complete more complex tasks by combining procedures into a
single RPC request. The COMPOUND procedure will lead to great
performance improvements on high-latency WANs without detracting from
todayÕs LAN environments.
4 October, 1999

Client File Caching

In order to speed response times and reduce overall network and server loads,
NFS clients have always cached Þle and directory data. This was accomplished
by using a memory cache until recently, when local disk caching was added.

Because it decreases overall response times, aggressive client-side caching is
very visible to the end user. With more aggressive protocols, it is possible to
cache or delay certain protocol requests on the client, further reducing the
protocol trafÞc between client and server. A client can request that the server
delegate the client responsibility for changes to Þle attributes and data, or Þle
locks. If there are no ensuing conßicts with other clients for Þle access, the
client is then free to make any changes to the Þle without the need for contact
with the server, thereby reducing the amount of Þle locking trafÞc generated
by user applications.

Client caching is increasingly important for Internet environments with limited
bandwidth and correspondingly long response times. NFS Version 4 will
support a variety of caching protocols as exempliÞed by current technologies.

Easy, Secure Transmission Through Firewalls

The Þrewalls that protect corporate networks from Internet attackers have been
a barrier to the efÞcient use of NFS on the Internet. Firewalls Þlter network
packets to determine whether to forward them to their destinations. Packet
Þltering Þrewalls are relatively easy to conÞgure for protocols that use well-
known port addresses. In NFS versions 2 and 3, an NFS client could not
communicate at all with an NFS server unless it Þrst obtained an initial Þle
handle using another RPC service: the MOUNT protocol. Since MOUNT does
not have a well-known port, the serverÕs portmapper was used to dynamically
assign a port for MOUNT. This meant that the port number would change each
time the MOUNT program was started. Although some sophisticated Þrewalls
can track these port negotiations, it is not a common feature.

NFS Version 4 will overcome this limitation by not using the MOUNT protocol
for translation from string-based path names to a Þle handle. Instead, two
special Þle handles will be used as a starting point for the NFS client: the
ROOT Þle handle and a public Þle handle. (See the File Handle section).

Historically, NFS Version 2 and 3 servers have resided on port 2049. Port 2049
is an IANA registered port number for NFS, and will continue to be used for
NFS Version 4. Using this well-known port for NFS trafÞc means that NFS
NFS Version 4 5

clients do not need to use RPC binding protocols, and Þrewalls can easily be
conÞgured for NFS trafÞc. With the stronger security and authentication of
ONCª RPCÕs RPCSEC_GSS, NFS Version 4 provides a more secure and
efÞcient solution for use with Þrewalls.

Internationalization

In the NFS protocol, strings are used for Þle and directory names and symbolic
link contents. The string representations in NFS versions 2 and 3 are limited to
either seven-bit U.S. ASCII or eight-bit ISO Latin 1 character sets. There is no
mechanism to tag the character strings that indicate which encoding is used by
either the client or the server. The U.S. ASCII and ISO Latin 1 representations
do not support all languages, limiting the usefulness of NFS in environments
where clients utilize different character sets.

The possibility of using local character sets presents a problem when strings
are viewed in differing locales. For example, a user creates a Þle with a name in
the Swedish character set. Later, when a different user with a U.S. ASCII locale
within a given pathname attempts to view the Þle name, it looks very different
because the local character representation has changed. This problem becomes
quite complex when various components within a pathname are created using
differing locales, or when users in various locales modify components within a
given pathname that were originally created in a different language.

However, NFS Version 4 uses a universal character set, so it doesnÕt matter if
the user accessing the Þle has a different locale than the user who created the
Þle. This universal encoding of the character makes it possible to determine
what language the character is from and how to display it on the client. The
server does not need to associate a locale with a pathname.

In NFS Version 4, the universal encoding is UTF-8, a Universal Character Set
(UCS) that uses an eight-bit, octet transformation format. UTF-8 was chosen
because it compactly encodes 16- and 32-bit characters, is an efÞcient encoding
for wire transfers, has room to expand beyond characters longer than 31 bits,
and provides for the direct encoding of existing stored objects that are
described with seven- or eight-bit characters.
6 October, 1999

Strong Security
A primary goal of NFS Version 4 is to provide for strong security services,
including authentication, integrity, and privacy; be independent of speciÞc
security mechanisms; and rely on existing standards for implementation.
Previous versions of NFS have been severely limited by the weaknesses of
available security protocols and the lack of their widespread implementation.
By providing a security implementation within the NFS Version 4 protocol,
users will be able to use strong security if their environment or policies
warrant it.

Limitations of Previously Available Protocols

The security provided by previous versions of NFS are inadequate and
relatively easy to exploit. They reply on security flavors, described in Table 1,
that have been called authentication flavors Ñ either because integrity and
privacy were not seen as requirements, or the computational overhead was
considered prohibitive. The authentication ßavors vary in their capacity to
Þght exploitation. With AUTH_SYS, t is relatively easy to spoof IDs.
AUTH_DH employs a DifÞe-Hellman 192-bit, public key modulus that is too
small for reasonable security. AUTH_KERB4 is better, but lacks a written
speciÞcation.

Today, there is no fundamental reason to restrict the services performed by
new security ßavors. However, since integrity and privacy were not used, RPC
client data formats were the same for all flavors. Additionally, existing security
ßavors embody different security mechanisms, and each flavor has its own
API. It is likely that the number of security ßavors will increase, as no single
solution can satisfy the unique requirements of every distributed network
environment. Therefore, NFS Version 4 chose a solution with the ßexibility to
support multiple authentication solutions in a standard, consistent way.
NFS Version 4 7

Table 1 Authentication technologies available to NFS versions 2 and 3

A New Security Protocol: RPCSEC_GSS

Conforming implementations of NFS Version 4 employ the standards track
ONCª RPC security ßavor, RPCSEC_GSS (RFC 2203), which allows RPC
protocols to access the Generic Security Services Application Programming
Interface (GSS-API). Using the GSS-API (standards track RFC 2078) allows for
the use of varying security mechanisms by the RPC layer without the
additional implementation overhead of adding RPC security ßavors (Figure 1.)
Although the RPCSEC_GSS security ßavor was available to previous versions
of NFS, it was not widely deployed.

The basic services offered by the GSS-API are integrity and privacy. For the
integrity service, the GSS-API uses the underlying mechanism to authenticate
messages exchanged between applications, while cryptographic checksums
establish identities and the authenticity of the transmitted data. The privacy
service includes the integrity service and also encrypts transmitted data to
protect it from eavesdroppers.

RPCSEC_GSS is a single security ßavor over which different security
mechanisms can be used. Examples of security mechanisms include Kerberos
V5, RSA public key, and PGP. Within a mechanism, the GSS-API provides for
the support of multiple qualities of protection (QOPs), which are pairs of
cryptographic algorithms. The QOP parameter determines the cryptographic
algorithms to be used in conjunction with the integrity or privacy service.

AUTH_NONE Null authentication, or no security information passed

AUTH_SYS
UNIX-style user identifier, group identifier, and an array of
supplemental group identifiers

AUTH_DH
DES-encrypted authentication parameters based on a network-wide
string name, with session keys exchanged via the Diffie-Hellman
public key scheme

AUTH_KERB4
DES-encrypted authentication parameters based on a network-wide
string name (a Kerberos version 4 principle identifier) with session
keys exchanged via Kerberos version 4 secret keys
8 October, 1999

Figure 1 Using the GSS-API allows for the use of varying security mechanisms by
the RPC layer without the additional implementation overhead of adding
RPC security ßavors.

The use of RPCSEC_GSS requires the selection of security mechanism, QOP,
and service, which includes authentication, integrity, and privacy. These three
parameters are known as the security triple.

Using the programming interface for the RPCSEC-GSS security ßavor, NFS
Version 4 specifies a security mechanism to be used on an RPC session, and
requests desired security services (integrity, privacy, or none) for each RPC
exchange. Security mechanism names and QOP values are passed through the
RPCSEC_GSS layer to the GSS-API layer.

Since the RPCSEC_GSS security ßavor uses the GSS-API interface, in the future
any security mechanism that is supported by the GSS-API can be made
available to the NFS protocol. RPCSEC_GSS is also extensible in that it
provides for both public and private key security mechanisms as well as the
ability to plug in various mechanisms without signiÞcantly disrupting ONC
RPC or NFS implementations.

RPC

AUTH_DH AUTH_KERB4 RPCSEC_GSSAUTH_SYS

NFS

GSS-API

Kerberos V5 Public Key Other
NFS Version 4 9

User IdentiÞcation

Previous versions of NFS have been limited to the use of the UNIX user and
group identiÞcation (UID and GID) numbers as a user identiÞcation
mechanism. This has limited the capability for NFS to scale beyond large work
groups, support string-based identiÞcation schemes, or scale to the Internet
with respect to multiple naming domains and naming mechanisms.

The permission models in NFS Version 4 scale beyond the ßat integer UID
space of previous versions by using string-based user identiÞcations. This
permits integration into an external naming service or services and enables
servers and clients to translate between the external string representation to a
local internal numeric or other identiÞers that match internal implementation
needs.

Security Negotiation

With the new ability to provide multiple security mechanism choices, NFS
Version 4 offers the client a security negotiation process to determine which
mechanism should be used for communicating with the server. Within a given
server implementation, multiple security mechanisms may be deployed across
various Þle system resources. Therefore, the security negotiation process also
takes into account the possibility of a change in policy, as an NFS client crosses
certain Þle system boundaries on the server. Additionally, this negotiation is
done over a secure channel to eliminate the possibility of third-party
interception and resulting negotiation down to a lower level of security than
required or desired.

The new procedure, SECINFO, allows NFS Version 4 clients to determine, on a
per-Þle-handle basis, what security mechanism will be used for server access.
In general, the NFS client does not have to use the SECINFO procedure except
during initial communication with the NFS server or when the client crosses a
policy boundary on the server. It is possible that the serverÕs security policies
could change during the client's interaction, forcing the client to negotiate a
new security triple.
10 October, 1999

In summary, NFS Version 4:

¥ Supports multiple underlying security mechanisms and provides access to
their services through a common API

¥ Does not impose excessive or complex administration on security-minded
applications

¥ Is flexible enough to enable a variety of security requirements, while still
being easy to use

Better Cross-platform Interoperability
NFS protocols are available for many different operating environments.
However, due to its UNIX origin, the NFS protocol was difÞcult to implement
in some environments. NFS Version 4 Þxes this by creating a common set of
features that do not favor one operating system over another.

For example, NFS versions 2 and 3 do not provide file and directory attributes
beyond those found in the traditional UNIX environment. These include
persistent Þle handles (unique identiÞers of Þle system objects), UNIX uid/gid
(user-ID/group-ID) mappings, directory modiÞcation times, accurate Þle sizes,
and Þle and directory locking semantics.

To meet the requirements of extensibility and increased interoperability with
platforms other than UNIX, NFS Version 4 introduces a new type of Þle handle,
better Þle-attribute handling, a server namespace, and file locking mechanisms.

File Handles

In the NFS protocol, a Þle handle is a unique identiÞer for a Þle system object
on a server. The contents of this handle are opaque to the client, so the server is
responsible for translating the Þle handle into an internal representation of the
Þle system object. Since the Þle handle is the clientÕs only reference point to an
object on the server, and the client may cache this reference, the server should
not reuse the Þle handle for another Þle system object.

In NFS versions 2 and 3, the ancillary MOUNT protocol obtains the initial Þle
handle when a Þlesystem is Þrst mounted. As the MOUNT protocol is deÞcient
with respect to firewalls (see Secure Transmission Through Firewalls, page 5), the
use of a public Þle handle was introduced. Using a public Þle handle in
NFS Version 4 11

combination with the LOOKUP procedure in version 2 and 3 demonstrates that
the MOUNT protocol is no longer necessary for viable NFS client and server
interaction.

NFS Version 4 introduces two special Þle handles that are to be used as starting
points for NFS clients, and two Þle handle types. The Þrst is the ROOT Þle
handle, the conceptual root of the Þle system name space on the NFS server.
The second is a public Þle handle that can be used to bind or represent an
arbitrary Þle system object on the server. Although the public and root Þle
handles may not refer to the same system object, it is up to the server to deÞne
the bindings of the handles.

Versions 2 and 3 use the same type of Þle handle with a single set of semantics.
This type relies on a unique, persistent identiÞer supported by UNIX but not
by some other Þle systems. NFS Version 4 introduces two types of Þle handles
that accommodate other server environments. The Þrst type, persistent, has the
same semantics as file handles in Versions 2 and 3. The second type is the
volatile file handle.

Some server environments simply do not provide a Þle system invariant that
can construct a persistent Þle handle. The volatile type addresses server
functionality or implementation issues that prevent correct or feasible
implementation of a persistent Þle handle. This eases the implementation of
products such as hierarchical storage management systems and helps maintain
uptime during file system reorganization and similar processes.

Since the client has different logic paths to handle persistent and volatile Þle
handles, NFS Version 4 deÞnes a new Þle attribute that determines what type
of file handle is being returned by the server.

File Attributes

NFS Version 3 contains a Þxed list of Þle attributes that is not supported by all
clients and servers, had no mechanism to indicate non-support, and could not
be extended as new needs arose. To increase interoperability, attributes must be
handled in a more ßexible manner. With NFS Version 4, the NFS client has to
query the server about the attributes it supports, and be able to request only
needed attributes.

The proposed attributes for NFS Version 4 are divided into three groups:
mandatory (Table 2), recommended (Table 3), and named. Both mandatory and
recommended attributes are supported in the protocol by specific, well-deÞned
12 October, 1999

encoding and semantics. Named attributes allow a client to name, store, and
retrieve arbitrary or extra data and associate it as an attribute of a Þle or
directory. This grouping of attributes, plus indicators of non-support, makes it
possible to add new mandatory or recommended attributes to the NFS
protocol between revisions.

The set of attributes classiÞed as mandatory by NFS Version 4 is deliberately
small, as servers must do whatever it takes to support them. Attributes are
deemed mandatory only if the data is needed by a large number of clients and
is not otherwise reasonably computable by the client when the server does not
provide support.

Name Description

supp_attr Bit vector that retrieves all mandatory and recommended attributes

object_type Type of the object (file, directory, symbolic link)

persistent_fh Determines if the file handle for this objects persistent

change
Server created value flags if file data, directory contents, or attributes
have been modified. Necessary for useful caching

object_size Size of the object in bytes

link_support Determines if the object’s file system supports hard links

symlink_support Determines if the object’s file system supports symbolic links

named_attr Determines if the object has named attributes

fsid.major Unique identifier for the file system holding this object

fsid.minor
Identifier within the fsid.major file system identifier for the file system
holding this object

Table 2 Mandatory attributes in NFS Version 4.

Name Description

ACL Access control list for this object

archive Determines if the file been archived since it was last modified

cansettime
Determines if this object’s file system can fill in the times on a
SETATTR request without an explicit time

Table 3 Possible recommended attributes in NFS Version 4.
NFS Version 4 13

case_insensitive
Determines if file name comparisons on this file system are case
insensitive

case_preserving Determines if file name case is preserved on this file system

chown_restricted Determines if a request to change ownership will be honored

filehandle File handle of this object

fileid Number uniquely identifying the file within the file system

files_avail File slots available to this user on the file system containing this object

files_free Free file slots on the file system containing this object

files_total Total file slots on the file system containing this object

hidden Determines if the file is considered hidden

homogeneous
Determines if this object’s file system is homogeneous (i.e. if the
pathconf is the same for all objects)

maxfilesize Maximum supported file size for the file system of this object

maxlink Maximum number of links for this object

maxname Maximum filename size supported for this object

maxread Maximum read size supported for this object

maxwrite Maximum write size supported for this object

mime_type MIME body type/subtype of this object

mode UNIX-style permission bits for this object (deprecated in favor of ACLs)

no_trunc
If a name longer than name_max is used, determines if an error will be
returned or the name truncated

numlinks Number of links to this object

owner String name of the owner of this object

owner_group String name of the group of the owner of this object

quota_hard
Number of bytes of disk space beyond which the server will decline to
allocate new space

quota_soft
Number of bytes of disk space at which the client may choose to warn
the user about limited space

quota_used
Number of bytes of disk space occupied by the owner of this object on
this file system.

rawdev Raw device identifier

Name Description

Table 3 Possible recommended attributes in NFS Version 4.
14 October, 1999

NFS Server Namespace

On a UNIX server, the namespace describes all the Þles reachable by the
pathnames under the root directory Ò/Ó. On a Windows NT server, the
namespace consists of all the Þles on disks that are named by mapped disk
letters. NFS server administrators rarely make the entire serverÕs Þle system
namespace available to NFS clients, but typically make pieces of the
namespace available via an export feature.

The NFS Version 4 protocol provides a root Þle handle that clients can use to
obtain Þle handles for these exports. A common experience is to use a
graphical user interface (i.e. an Open dialog window) to Þnd a Þle via
progressive browsing through a directory tree. Clients must be able to move
from one export to another export through progressive, look-up operations.

This style of progressive Þle browsing through directory trees was not
supported well in NFS versions 2 and 3. A client application expects all look-
up operations to remain within a single server Þle system. NFS versions 2 and
3 prevented a client from specifying namespace paths that spanned exports.

space_avail
Disk space in bytes available to this user on the file system containing
this object

space_free Free disk space in bytes on the file system containing this object

space_total Total disk space in bytes on the file system containing this object

space_used Number of file system bytes allocated to this object

system Determines if this file is a system file

time_access The time of the last access to the object

time_backup The time of the last backup of the object

time_create The time of the creation of the object

time_delta Smallest useful server time granularity

time_metadata Time of the last meta-data modification of the object

time_modify Time since the epoch of the last modification to the object

version Version number of this document

volatility
Approximate time until next expected change on this file system, as a
measure of volatility

Name Description

Table 3 Possible recommended attributes in NFS Version 4.
NFS Version 4 15

NFS Version 4 presents all exports within the framework of a single server
namespace. Portions of the server namespace that are not exported are bridged
via a pseudo Þle system that views only the exported directories. The pseudo
Þle system behaves like a normal, read-only Þle system.

DOS, Windows 95, 98, and NT are sometimes described as having multiple
roots, where Þle systems are commonly represented as drive letters. MacOS
represents Þle systems as top-level names. NFS Version 4 servers will be able to
construct a pseudo Þle system above root names on these servers, so drive
letters or volume names are simply directory names in the pseudo-root.

The serverÕs pseudo Þle system is a logical representation of the Þle system or
systems available on the server. It is expected that the pseudo Þle system may
not have an on-disk, physical counterpart from which persistent Þle handles
can be constructed. Therefore, volatile Þle system handles are used.

Even if a serverÕs root Þle system is exported, a pseudo Þle system may be
needed. For example, in Þgure 2, Ò/aÓ lies on an unexported drive between the
exported directories Ò/Ó and Ò/a/bÓ. Because Ò/aÓ is not exported, Ò/a/bÓ
cannot be reached by browsing from Ò/Ó via standard look-up mechanisms. In
this case, the server must bridge the gap with a pseudo Þle system.

Figure 2 Portions of the server namespace that are not exported are bridged via a
pseudo Þle system that views only the exported directories.

File Locking

NFS Versions 2 and 3 do not offer any Þle locking functions, but instead rely on
an ancillary protocol, Network Lock Manager (NLM) to provide exclusive
access to Þle data as well as lock recovery in the case of client or server failure.

Exported

Exported

Not exported

/

/a

/a/b

NFS v4
/

/b
16 October, 1999

Unfortunately, NLM is not widely supported. In addition to requiring the
additional implementation of a separate protocol, NLM has minor design ßaws
relating to high network load and recovery, and is not well suited for Internet
Þrewall traversals.

NFS Version 4 provides UNIX Þle locking functions and Windows share
locking functions. A share reservation is the equivalent of Þle locking,
providing the basis for sharing or exclusive access to Þle data without the risk
of data corruption. Additionally, NFS Version 4 offers record or byte-range
locking functions.

To correctly support share locks, NFS Version 4 supplants the existing
mechanisms used to create or open a Þle (LOOKUP, CREATE, ACCESS) with
mechanisms that can atomically open or create Þles. A new function, OPEN,
completely subsumes the functionality of LOOKUP, CREATE, and ACCESS.
The OPEN procedure obtains the initial Þle handle and indicates the desired
access (read, write, both) and what, if any, access to deny to others (deny none,
deny read, deny write, deny both). These access ßags enable the
implementation of policies ranging from advisory locking only to full
mandatory locking.

However, because many operations require a Þle handle, the traditional
LOOKUP will be preserved to map a Þle name to a Þle handle without
establishing a lock state on the Þle. While ACCESS is just a subset of OPEN, the
ACCESS will be preserved as a lighter weight mechanism to determine the
access rights that a user has with respect to a Þle system object.

Designed for Protocol Extensions
A great strength of NFS is the simplicity of its protocol: straightforward,
interoperable implementations can be accomplished with relative ease. This
makes it easy to add or layer functionality when these changes do not require
protocol revisions. When the NFS protocol is deÞcient or a minor modiÞcation
to the protocol is the best solution, versioning or managed extensions would be
helpful.

Previous versions of NFS did not accept extensions well. Small, functional
additions would have greatly increased the overall value of the protocol.
However, the perceived size and burden of revising the RPC version to
introduce new functionality discouraged change.
NFS Version 4 17

The RPC protocol uses a version number to describe the set of procedure calls,
replies, and their semantics and attributes. Any change in this set must be
reßected in a new version number for the program. For instance, the addition
of a new procedure requires a protocol revision, even though the RPC protocol
already allowed procedures not to be implemented and provided an error
mechanism.

NFS Version 4 allows for the infrequent instances where a protocol extension
within the RPC version number is the most prudent course and revision would
be unnecessary or impractical.

Summary
With the assistance of SunÕs continued commitment to open standards and
ongoing work with the IETF, the protocol for NFS Version 4 is openly available,
interoperable, and provides excellent service in Internet and intranet
environments. Some key NFS features are highlighted in Table 4.

Feature Benefit
NFS
V2

NFS
V3

NFS
V4

Local disk caching Enhances client performance by increasing cache space
available

✔ ✔ ✔

Automatic mounting Makes global file systems continuously and transparently
accessible to users

✔ ✔ ✔

Centralized administration Reduces time and effort for routine administration tasks ✔ ✔ ✔

Global file system namespace Creates file pathnames that are valid throughout the network
so users and applications can move freely

✔ ✔ ✔

Client determination of protocol
version supported by the server

Clients and servers negotiate which protocol to use based on
what they both support. Backwards compatible with installed
base.

✔ ✔ ✔

Reduced attribute requests Increases scalability and performance ✔ ✔

Reduced requests for lookup
information

Increases scalability and performance ✔ ✔

Asynchronous writes Improves client write throughput ✔ ✔

COMPOUND procedure Better performance on high-latency networks ✔

Use of a well-known port, 2049,
for NFS services

Easier transmissions through packet-filtering firewalls ✔

Table 4 Comparison of NFS Versions 2, 3, and 4 features and beneÞts
18 October, 1999

As the table clearly shows, NFS Version 4 meets the demands for fast, reliable,
secure, and transparent Þle service over the Internet. NFS Version 4
implements key features to improve Internet access and performance, adds
strong security, enhances cross-platform interoperability, and provides an
extensible protocol that will carry NFS through the demands of the future.
Current users of NFS Versions 2 and 3 will Þnd that Version 4 is an important
link in their migration strategy to an Internet- and intranet-centric world.

UTF-8 universal character set Supports internationalization with multiple languages in file
and pathnames

✔

Built-in RPCSEC_GSS protocol Strengthens security, supports multiple security mechanisms ✔

Volatile file handles Accommodates server environments where persistent file
handles are not implemented

✔

Flexible attributes Provides extensibility for new attributes and indicators to
indicate non-support

✔

Server namespaces Client paths span exported file systems and cross-drive letter
root names

✔

File locking Supports share locks ✔

Feature Benefit
NFS
V2

NFS
V3

NFS
V4

Table 4 Comparison of NFS Versions 2, 3, and 4 features and beneÞts
NFS Version 4 19

20 October, 1999

References A
General

Schneier, Bruce, Applied Cryptography, John Wiley and Sons, 1994

Stern, Hal, Managing NFS and NIS, O'Reilly, June 1991

NFS Protocol

Callaghan, B., Pawlowski, B. and P. Staubach, ÒNFS Version 3 Protocol
SpeciÞcation,Ó RFC 1813, June 1995, http://www.ietf.org/rfc/rfc1813.txt

Pawlowski, B., Juszczak, C., Staubach, P., Smith, C., Lebel, D. and Hitz, D.,
ÒNFS Version 3 Design and Implementation,Ó Proceedings of the USENIX
Summer 1994 Technical Conference

Sun Microsystems, Inc., ÒThe NFS Distributed File Service,Ó NFS White Paper,
March 1995, http://www.sun.com/software/white-papers/wp-nfs/

Sun Microsystems, Inc., ÒNFS: Network File System Protocol SpeciÞcation,Ó RFC
1094, March 1989, http://www.ietf.org/rfc/rfc1094.txt

Sun Microsystems, Inc., ÒNFS Version 2 and Version 3 Security Issues and the NFS
Protocol's Use of RPCSEC_GSS and Kerberos V5,Ó RFC 2623, June 1999,
http://www.ietf.org/rfc/rfc2623.txt

Sun Microsystems, Inc., ÒNFS Version 3 Security Protocol SpeciÞcation,Ó June
1995, http://www.ietf.org/rfc/rfc1813.txt
21

Sun Microsystems, Inc., ÒNFS Version 4 Design Considerations,Ó June 1999,
http://www.ietf.org/rfc/rfc2624.txt

Sun Microsystems, Inc., ÒWebNFSª Client SpeciÞcation,Ó RFC 2054, October
1996. http://www.ietf.org/rfc/rfc2054.txt

Sun Microsystems, Inc., ÒWebNFS Server SpeciÞcation,Ó RFC 2054, October 1996,
http://www.ietf.org/rfc/rfc2054.txt

Sun Microsystems, Inc., ÒXDR: External Data Representation Standard,Ó RFC
1832, August 1995. http://www.ietf.org/rfc/rfc1832.txt

RPC Protocol

Srinivasan, R., ÒRPC: Remote Procedure Call Protocol SpeciÞcation Version 2,Ó RFC
1831, August 1995, http://www.ietf.org/rfc/rfc1831.txt

Srinivasan, R. (1995). ÒBinding Protocols for ONC RPC Version 2,Ó RFC 1833,
August 1995, http://www.ietf.org/rfc/rfc1833.txt

RPCSEC_GSS

Eisler, M., Chiu, A. and L. Ling, ÒRPCSEC_GSS Protocol SpeciÞcation,Ó RFC
2203, September 1997, http://www.ietf.org/rfc/rfc2203.txt

Sun Microsystems, Inc., ÒNFS Version 2 and Version 3 Security Issues and the NFS
Protocol's Use of RPCSEC_GSS and Kerberos V5,Ó RFC 2623, June 1999,
http://www.ietf.org/rfc/rfc2623.txt

GSS-API

Jaspan, B. (1995). ÒGSS-API Security for ONC RPC,Ó 1995 Proceedings of The
Internet Society Symposium on Network and Distributed System Security,
pp. 144-151

Linn, J., ÒGeneric Security Service Application Program Interface,Ó RFC 1508,
September 1993, http://www.ietf.org/rfc/rfc1508.txt

Linn, J., ÒGeneric Security Service Application Program Interface, Version 2,Ó RFC
2078, January 1997, http://www.ietf.org/rfc/rfc2078.txt
22 October, 1999

KERBEROS

Callaghan, B., Singh, S., ÒThe Autofs Automounter,Ó Proceedings of the 1993
Summer USENIX Technical Conference, 1993

Linn, J., ÒThe Kerberos Version 5 GSS-API Mechanism,Ó RFC 1964, June 1996,
http://www.ietf.org/rfc/rfc1964.txt

Massachusetts Institute of Technology, ÒKerberos: The Network Authentication
Protocol,Ó MIT's implementation of Kerberos V5 including implementations of
RFC 1510 and RFC 1964, 1998,
http://web.mit.edu/kerberos/www/index.html

UTF-8

The Unicode Consortium, http://www.unicode.org
References 23

24 October, 1999

Glossary B
Access Control Lists (ACLs)
List that indicates what type of access is allowed for a Þle. For example, it
indicates whether certain individuals or groups of individuals are allowed to
perform Þle operations such as read, write, execute, etc.

Authentication Service
Security mechanism that determines if someone is who they claim to be before
being allowed to use resources. Typically involves checking for information
known only to that individual such as a password.

Authorization Service
Security mechanism that determines if someone has permission to do what
they want to do, once they have been properly authenticated. Permission bits
and ACLs are examples of authorization.

Automounter
Component of client-side NFS that is responsible for transparently mounting
and unmounting server Þle systems on behalf of client requests.

Cache
Fast access, temporary storage area (physical memory and disk) utilized by an
NFS client to increase the speed of access to Þle data. When Þle data is cached
on the local system, client performance is improved because clients spend less
time querying the server or waiting for the server to transfer data over the
network.
25

Data Encryption Standard (DES) Authentication
Private key encryption algorithm originally developed by IBM which became a
national standard in the 1970s.

DifÞe-Hellman Authentication
Public key encryption algorithm developed by WhitÞeld DifÞe and Martin
Hellman in 1976 that is utilized by NFS on the Solarisª Operating
Environment.

Encryption
Mechanism for converting information into a non-readable form so it cannot be
interpreted by an unauthorized recipient. This is accomplished by applying an
encryption algorithm with a special value (known as a key) to the data.

Generic Security Service Application Program Interface (GSS-API)
Standard framework for uniting multiple authentication ßavors under a single
API.

Internet Assigned Numbers Authority (IANA)
Central coordinator for the assignment of unique parameter values for Internet
protocols. Chartered by the Internet Society (ISOC) to act as a clearinghouse to
assign and coordinate the use of numerous Internet protocol parameters.

Internet Engineering Task Force (IETF)
Large, open international community of network designers, operators,
vendors, and researchers concerned with evolution of Internet architecture and
smooth operation of the Internet.

Kerberos
Authentication service developed by MIT for project Athena that utilizes
private and public key mechanisms to exchange authentication information
contained in expanded packages (tickets).

Local Area Network (LAN)
Closely linked group of computer systems that communicate with one another
via connecting hardware and software.

Mount
Accessing a directory from a disk attached to the machine making a mount
request or to a remote disk on a network.

Mount Point
Point in the client Þle system tree at which a server Þle system will be
mounted. Also called a mount or client name (pathname).
26 October, 1999

Namespace
Collective names or pathnames used by clients to access server Þle systems.
(See mount point.)

ONC
Distributed applications architecture promoted and controlled by a consortium
led by Sun Microsystems, Inc.

Portmapper
Network system service used by all other remote-procedure-call-based
services. Keeps track of correspondence between ports (logical
communications channels) and services on a machine, providing a standard
way for clients to look up the port number of any remote procedure call
program supported by the server.

Public Key Encryption Service
Encryption service in which the key or value used to encrypt data is different
from that used to decrypt information.

Private Key Encryption Service
Encryption service in which the key or value used to encrypt data is the same
as that used to decrypt information.

Protocol
Formal description of messages to be exchanged and rules to be followed for
two or more systems to exchange information.

Root
In a hierarchy of items, the item from which all other items are descended. A
root item has nothing above it in the hierarchy. See root disk, root Þle system,
and root directory.

Root directory
Base directory from which all other directories stem, directly or indirectly.

Root disk
On UNIX servers, the disk drive where the operating system resides.

Remote Procedure Call (RPC)
Paradigm for implementing client-server, distributed computing. A request is
sent to a remote system to execute a designated procedure, using arguments
supplied, and the result is returned to the caller. Many different RPC protocols
exist.
Glossary 27

Root Þle system
File system residing on the root device (a device predeÞned by the system at
initialization) that anchors the overall Þle system.

RPCSEC_GSS
ONC RPC security ßavor that allows RPC protocols to access GSS-API.

Symbolic Link
File or directory that points to another Þle or directory, giving both Þles or
directories the same contents.

Transmission Control Protocol (TCP)
Reliable transport layer service, developed by the Department of Defense,
utilized by NFS for communication over LANs and WANs.

UDP
Unreliable transport layer service, developed by the Department of Defense,
utilized by many existing NFS implementations to communicate over LANs.

UTF-8
Universal Character Set (UCS), eight-bit octet transformation format.

WAN (Wide Area Network)
Network consisting of many systems that provide Þle transfer services, it may
cover a large physical area.
28 October, 1999

Printed in USA

Sun Microsystems Incorporated
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300
FAX 650 969-9131
http://www.sun.com

	NFS Version 4
	NFS Version 4
	Introduction
	NFS on the Internet
	Sun’s Commitment to Open Standards
	The NFS Version 4 Charter

	Improved Internet Access and Performance
	Better Performance on High Latency Networks
	Compound Requests
	Client File Caching

	Easy, Secure Transmission Through Firewalls
	Internationalization

	Strong Security
	Limitations of Previously Available Protocols
	Table�1 Authentication technologies available to NFS versions 2 and 3

	A New Security Protocol: RPCSEC_GSS
	Figure�1 Using the GSS-API allows for the use of varying security mechanisms by the RPC layer wit...

	User Identification
	Security Negotiation

	Better Cross-platform Interoperability
	File Handles
	File Attributes
	Table�2 Mandatory attributes in NFS Version 4.
	Table�3 Possible recommended attributes in NFS Version 4.

	NFS Server Namespace
	Figure�2 Portions of the server namespace that are not exported are bridged via a pseudo file sys...

	File Locking

	Designed for Protocol Extensions
	Summary
	Table�4 Comparison of NFS Versions 2, 3, and 4 features and benefits

	References
	A
	General
	NFS Protocol
	RPC Protocol
	RPCSEC_GSS
	GSS-API
	KERBEROS
	UTF-8

	Glossary
	B
	Access Control Lists (ACLs)
	Authentication Service
	Authorization Service
	Automounter
	Cache
	Data Encryption Standard (DES) Authentication
	Diffie-Hellman Authentication
	Encryption
	Generic Security Service Application Program Interface (GSS-API)
	Internet Assigned Numbers Authority (IANA)
	Internet Engineering Task Force (IETF)
	Kerberos
	Local Area Network (LAN)
	Mount
	Mount Point
	Namespace
	ONC
	Portmapper
	Public Key Encryption Service
	Private Key Encryption Service
	Protocol
	Root
	Root directory
	Root disk
	Remote Procedure Call (RPC)
	Root file system
	RPCSEC_GSS
	Symbolic Link
	Transmission Control Protocol (TCP)
	UDP
	UTF-8
	WAN (Wide Area Network)

