
The Linux Scheduler
a Decade of Wasted Cores

EuroSys’16

Cezary Siłuszyk



2/26

Agenda

● Completely Fair Scheduler (CFS)

● Load balancing algorithm

● Bugs & fixes

● Tools

● Conclusions



3/26

“And you have to realize that there 
are not very many things that have 

aged as well as the scheduler. 
Which is just another proof that 

scheduling is easy.”

Linus Torvalds, 2001 



4/26

”I wrote the first line of code of the 
CFS patch this week, 8am 

Wednesday morning, and released 
it to lkml 62 hours later, 22pm on 

Friday.”

Ingo Molnar, 2007



5/26

Ideal Precise Multi-tasking CPU



6/26

Actual CPU



7/26

CFS on single-CPU system

● CFS basically models an "ideal, precise multi-
tasking CPU" on real hardware

● vruntime = runtime / weight

● uses a time-ordered rbtree to build a "timeline" 
of future task execution – O(lg n)



8/26

CFS on multi-core systems

● Context switch must be fast

● Core-local queues to avoid synchronization

● Requires load balancing



9/26

“I suspect that making the scheduler 
use per-CPU queues together with 

some inter-CPU load balancing
logic is probably trivial . Patches 
already exist, and I don’t feel that 

people can screw up the few 
hundred lines too badly.”

Linus Torvalds, 2001



10/26

Straightforward approach

● Load-balancing based on number of processes

● Very cheap

● High-priority threads would get same amount of 
CPU time as low-priority threads



11/26

Second approach

● Load-balancing based on thread weights

● Also cheap

● Problem: interactive high-priority threads



12/26

CFS load balancing

● Load is the combination of the threads’ weight 
and its average CPU utilization

● cgroup feature

● Aware of cache locality



13/26

Scheduling domains



14/26

Load balancing algorithm



15/26

“Nobody actually creates perfect 
code the first time around, except 
me. But there’s only one of me.”

Linus Torvalds, 2007



16/26

The Group Imbalance bug

● Load balancing is based on average load

● Fix: change average to minimum



17/26

The Scheduling Group Construction 
bug

taskset enables pinning applications to run o a 
subset of available cores. Groups are 
constructed from the perspective of a specific 
core (0), but they should be constructed from 
the perspective of the core responsible for load 
balancing on each node.



18/26

The Overload-on-Wakeup bug

● Introduced by an optimization in the wakeup 
code

● Scheduler attempts to place the woken up 
thread physically close to the waker thread

● Fix: wake up thread on idle core



19/26

 The Missing Scheduling Domains 
bug

● When a core is disabled and then re-enabled 
using the /proc interface, load balancing 
between any NUMA nodes is no longer 
performed

● Incorrect update of a global variable 
representing the number of scheduling domains 
in the machine



20/26

“All our fixes will be submitted to 
the kernel developers shortly”

Authors



21/26

lkml response

● “their patches are completely butchering 
things”, Peter Zijlstra

● “One of the issues has been fixed, one is a 
non-issue and we had ideas about at least one 
other and I cannot quite remember what the 4th 
was.”, Peter Zijlstra



22/26

Online Sanity Checker



23/26

Scheduler Visualization tool

● Allows to plot
– size of run queues

– total load of run queues

– cores that were considered during periodic load 
balancing and thread wake-ups

● Visualizations generated by sh script using 
PHP



24/26

Lesson Learned

● Bugs resulted from optimizations

● Visualization is a good idea

● Fixes not merged to mainline (not even proposed)

● Catchy paper name matters



25/26

Bibliography

● Jean-Pierre Lozi, Baptiste Lepers, Justin 
Funston, Fabien Gaud, Vivien Quéma, 
Alexandra Fedorova - 
The Linux Scheduler: a Decade of Wasted Core
s (EuroSys'16)

● doc/Documentation/scheduler/sched-design-
CFS.txt

● http://www.linuxjournal.com/magazine/completel
y-fair-scheduler

http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
http://www.ece.ubc.ca/~sasha/papers/eurosys16-final29.pdf
http://www.linuxjournal.com/magazine/completely-fair-scheduler
http://www.linuxjournal.com/magazine/completely-fair-scheduler


26/26

Questions?


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

