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Agenda

● Completely Fair Scheduler (CFS)

● Load balancing algorithm

● Bugs & fixes

● Tools

● Conclusions
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“And you have to realize that there 
are not very many things that have 

aged as well as the scheduler. 
Which is just another proof that 

scheduling is easy.”

Linus Torvalds, 2001 
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”I wrote the first line of code of the 
CFS patch this week, 8am 

Wednesday morning, and released 
it to lkml 62 hours later, 22pm on 

Friday.”

Ingo Molnar, 2007
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Ideal Precise Multi-tasking CPU
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Actual CPU
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CFS on single-CPU system

● CFS basically models an "ideal, precise multi-
tasking CPU" on real hardware

● vruntime = runtime / weight

● uses a time-ordered rbtree to build a "timeline" 
of future task execution – O(lg n)
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CFS on multi-core systems

● Context switch must be fast

● Core-local queues to avoid synchronization

● Requires load balancing
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“I suspect that making the scheduler 
use per-CPU queues together with 

some inter-CPU load balancing
logic is probably trivial . Patches 
already exist, and I don’t feel that 

people can screw up the few 
hundred lines too badly.”

Linus Torvalds, 2001
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Straightforward approach

● Load-balancing based on number of processes

● Very cheap

● High-priority threads would get same amount of 
CPU time as low-priority threads
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Second approach

● Load-balancing based on thread weights

● Also cheap

● Problem: interactive high-priority threads
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CFS load balancing

● Load is the combination of the threads’ weight 
and its average CPU utilization

● cgroup feature

● Aware of cache locality
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Scheduling domains
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Load balancing algorithm
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“Nobody actually creates perfect 
code the first time around, except 
me. But there’s only one of me.”

Linus Torvalds, 2007



16/26

The Group Imbalance bug

● Load balancing is based on average load

● Fix: change average to minimum
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The Scheduling Group Construction 
bug

taskset enables pinning applications to run o a 
subset of available cores. Groups are 
constructed from the perspective of a specific 
core (0), but they should be constructed from 
the perspective of the core responsible for load 
balancing on each node.
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The Overload-on-Wakeup bug

● Introduced by an optimization in the wakeup 
code

● Scheduler attempts to place the woken up 
thread physically close to the waker thread

● Fix: wake up thread on idle core
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 The Missing Scheduling Domains 
bug

● When a core is disabled and then re-enabled 
using the /proc interface, load balancing 
between any NUMA nodes is no longer 
performed

● Incorrect update of a global variable 
representing the number of scheduling domains 
in the machine
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“All our fixes will be submitted to 
the kernel developers shortly”

Authors
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lkml response

● “their patches are completely butchering 
things”, Peter Zijlstra

● “One of the issues has been fixed, one is a 
non-issue and we had ideas about at least one 
other and I cannot quite remember what the 4th 
was.”, Peter Zijlstra
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Online Sanity Checker
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Scheduler Visualization tool

● Allows to plot
– size of run queues

– total load of run queues

– cores that were considered during periodic load 
balancing and thread wake-ups

● Visualizations generated by sh script using 
PHP
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Lesson Learned

● Bugs resulted from optimizations

● Visualization is a good idea

● Fixes not merged to mainline (not even proposed)

● Catchy paper name matters
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Questions?
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