University of Warsaw
Faculty of Mathematics, Computer Science and Mechanics

Marek Dzikiewicz
Student no. 234040

Input /Output Subsystem in
Singularity Operating System

Master’s Thesis
in COMPUTER SCIENCE

Supervisor:
Janina Mincer-Daszkiewicz, Ph.D.

Institute of Computer Science,
University of Warsaw

June 2011

Supervisor’s statement

Hereby I confirm that the present thesis was prepared under my supervision and
that it fulfills the requirements for the degree of Master of Computer Science.

Date Supervisor’s signature

Author’s statement

Hereby I declare that the present thesis was prepared by me and none of its contents
was obtained by means that are against the law.

The thesis has never before been a subject of any procedure of obtaining an academic
degree.

Moreover, I declare that the present version of the thesis is identical to the attached
electronic version.

Date Author’s signature

Abstract

Microsoft Singularity is a research operating system, which explores the possibilities of
designing and building software platforms for reliable computer systems. Singularity uses
processes to isolate system services and device drivers from the rest of the system, and to
enable restarting failed components without affecting the entire operating system. This leads
to better support for recovering from errors in system components and makes the system
more dependable.

The original version of Singularity does not support executing bus device drivers in
separate processes and implements them as part of the operating system’s kernel. This thesis
proposes a new bus driver model which extends the original implementation of Singularity
and supports process-isolated bus drivers. The main concepts behind Singularity are briefly
described and Singularity’s input/output subsystem is presented in-depth.

Keywords

Singularity, Microsoft, software isolated process, driver, managed code

Thesis domain (Socrates-Erasmus subject area codes)

11.3 Informatics, Computer Science

Subject classification
D. Software

D.4. Operating Systems
D.4.4. Communications Management

Tytul pracy po polsku

Podsystem wejécia-wyjscia systemu operacyjnego Singularity

Contents

Introduction 5
1. Singularity Operating System 7
1.1. Programming Languages for Singularity 7
1.1.1. High-level and Safe Programming Languages 7

1.1.2. Code Verification L 9

1.2. Software Isolated Processes 10
1.2.1. Closed Object Spaces o v v i ittt 10

1.2.2. Hardware and Software Memory Protection 11

1.2.3. The State Sharing Problem 11

1.3. Interprocess Communication in Singularity 12
1.3.1. Communication Channels in Singularity 12

1.3.2. Channel Contracts 14

1.4. Singularity Kernel o 15
1.4.1. Microkernel Implementation 15

1.4.2. Singularity Kernel Components 16

2. Singularity I/O Subsystem 21
2.1. Introduction to Singularity’s I/O Subsystem 21
2.1.1. I/O Subsystem Responsibilities 21

2.1.2. I/O Subsystem Prerequisites 21

2.1.3. I/O Subsystem Architecture 22

2.2. SIP-based Device Driver Model 24
2.2.1. Imtroduction e 24

2.2.2. Type-safe Hardware Communication 25

2.2.3. Hardware Resource Allocation 25

2.2.4. Channel Communication 27

2.3. System Namespace Layout00 30
2.4. Driver Loading Procedure L L 32
2.4.1. Driver Registration oL oo 32

2.4.2. Driver Activation 34

3. SIP-based Bus Driver Model Implementation 35
3.1. Singularity Bus Drivers Overview 35
3.1.1. Kernel Bus Drivers 35

3.1.2. SIP-based Bus Drivers 35

3.2. SIP-based Bus Driver Model 36
3.2.1. Problem Overview 36

3.2.2. Model Overview 36

3.2.3. Bus Device Driver Contract 37

3.2.4. Hardware Information Exchange Format 39

3.3. SIP-based Bus Driver Model Implementation 39
3.3.1. The Bus Manager 39

3.3.2. The Bus Driver Helper Library 41

3.3.3. Example — The PCI Bus Driver 43

3.4, Tests . . . o o e 45
3.4.1. CPU Usage and Execution Time 45

3.4.2. Memory Usage e 47

3.4.3. Crash Test 47

4. Conclusions L 51
4.1. Future Work L 52
Bibliography 53
A.CD Contents 55

Introduction

Operating systems are one of the most essential elements of all computer systems. Their
stability and functionality affects all applications, from home and entertainment programs,
through business solutions and finally to real-time systems, on which even human life may
depend.

It seems that operating systems should be one of the most dynamically developed types
of software. However, in reality, the architecture of most contemporary operating systems
was designed in the 1960’s and 70’s. The reason for this fact is that every major modification
in an operating system usually causes loss of compatibility with applications which were
written for that system. Therefore rebuilding an operating system would require rebuilding
the entire software which the system’s users utilize. That is why modern operating systems
are actually systems from many years ago, which have been extended and adapted to modern
applications. Nevertheless, the prevalence and application of computer systems in the 70’s
was completely different than today.

Nowadays, one of the most important requirements for computer systems is dependability.
The increase in available hardware resources resulted in the fact, that even performance is
not as important as a well defined operation of systems according to their specification. In
many situations, computer solutions are not yet used, because of the lack of trust for software,
which acts unpredictably and causes many problems. However, it is extremely difficult to
build stable computer solutions based on system platforms from many years ago, which were
not designed for modern applications. No wonder that contemporary computer systems are
unstable and unreliable.

In 2003, Microsoft Research started working on a project called ”Singularity” [5].
The aim of the project was to investigate possibilities for development of dependable
computer systems. One of the project’s outcomes was an experimental, prototype operating
system called ”Singularity”. The system was designed and written from scratch, using
modern programming languages, and based on assumptions and architectures which satisfy
contemporary needs.

One of the main concepts of Singularity is component isolation. The system is divided
into small, independent components and each component is executed in a separate process.
Thanks to this separation, in case of a failure in one of the components, it is not necessary
to restart the entire system, but only the single component which failed. Particularly device
drivers, which are very unreliable software [7], are executed in separate processes and isolated
from the rest of the operating system.

However, not all Singularity device drivers run in separate processes. The original version
of Singularity’s input/output subsystem contains bus device drivers which are implemented
as part of Singularity’s kernel. Therefore an error in one of these drivers causes a fatal error of
the entire system. This raises the probability of a system failure and decreases its reliability.

The main aim of this thesis is to design and implement a bus device driver model, which
supports process-isolated bus drivers. Such implementation will improve Singularity’s relia-

bility by isolating bus driver failures from the system. It will also make the implementation
of Singularity’s drivers more consistent. Furthermore, such a driver model will be very useful
when drivers for complex bus devices, such as the USB bus, will be developed in the future.

However, creating such a process-based bus driver model for Singularity is not an easy
task. First of all, there is very little documentation on Singularity’s I/O subsystem, so
most of the design and behavior of the subsystem will have to be deducted from source
code. Moreover, Singularity is implemented in research programming languages with many
new language constructs, which need to be familiarized. Furthermore, Singularity itself
implements many new concepts, which are not easy to understand and the new driver model
will need to use most of these concepts.

The first chapter describes the main concepts of Singularity, its assumptions, and the
system’s architecture. All topics in this chapter have been described briefly, but deeply
enough for the reader to understand the rest of the thesis. The second chapter describes the
original implementation of Singularity’s input/output subsystem. The next chapter presents
how the original implementation of that subsystem can be extended to support process-
isolated bus device drivers. The chapter introduces a newly designed bus driver model,
which extends Singularity’s standard driver model and enables executing bus device drivers
in separate processes, outside the system’s kernel. Additionally, tests of the implementation
of this new driver model are presented at the end of the chapter. The last chapter concludes
the thesis.

Chapter 1
Singularity Operating System

Singularity is a quite an unconventional operating system. As a research project, its main
purpose is to try out new ideas for building operating systems. Therefore Singularity
implements many features not found in contemporary operating systems.

This chapter presents the most important concepts behind Singularity and briefly
describes the system’s architecture. The purpose of this part of the thesis is to introduce the
reader to ideas which will be referenced later on. A full description of Singularity’s concepts
is, however, out of the scope of this thesis and only the most important aspects are presented.
For a more detailed explanation of the topics from this chapter, please see [5].

1.1. Programming Languages for Singularity

Singularity is based on modern, type-safe programming languages, tools and compilers. One
of the main concepts of the project is to use the knowledge acquired during development of
modern, high-level programming languages and tools, to build reliable operating systems.

The following section explains what safe programming languages are and introduces the
languages which are used to implement applications for Singularity, as well as the operating
system itself.

1.1.1. High-level and Safe Programming Languages

Most modern computer systems are implemented using high-level programming languages.
The reason for this is that high-level programming languages have many advantages, which
simplify designing, implementing and maintaining large software systems.

First of all, high-level programming languages provide rich, object-oriented language
features (such as classes, inheritance, polymorphism, etc.) which make it possible to
build large systems out of many independent components. Such components encapsulate
implementation details and enable code reusability. This way programmers can build new
components out of smaller ones, writing a high-level code which focuses rather on the
application’s logic than the low-level implementation details. Systems which are built in this
manner are easy to understand, analyze, test and therefore maintain. Of course lower-level
programming languages, such as C or C++4, also enable such a programming style, however
high-level languages like C# or Java are oriented at such a programming style and support
a wide range of programming constructs which simplify building large software systems.

One of the most significant advantages of high-level programming languages is the
possibility to express precise interfaces between components and the usage of these interfaces

is validated at compile-time. This property of programming languages is usually called type-
safety. For example, in type-safe languages, it is possible to define that a list of integer
values is a component which enables adding, removing and enumerating through a collection
of integer values. However, such a component can be used to store integer values only,
and an application which tries to store a different value on such list will not be compiled
successfully. Furthermore, defining precise types of all objects used by the programmer allows
the compiler to detect a lot of programming errors at compile-time. That is very important
when it comes to building large systems, because it allows to automatically detect errors in
code as early as possible — that is during compilation. Using low-level languages, such as C,
often leads to detecting errors at run-time, which is usually complicated and time-consuming.
While languages such as C are type-safe to some extent, component-based languages, such
as C# and Java, take type-safety to a whole new level by introducing mechanisms such
as generic types (types parameterized by other types [8]), delegates (type-safe equivalent of
C function pointer), etc. Programming languages developed during the Singularity project
extend languages such as C# even further, enabling compile-time verification of many more
aspects and enabling the programmer to express many additional constraints on components.

Another major advantage of high-level programming languages is automatic memory
management, which provides automatic memory allocation and deallocation by the runtime
environment instead of requiring the programmer to write explicit system calls. Programming
languages which implement such mechanism are called managed languages. Memory
management is very complicated and very hard to implement properly. Software written in
unmanaged languages, such as C or C++, usually contains many hard to fix errors, such as
memory leaks, invalid memory references, etc. Furthermore, such applications are susceptible
to security vulnerabilities, such as buffer overflow errors, which in case of operating systems
are extremely dangerous and compromise the system’s security. Managed languages never
implement mechanisms which allow direct memory access (such as pointers in C). Thanks to
this, the programmer is not even able to reference invalid memory or leak memory. However,
the price for automatic memory management is a decrease in performance, due to the overhead
of the language runtime.

In spite of all advantages of high-level programming languages, operating systems are
usually written in low-level languages, such as C. One of the reasons is that in the past, when
most popular operating systems were developed, high-level programming languages were still
being developed and the ones that existed back then were not robust enough. Furthermore,
because of the low-level nature of operating systems, it is sometimes easier to program them
in low-level languages. Mechanisms like memory management, device communication or
resource scheduling is easier to express in low-level languages, especially if the implementation
must be very efficient (which is crucial in the case of operating systems).

Singularity is based on safe programming languages. Such languages must ensure type
safety and memory safety. Type safe languages guarantee that objects and values are
always properly interpreted and manipulated. Memory safety guarantees that only valid
memory regions (belonging to the calling process and representing live objects managed by
the runtime) can be referenced. C# and Java are examples of modern, safe programming
languages.

Members of the Singularity project decided that reliable software must be based on safe
programming languages. That’s why in the case of Singularity, not only the operating
system itself is written in high-level, managed languages', but also all software executed

LA small part of Singularity’s kernel is written in unmanaged languages (namely C++ and x86 assembler),
due to their low-level nature.

on Singularity, including device drivers, must be written in safe languages. This means that
on Singularity, it is not possible to run software compiled to 32-bit or 64-bit machine code.
Software for Singularity must be written in a high-level programming language and presented
to the system as MSIL? code. This guarantees that only a type safe and memory safe code
will be executed on the system. The MSIL code is not executed directly on a virtual machine
— it is translated into binary code by so called code translators, which are a part of the
system’s trusted computing base (TCB). Singularity controls the process of code translation,
so the generated binary code can be highly optimized. The result of the code translation is
digitally signed and cannot be modified later.

The idea of making an operating system accept only MSIL code, has very serious
consequences. Almost all software which is currently used, must be rewritten in new
programming languages, in order to execute them on Singularity. This would be unacceptable
in the case of a regular, commercial, commonly used operating systems like Windows or Linux
because of the lack of backward compatibility. However this is not the case of Singularity,
which is a research operating system and does not have to be compatible with anything.

Because all applications for Singularity are compiled to MSIL code, it is very easy to
safely merge applications from components written in many different programming languages
(assuming that they are safe languages). Applications for Singularity are usually written in
one of three languages. First of them is the regular C# (the same one which is used to create
applications for the .NET Framework on Windows and the Mono platform on Linux). The
second language is Spec# [1], which is C# extended with language constructs which enable
defining additional assertions and conditions, which are validated at compile-time and run-
time. The third language is Sing# [2]|, which is Spec# extended with language constructs
specific for the Singularity operating system.

1.1.2. Code Verification

Singularity extensively uses static code verification mechanisms, to make sure that appli-
cations work properly in the system. Thanks to the use of MSIL as Singularity’s binary
executable format, a lot of errors, such as invalid pointer arithmetic, are detected at compile
time. Together with the assumptions of Singularity’s process model (described later in
this thesis), the system can verify whether an application is compatible with its execution
environment, even before it is started.

Although compilers for safe languages are able to detect a lot of errors at compile-time,
some errors cannot be detected at this phase (for example a library required by the application
may not be installed). In most operating systems, such errors are handled at run-time, after
the application has been started. There are two problems associated with this solution.
Firstly, an application which causes an error at runtime may endanger the stability of the
operating system, as well as other applications (for example, a plugin extension may cause its
host application to fail). Secondly, run-time errors may be very difficult to find and analyze.
The earlier an error is detected, the better.

That’s why Singularity introduces two additional phases of error detection, which occur
between compilation and run-time. The first one is called the installation phase. In contrast to
standard operating systems, in which application installation is usually restricted to copying
files, in Singularity application installation is a strictly defined process. It includes saving
all data required to run the application and registration of the application in the system.
During installation the application’s MSIL code is verified and compiled to machine code.

2Microsoft Intermediate Language (MSIL) is the native language of the virtual machine used by Microsoft
.NET Framework.

Then, the generated code is digitally signed by the system, to ensure that it is not modified
later. During the installation phase, Singularity can detect a lot of errors, which in standard
operating systems would be found only at run-time. For example, the system can make sure
that all necessary components are installed, so an application will never be started without
dependent libraries. Furthermore, Singularity can make sure that installation of the new
application components will not break applications which are already installed in the system.

The second phase introduced by Singularity is called the load-time phase. It occurs when
the application is loaded into the system, before its execution. The main purpose of this phase
is to check whether the application is compatible with the current system environment. For
example, Singularity may detect that a service required by the application is not running.
This minimizes the probability of application failure because of execution in an unsupported
environment. The load-time phase is very important in the case of device drivers, because
the system can guarantee that device drivers use only devices for which they are installed,
and that conflicting drivers are never executed simultaneously.

Thanks to MSIL code and the two additional error detection phases, Singularity is able to
detect errors as early as possible and minimize the amount of run-time errors, which decrease
the system’s stability and in case of device drivers, may even cause a system-wide failure.

1.2. Software Isolated Processes

Errors occur in every computer system and the bigger the system, the greater the probability
of a failure. A good operating system has to be ready to handle situations, in which
applications fail and perform illegal operations which are inconsistent with their specification.
The problem is that most operating systems do not handle application failures well, especially
in the case of system applications and device drivers — their failure usually causes a failure
of the whole system. The main reason for this fact is that system services and device drivers
are usually a part of the system’s kernel and they are not isolated from the operating system
(and other applications). Therefore it is very hard to stop or restart system services or device
drivers without affecting the system’s stability.

The designers of Singularity addressed this problem by introducing mechanisms for
isolating software components as part of the system’s architecture. The most important
mechanism is called software isolated processes (abbreviated SIPs). This section describes
the key ideas behind this mechanism.

Software isolated processes are Singularity’s equivalent of processes from standard
operating systems. SIPs establish a context for the code of executed programs and they
are an abstraction for a single instance of an executed program. Furthermore, SIPs isolate
programs from each other and they are used to schedule resources, such as CPU, memory,
etc.

1.2.1. Closed Object Spaces

From the programmer’s point of view, processes in Singularity are object spaces, in contrast
to standard operating systems, where processes are actually memory spaces. In contemporary
operating systems, applications operate on memory directly, using machine code instructions.
In Singularity, processes can only operate on objects using MSIL code, so objects are
the only abstraction of memory in the system. The most important fact is that in
Singularity, applications cannot reference memory directly. Instead, they must use typed
object references. Together with garbage collection mechanisms, this eliminates the problem
of dangling pointers and referencing uninitialized memory. Furthermore, it is easy to protect

10

system code from being executed by applications outside the kernel, since classes without
public constructors cannot be instantiated (and therefore used) by non-system applications.
Similarly, SIPs cannot access memory regions, to which they have no references.

There is one more substantial difference between SIPs and traditional processes. After a
SIP is loaded into memory and starts its execution, no additional code can be loaded into
the SIP’s code space and no code can be modified. In other words, the entire code must
be specified before the SIP begins execution. This solution was implemented in Singularity
primarily for two reasons. First of all, closed code spaces make it possible to use better static
code analysis and optimization algorithms. Secondly, the closed code space concept supports
writing applications as sets of many small, well-isolated components. Modern applications
very often use dynamic code loading as a mechanism of providing extensibility. Components
which extend the application’s functionality are dynamically loaded and become part of the
application. The problem with such architecture is error propagation — an error in one of the
components usually leaves the application in an unknown state and requires restarting the
whole application. In Singularity extensions must be loaded into the system as a separate
SIP which communicates with the rest of the application’s processes. In case of an error, it
is usually possible and sufficient to restart only the SIP of the extension which failed.

1.2.2. Hardware and Software Memory Protection

One of the most important tasks of an operating system is isolating processes, to enable
simultaneous execution of many programs. Particularly, an operating system must guarantee
that no process can read or write memory which belongs to another process. Usually such
a functionality is implemented using hardware memory protection mechanisms. When a
process tries to access a memory address which is invalid, or points to a memory region that
does not belong to the process, then the operating system is signalled about the situation
by a hardware interrupt. In this case, the process which executed the illegal operation is
usually terminated by the operating system. Hardware memory protection is very powerful
and quite easy to implement, however it has a major cost in terms of performance.

In contrast to standard processes, software isolated processes do not rely on hardware to
provide process isolation. This is possible only thanks to the fact, that programs in Singularity
are expressed as MSIL, which does not enable direct memory referencing — memory can be
accessed only by object references, which always point to valid memory regions belonging to
the process. The programmer simply cannot write a code which references invalid memory.
This leads to the conclusion, that in Singularity it is possible to simultaneously run multiple
processes without hardware memory protection and this gives many advantages. First of
all processes can be started and stopped a lot faster then in traditional operating systems,
because the hardware protection mechanisms do not have to be configured and managed
for each process. Furthermore, the memory footprint of processes is a lot smaller without
hardware memory protection and this enables faster context switching of processes and
threads, which is very important in applications which use multi-threading and parallel
computations.

1.2.3. The State Sharing Problem

One of the major problems associated with providing isolation between processes is state
sharing. Every operating system which supports multitasking must provide some sort of
mechanism for interprocess communication. Usually this mechanism is implemented as
sharing a region of memory which many applications can read and write. For programmers

11

this is the most intuitive way to share data between many processes. At the same time this
mechanism is extremely difficult to use properly and many programmers do not realize that.
For this reason applications which use shared memory usually contain many errors which are
very hard to find and fix.

The described memory sharing mechanism has even a more serious flaw — it leads to state
sharing. When an application, which uses shared memory, fails due to an error, then the data
stored in the shared memory region is in an unknown state. It might have been corrupted by
the application which failed. This leads to the necessity to terminate all applications which
use the shared memory region, which in turn results in serious error propagation between
processes in the system. This situation is even more dramatic when it comes to system
components whose errors can easily cause a failure of the entire operating system.

Due to the presented reasons, Singularity does not allow memory sharing. The
architecture of the system makes it impossible to share objects between processes or the
system’s kernel. This has many advantages, for example each process can have a different
runtime environment and use a different garbage collection algorithm. Furthermore, it is
easier to reclaim memory, after a process is terminated. On the other hand, interprocess
communication is more complex and requires special system mechanisms.

1.3. Interprocess Communication in Singularity

Building applications for Singularity often involves dividing them into many well-isolated
SIPs, due to the fact that Singularity does not allow dynamic code loading. All components
which are added to the application as extensions or plug-ins must be implemented as separate
processes. Furthermore, software isolated processes cannot share memory. Therefore,
there must exist some sort of mechanism which would allow to exchange data between
processes. That’s why Singularity implements communication channels — a reliable and robust
interprocess communication mechanism.

Singularity’s communication channels are described briefly in this section. For more
details on interprocess communication in Singularity, please see [2].

1.3.1. Communication Channels in Singularity

Singularity’s channels mechanism implements interprocess communication based on message
passing. It is a lot easier to properly implement interprocess communication using a message
exchange protocol than by sharing memory between processes. The system requires explicit
specification of the communication protocol, which enables static and dynamic verification of
the communication. Static code analysis algorithms can analyze MSIL code and detect most
errors associated with invalid use of channels, before the communicating processes are even
started.

A communication channel consists of two channel endpoints, which are used to send and
receive data through the channel. One endpoint is used to receive messages and the other
one is used to send them. Each endpoint can be owned by at most one thread and only
that thread can use the endpoint. Additionally, Singularity channels are bidirectional, so it
suffices to have a single channel between two processes and enable communication between
them in both directions.

Messages are sent through channels asynchronously. The send operation does not block
the sending process and never requires additional memory. On the other hand, receiving
messages from an endpoint can block the receiving process. Furthermore, the Sing# language
provides special syntax, which allows to wait for messages which satisfy specified criteria.

12

From the programmers point of view, messages are just objects which contain data of
strictly defined types. However, not every type of data can be sent through a communication
channel. Singularity requires all data types, which are used in channel messages, to be simple
types such as integers, bytes, boolean values, etc. Particularly references to objects cannot
be passed through channels, because the referenced object exists only in the sending process
and it does not make any sense in the other process. As mentioned earlier, this makes it
impossible to share objects between processes in Singularity.

Some applications may require exchanging more complex data than simple types. To
send complex objects through channels, the objects must be either serialized to some binary
format, or represented as special structures called rep structs. Rep structs seem similar to
regular structures in the .NET Framework, however they are handled completely differently
by the operating system. First of all, rep structs are value types, which means that they
are stored as values and not as references to data. Additionally, rep structs may contain
only values of simple types or instances of other rep structs. This way they do not contain
references, and thus they can be passed through communication channels. In contrast to
standard structures in the .NET Framework, rep structs can use inheritance, however they
can inherit only from rep structs.

Channel messages are stored in a special region of system memory, called the exchange
heap. Objects on the exchange heap are stored in memory blocks called regions. They can
be referenced by processes through allocations, which can be seen as type-safe pointers to
regions in the exchange heap. Additionally, objects in the exchange heap can be handed
off between processes. Each object is initially owned by the thread which created it and
later the object can be passed over (with ownership) to another thread. Each object in the
exchange heap is owned by at most one thread at the same time, so there is no memory
sharing between processes. The described mechanism is used to send messages over channels.
Such implementation allows passing objects between processes without the need to physically
copy the data from one object space to the other.

The concept of storing messages on the exchange heap introduces a couple of problems.
First of all, more than one process may access a single region of memory, which might
allow memory (and state) sharing. Additionally, the exchange heap is not garbage collected
and requires explicit memory management (a reference counting algorithm is used). This
introduces the possibility of creating memory leaks. Both problems are solved by the Sing#
compiler and static analysis tools, which must guarantee that processes do not share objects
on the exchange heap and that they utilize exchange heap memory properly. The Sing#
language introduces a special instruction, called expose. This instruction must be used to
access data of channel messages and rep structs. There are many rules, which specify how
the expose instruction may be legally used. For example a rep struct can be exposed only
from a thread which owns the object. An interesting fact is that the expose instruction does
not actually do anything (no code is generated by the compiler for the instruction). It is used
by the compiler to statically check and guarantee that objects on the exchange heap are not
shared between processes and that all memory is allocated and freed properly. If a program
does not use the expose instruction properly or tries to access data on the exchange heap
without using the expose instruction, a compile-time error is generated and the application
does not compile successfully. More details about the expose instruction and its compile-time
verification algorithms can be found in [2].

There is one exception from the rule that object references cannot be passed through
channels. Namely channel endpoints may be sent through channels. The semantics of such an
operation are defined as passing ownership of the channel endpoint to the receiving process.
The sending process cannot use the endpoint after it has been sent to another process.

13

Furthermore, a channel endpoint can be sent to another process only if no send or receive
operations were executed on the endpoint.

New communication channels can be created in one of two ways. They can be
automatically created by the system when an application’s processes are started (if the
application is configured this way). The second way is by calling a system function, which
creates a new channel and passes both endpoints to the calling process. In the second case,
the process usually passes one of the endpoints to another process and uses the other endpoint
to communicate with the other process.

1.3.2. Channel Contracts

As mentioned earlier, every channel has a strictly defined communication protocol. The
definition of such a protocol is called a channel contract.

Channel contracts specify how communication can be carried out through the channel.
First of all, a contract specifies the data types which can be sent through the channel. This
specification consists of a set of message type definitions. Each message has a strongly-typed
list of parameters (the data sent in through the channel) and each message is defined as
incoming, outgoing or both. The contract is always defined from the exporting endpoint’s
view, so incoming messages will be received and outgoing messages will be sent. The
definition of such a contract automatically specifies the contract of the other endpoint, in
which incoming messages become outgoing and outgoing messages become incoming.

Additionally, each contract defines the order in which messages can be sent over the
channel. This specification is in the form of a state machine definition. The contract specifies
valid states in which the channel’s endpoints can be, and it specifies the transition of states
when a specified type of message is received or sent.

Listing 1 presents an example of a channel contract definition. The definition begins with
the contract’s name (Addition) in line 1. Lines 3-4 define two messages. The first one, which
is named Parameters is an incoming message and contains two integer values. The other
message, called Result, is outgoing and contains a single integer value. Further, in lines 6-12,
two contract states are specified. The first state, which is the initial state of the contract, is
called Start. In this state, the endpoint can receive a message of type Parameters, and in
that case, the channel’s state changes to SendResult. In the SendResult state, the endpoint
can send a message of type Result and then the endpoint’s state transitions back to the
Start state. A process which uses this contract may, for example, implement an algorithm
which adds two integer numbers and sends the result to the caller.

Channel contracts can extend other contracts in a way which resembles inheritance in
object-oriented programming. Contracts can add new messages and new states to existing
contracts and they can also override existing state transitions. There are some restrictions,
for example a state can be overridden only if it always begins with sending a message (and not
receiving one). Nevertheless, contract extensions enable defining generic protocols and using
them polymorphically, like abstract classes in object-oriented programming. For example,
if an application uses many protocols which have a common subset of message types and
states, then a base contract can be defined and the application code can operate on the
base contract, using only the common subset of states and messages. Later on in this thesis,
examples of such generic contracts will be introduced in the description of Singularity’s device
driver model.

Contract definitions enable static and dynamic verification of communication over
channels. First of all, by using static code verification, Singularity can check whether
applications communicate according to their channel contracts, without executing any of

14

1
2
3
4
)
6
7
8

9
10
11
12
13

Listing 1: A simple contract definition

contract Addition

{
in message Parameters(int a, int b);
out message Result(int r);

state Start : omne {
Parameters? -> SendResult;

}

state SendResult : one {
Result! -> Start;
}
}

the application’s code. The system is able to detect whether applications exchange messages
of valid types and whether the messages are sent in the order specified by the contract.
Furthermore, it can be guaranteed that two processes which communicate with each other
using a specified contract will never enter a deadlock state [2].

1.4. Singularity Kernel

This section briefly presents the architecture of Singularity’s kernel and the main system
components which are implemented as a part of the kernel.

1.4.1. Microkernel Implementation

Singularity’s kernel is based on the microkernel concept. The idea means that the system’s
kernel is very small and contains only the most important system components. All other
services, such as file systems, device drivers, etc. are implemented as external processes,
which communicate with the system’s kernel using interprocess communication mechanisms.

The microkernel architecture has many advantages. First of all, errors which occur in
system components are well isolated from the rest of the system. In traditional operating
systems, where most services are implemented in the system’s kernel, an error in one of these
system components leads to a system failure and requires the whole system to be restarted.
In the case of microkernel systems, it suffices to restart only the single component, in which
the error occurred. Additionally, in microkernel systems, it is usually possible to exchange
system components dynamically, even without restarting the system (for example a system
service can be stopped, and another implementation of the service can be started). In systems
with services implemented as part of the kernel, such operation may even require recompiling
the system’s kernel.

Another advantage of microkernel systems, is that such systems must implement device
drivers in separate processes and this leads to isolating driver errors from the rest of the
system. Device drivers are one of the most unreliable types of software [7]. They are developed
very rapidly and modern hardware is much more complicated than it used to be in the past.
Due to the limited capabilities of testing complex device drivers, they usually contain many
errors. Using modern hardware requires running new, often poorly tested drivers, because no
other are available. This results in decreased stability of computer systems. Modern operating
systems usually load device drivers into the kernel’s code space, because such architecture

15

makes it easy to build drivers, which work very efficiently. However, in such architecture, a
device driver failure results in a failure of the entire operating system.

Although microkernel systems have many advantages, most popular and commonly used
operating systems are based on large, monolithic kernels, which include most system services
and components inside the kernel. The main reason of this fact is performance. Interprocess
communication is expensive and in the case of heavily used system components (for example
the input/output subsystem or device drivers), implementing them in separate processes
introduces an overhead, which is unacceptable in commercial applications.

Singularity is designed as a microkernel system, although some system services, such as
resource schedulers and memory management algorithms, are implemented inside the kernel.
However, almost all device drivers are implemented as processes, whose failure does not
threaten the system’s stability.

The overhead related to the microkernel architecture in Singularity is a lot smaller then in
the case of other operating systems. The reason for this fact is that Singularity’s interprocess
communication mechanisms and software isolated processes were designed particularly with
the microkernel idea in mind. SIPs are lightweight processes, which can all run in privileged
mode, so the context switch cost is much lower than in traditional operating systems.
Furthermore, communication channels enable fast data exchange, without the need to copy
data from one process to another. This is particularly important in the case of device drivers,
which can generate a lot of data (for example the network adapter or mass storage device
drivers). All this together makes Singularity’s performance acceptable, at least for a research
operating system.

1.4.2. Singularity Kernel Components
Resource Scheduling

Every reentrant operating system must efficiently manage available resources and share them
among all executing processes. In Singularity, components which are responsible for resource
scheduling are an important part of the system’s kernel. Singularity implements many
resource management algorithms. The algorithm which will be used by the system can
be selected at kernel compile-time.

One of the most valuable resource in computer systems is the CPU time, which is required
to execute any code. Singularity implements three algorithms to manage this resource. The
first one is a standard round-robin algorithm, which periodically gives the CPU to processes
which are ready for execution.

The second scheduling algorithm, called the Rialto algorithm [6], was developed as a
part of another Microsoft Research project. It is a very complex scheduling algorithm, with
features such as CPU time reservations for individual processes. The algorithm was designed
for systems which support coexisting real-time and non-real-time processes. Singularity is not
an operating system for hard real-time applications, however, the system has been designed
to support soft real-time processes. Supporting such applications has recently become very
important, due to the fact that more and more programs need to get system resources
regularly to work properly. An example of such an application is a video player, which requires
CPU time in regular intervals, to be able to decode video frames in time to continuously
display a movie.

The third CPU scheduling algorithm is called the minimum latency round-robin scheduler.
It is an implementation of the standard round-robin algorithm, designed specially for
Singularity. The algorithm is optimized for systems with many threads, which often

16

communicate with each other and sleep a lot. Processes in Singularity match this pattern
very well. For more details on the algorithm, see [4], [5].

Input/Output Subsystem

The input/output subsystem is one of the most important components of Singularity. It is
responsible for managing data flow between processes and the system’s kernel. Particularly,
the subsystem manages data transfers between device drivers, devices and the system’s kernel.
Additionally, the subsystem is responsible for detecting available devices and managing their
drivers. The next chapter of this thesis contains a detailed description of Singularity’s
input /output subsystem.

Memory Management

Another important component of the Singularity system, is the memory management
subsystem. This component includes the implementation of Singularity’s garbage collection
algorithms, communication channels and exchange heap management.

Both the processes executing in Singularity and the system’s kernel, rely on automatic
memory management. There are many garbage collection algorithms and it is difficult to
select one, universal algorithm which would be efficient for all types of software. Due to the
fact that processes in Singularity do not share memory, it is possible to implement garbage
collection independently for each process. This enables applications to select an algorithm
which best fits their needs and characteristics. Garbage collection algorithms are implemented
as part of Singularity’s kernel.

As mentioned previously, the exchange heap is a system memory region, which stores
messages sent through communication channels. The exchange heap does not use garbage
collection, yet it uses reference counting of regions. The operating system manages the
number of allocations for each region and frees its memory when the number of allocations
drops to zero.

Metadata Management

Singularity extensively uses various types of metadata to store information about the system,
its components and configuration. Metadata is usually stored as XML documents. Some of
the metadata is defined in MSIL code, using C#’s attributes mechanism [9]. However, this
data is usually extracted during code compilation and stored in XML format.

First of all, Singularity introduces the application as a first-class operating system
abstraction. In traditional operating systems, there is only the abstraction of a process.
However, applications contain many processes, data, and metadata files and the lack of an
application abstraction leads to many problems. For example, in most operating systems, the
process of installing an application is usually limited to copying files, without the knowledge
of the files relationships. This often leads to situations in which existing applications stop
working after the installation of new software, because a file shared by many applications
is changed by the installer. The application abstraction also enables flexible per-application
permission management.

Applications are introduced to the system using manifests. Manifests are XML
documents, which describe all the application’s components and the relationships between
them. Manifests declaratively describe the system’s state with the application installed.
During installation, this is the system’s responsibility to determine which operations need
to be executed, to bring the system to such a state. After installation, the application’s

17

manifest is stored in the system and is used to launch the application. Such a solution
enables describing all the application’s processes and communication channels between them.
The system can then automatically set up all the processes when the application is launched.

Manifests for device drivers have a substantial meaning for Singularity. A device driver
manifest declares what devices will be used by the driver, all necessary hardware resources
(such as device ports, memory ranges, etc.), and supported channel contracts. Thanks to
the manifest, Singularity is able to detect driver conflicts, even before the drivers are loaded.
Furthermore, the system can monitor whether drivers use only resources which are declared
in their manifests. This is usually impossible in traditional operating systems, in which device
drivers are pieces of software which are loaded into the kernel and communicate directly with
devices. Singularity’s device driver model is described in detail in the next chapter of this
thesis.

System Namespace

The system namespace in Singularity is a hierarchical set of entries, which are globally visible
in the entire system. Every entry represents some sort of system abstraction (for example
applications, device drivers, files, etc.). Processes can reference these abstractions using the
system namespace entries.

Entries in Singularity’s system namespace are stored in a binary format in contrast to
many operating systems, which store namespace entries as text. Each entry consists of the
entry’s length and a sequence of bytes. Such representation enables convenient application
of logical operators (such as and, or, xor, etc.) to namespace entries. Such operations are
very helpful in some situations, for example in the case of network addresses.

Besides simple data entries, the system namespace is capable of storing other types of
entries. Fist of all, since the namespace is organized hierarchically, collections of entires
can be represented by entries which contain sub-entries. Such collection entries are called
directories. Singularity’s system namespace also support entries which reference other entries
from the namespace. Such entries are called links. Furthermore, channel endpoints can be
stored in the namespace.

The system namespace contains persistent entries which exist throughout the system’s
lifetime, as well as non-persistent entries which represent ephemeral abstractions, such as
network connections or open files. Furthermore, the system namespace can be extended by
various processes. For example bus drivers may add newly detected devices to the namespace.

Application Binary Interface

Most of Singularity’s system services are exposed through channels. The system opens
channels between processes and the kernel and the processes can then request services from
the system by sending messages through these channels. The communication channels can
be created by the system when the application is started. Additionally, some channels can
be accessed through the system namespace.

However, some services in Singularity are exposed using a traditional binary interface
— a set of system functions, which are implemented in Singularity as static methods.
Singularity exposes system functions for channel management, process and thread creation,
synchronization, etc. Particularly creating new channels and sending messages through
channels are implemented using system functions.

Due to the fact, that the kernel has a separate object space, which cannot be shared with
any process, all parameter values of system calls must be simple type values (and not object

18

references).

System calls in Singularity can change the state of the calling process or one of its
descendant processes only. Changing the state of another process in the system can be
done only using channel communication. Such a solution enables processes to constraint the
access of their child processes to the rest of the system by limiting their access to particular
channels. Furthermore, the application binary interface between a process and the kernel
cannot be intercepted or altered in any way without explicit approval of the process’ author
[4].

19

Chapter 2

Singularity I/0O Subsystem

This chapter presents Singularity’s input/output subsystem, its tasks and architecture.
Additionally, this part of the thesis describes the device driver model which has been
implemented in Singularity. Everything described in this chapter refers to the version of
Singularity which was released by Microsoft as the Singularity Research Development Kit
2.0.

2.1. Introduction to Singularity’s I/O Subsystem

The input/output subsystem is one of the most important components in the Singularity
operating system. Without it, Singularity would be a closed black box without any input
or output mechanisms. The design and architecture of the subsystem, including SIP-based
device drivers and channel-based communication, are one of the many ideas which clearly
distinguish Singularity from modern, commonly used operating systems.

2.1.1. I/O Subsystem Responsibilities

The main task of Singularity’s input/output subsystem is to manage data flow between
devices, device drivers and the system’s kernel. Particularly device drivers which are
implemented in separate SIPs, communicate with devices through the I/O subsystem, instead
of accessing hardware directly, as in most operating systems. All data generated by devices
(for example data read by a block device) or hardware state changes, are passed between
drivers and the kernel through the I/O subsystem (usually via channels).

The input/output subsystem is also responsible for device management. During system
startup, the subsystem must detect available devices and load drivers which are suitable
for them. Device management during the system’s lifetime (for instance loading drivers for
dynamically attached hardware) should also be done by the I/O subsystem, however it is not
yet implemented in Singularity.

2.1.2. I/O Subsystem Prerequisites

During the design of Singularity’s I/O subsystem, several assumptions were made about
the rest of the system. Some of these assumptions would not be acceptable in the case
of commercially used operating systems, due to the lack of compatibility with existing
applications or decreased performance. However, in the case of Singularity, which is only
a research operating system, such assumptions can be made. This section summarizes the
main ideas on which the I/O subsystem relies.

21

85
O
= c
n g
S+

Processes
User Programs
File Systems

Kernel Runtime
Scheduler | Channel Mgr. | /O Manager = Security Mgr.

Memory Manager | Metadata Manager Loader

‘ Hardware Abstraction Layer [Assembly & C++ Code |

Processors and Other Hardware

Figure 2.1: The architecture of the Singularity operating system (the I/O subsystem is marked
as red) [3]

Trusted Computing
Base

First of all, assuming that device drivers are implemented in separate processes, in
order to provide performance acceptable even for a research operating system, Singularity
must implement some mechanism of passing data between processes, which does not involve
copying the data physically. Without such mechanism, implementing drivers in separate SIPs
for devices such as network adapters or mass storage devices, would not make much sense
because of an unacceptable overhead. That is why Singularity’s communication channels are
implemented in a way which allows handing off data (in the exchange heap) from one process
to another and such operation does not allocate any memory, nor does it copy the transfered
data. This mechanism is sometimes called zero-copy buffers.

The system namespace has great importance to the I/O subsystem, because many I/0-
related entities, such as devices, device drivers, etc., are stored as namespace entries. The
namespace must be extendible by external processes, particularly by device drivers which may
need to add new entries to the namespace, For example, a network adapter driver may add
entries for network connections and a hard disk driver may add entries for drive partitions.
Additionally, the system namespace must be able to represent collections of entries, such as
sets of devices connected to the same bus or sets of files which belong to the same directory.
Such sets are represented in the namespace hierarchically (entries which contain sub-entries).

Another component of the system, which is very important to the I/O subsystem, is
the memory management component. Singularity supports memory paging, however it does
not support page swapping. The main reason for such an assumption, is to guarantee that
memory will never be corrupted due to an I/O error, while reading or writing memory to a
swap device. Such errors would be very dangerous for the system’s stability, especially if the
corrupted page contains executable code.

2.1.3. I/O Subsystem Architecture

Singularity’s input/output subsystem consists of three parts — the Hardware Abstraction
Layer, the I/O manager and the device drivers (see figure 2.1). The I/O manager uses

22

methods implemented in the hardware abstraction layer to access hardware. Communication
between the I/O manager and device drivers is mostly implemented using channels.

Hardware Abstraction Layer

The Hardware Abstraction Layer (HAL) is responsible for supporting low-level devices, such
as the system timer, interrupt vector, Basic Input/Output System (BIOS), etc. Additionally,
the HAL provides access to devices for higher layers of the I/O subsystem.

Hardware abstraction layers are usually implemented in operating systems to make these
systems platform-independent. All platform-specific code is implemented in a low-level layer
and the rest of the system relies on it. This way operating systems can be easily modified
to work with different processors, platforms, etc. All the system developers must do to port
a system to a different architecture, is to write a platform-specific implementation of the
Hardware Abstraction Layer.

In Singularity, the Hardware Abstraction Layer is very strongly separated from the rest
of the system, due to the fact that it must be partly implemented in unsafe programming
languages. Besides C#, the HAL is implemented in C++ and x86 assembler. However, code
in the mentioned low-level and unsafe programming languages amounts to only 5% of the
system’s kernel code [4]. The HAL is a part of Singularity’s Trusted Computing Base (TCB).
The TCB is a part of the system, which cannot be fully verified by static code verification
mechanisms. The rest of the system is layered on the TCB. Of course the TCB should be as
small as possible to minimize the probability of a system failure.

Singularity relies on the HAL as an interface to device memory, ports, interrupts, and
other hardware support mechanisms. System components (particularly device drivers) cannot
communicate directly with hardware, due to the fact that they must be implemented in
managed code. Thus, they must communicate through the Hardware Abstraction Layer.
This leads to a strong isolation of hardware support code from the rest of the system.

I/O Manager

The I/O manager is the central component of Singularity’s input/output subsystem. The
main task of the I/O manager is detecting and monitoring devices and loading drivers for
them. Devices are detected by bus drivers, which are currently a part of the Hardware
Abstraction Layer. Additionally, the hardware detection procedure is performed only during
system startup. The I/O manager communicates with bus drivers to find out what hardware is
available and then finds matching device drivers for each device. The driver loading procedure
is described in detail later on in the thesis.

In case of a device driver failure, the I/O manager should restart the failed driver and
restore the system’s stability (for example by informing all other components about the newly
loaded driver). Furthermore, none of the subsystem’s components may fail due to the failure
or unresponsiveness of another component. The subsystem’s design assumes that such errors
are handled gracefully.

Device Drivers

Device drivers are the third part of Singularity’s I/O subsystem and this is the part of the
subsystem which can be easily extended by adding new components to the system. Device
drivers implement access to devices using precisely defined contracts, so that other parts of
the system can utilize these devices. Each driver supports either a specific device or a group
of devices.

23

In contrast to traditional operating systems, in Singularity device drivers are implemented
in managed, type-safe programming languages and they do not communicate directly with
hardware. Instead, they rely on the Hardware Abstraction Layer. A detailed description of
Singularity’s SIP-based driver model is presented later on in this chapter.

Although most Singularity device drivers are implemented as separate SIPs, some drivers,
called kernel drivers, are implemented as part of the system’s kernel. These drivers can be
divided into two categories. The first one consists of drivers for low-level hardware, such as
the system timer or interrupt vector. These drivers are implemented as part of the Hardware
Abstraction Layer. The reason why these drivers are a part of Singularity’s kernel, is that
they support extremely low-level hardware and it would be very difficult and complicated to
implement such drivers in high-level programming languages.

The second category of kernel drivers consists of bus device drivers, which are responsible
for detecting the system’s hardware configuration. These drivers are implemented as code
which is called directly by the I/O manager. They are a part of the system’s kernel to simplify
their implementation.

2.2. SIP-based Device Driver Model

This section describes how device drivers are implemented in Singularity, how they are loaded
and how they work in the system. The description in this section involves only SIP-based
drivers, which are executed in separate processes and not kernel drivers.

2.2.1. Introduction

Most device drivers in Singularity are implemented using a new, experimental SIP-based
model which is completely different from the device driver model used by traditional operating
systems.

First of all, SIP-based device drivers are executed in separate processes, outside the
system’s kernel. Such process-based drivers have many advantages. Most of all, they are
strictly separated from the kernel, so no error in the driver’s code affects the kernel and the
entire system. Furthermore, process-based drivers can be easily restarted in case of a failure.
All these advantages result in a better system stability and dependability.

Despite the mentioned advantages of process-based device drivers, almost all popular,
contemporary operating systems use a driver model in which device drivers ale loaded into
the system’s kernel. There are mainly two reasons for such solution. First of all, kernel drivers
are usually a lot more efficient then process-based drivers, because of the lack of overhead
caused by process context switching and hardware memory management. Such overhead is
usually unacceptable in commercial operating systems in which efficiency is very important.
In Singularity this is not a big issue, because SIPs can be executed in the same hardware
protection domain as the kernel, and hardware memory management is not needed. The
second reason why process-based drivers are not popular, is the fact that such a driver model
requires efficient and convenient interprocess communication mechanisms. Shared memory
or simple message queues offered by most operating systems is not enough. Singularity offers
communication channels, which are easy to use and much less error prone then the mentioned
mechanisms.

24

1
2
3
4
)
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20

Listing 2: Part of the IoMemory class definition

public sealed class IoMemory

{
private readonly PhysicalAddress dataPhys;
private readonly unsafe byte * data;
private readonly int bytes;
private readonly MemoryType type;
private bool readable;
private bool writable;

public unsafe byte Read8(int byteOffset) { ... }
public unsafe ushort Readl16(int byteOffset) { ... }
public unsafe uint Read32(int byteOffset) { ... }
public unsafe ulong Read64 (int byteOffset) { ... }

public unsafe void Write8(int byteOffset, byte value) { ... }
public unsafe void Writel6(int byteOffset, ushort value) { ... }
public unsafe void Write32(int byteOffset, uint value) { ... 3}
public unsafe void Write64(int byteOffset, ulong wvalue) { ... }

}

2.2.2. Type-safe Hardware Communication

SIP-based device drivers are not only executed in separate processes, but are also represented
to the system as type-safe MSIL code. This is quite an unusual approach, since device drivers
require low-level programming instructions to communicate with hardware. SIP-based drivers
cannot communicate directly with their devices, because MSIL does not provide such low-level
instructions. That’s why device drivers in Singularity must rely on the Hardware Abstraction
Layer, which may contain unsafe code. The HAL provides type-safe abstractions of low-level
primitives to the driver processes as objects which represent the device’s memory, ports, etc.

The HAL implements several classes which represent hardware resources in a type-safe
and object-oriented way. For example the ToMemory class represents a memory buffer. Some
fragments of this class are presented in listing 2. The data stored in IoMemory objects
are declared in lines 3-8. The object simply encapsulates an unsafe memory pointer and
stores some additional information such as the type of represented memory, and whether the
memory is writable. The class implements several methods which can be used to access the
encapsulated pointer from MSIL code in a type-safe way. For example the Read16 method
reads 16 bytes at the specified offset in the buffer.

There are many other objects which similarly represent hardware abstractions in a type-
safe way. For example the IoPort class represents a hardware port, which can be used to
communicate with devices and the IoDma class enables use of the Direct Memory Access
mechanism from MSIL code.

2.2.3. Hardware Resource Allocation

The previous section of this chapter described how managed device drivers access hardware
through system objects, which are implemented in the Hardware Abstraction Layer. It is yet
still unclear how device drivers obtain or create these objects.

In most contemporary operating systems, in which drivers communicate directly with

25

hardware, drivers acquire needed device resources themselves. This is possible due to the fact,
that such device drivers are executed as part of the system’s kernel with highest privileges
possible. For example when a graphics adapter driver is loaded, it directly accesses a memory
region on the graphics adapter which represents the data which will be displayed to the user.
This solution has a major drawback — the operating system does not know which resources
are used by which drivers, since drivers access resources directly, without informing the
system about obtained resources. As a result, device drivers can access completely different
hardware than they were installed for and the operating system cannot do anything about it.
Furthermore, a driver may access a wrong device by error and bring the entire system down.
The system’s stability is also at risk in case of a resources allocation conflict, in which more
than one driver accesses the same hardware resource (for example the same memory region).

To eliminate the mentioned drawback, the SIP-based driver model provides a completely
different way of acquiring hardware resources by drivers. In order to access hardware
resources, managed drivers require instances of system objects, which are implemented in
the Hardware Abstraction Layer. Moreover, these objects can be created by kernel code only
and cannot be passed between SIPs, since they are not rep structs. This leads to a model,
in which device drivers must request resources from the operating system and the operating
system grants such requests by creating system objects for the driver. This solution enables
very accurate resource tracking — the system knows precisely what resources are used by
which driver. Furthermore, if a driver requests a resource which is already used by another
driver or is inconsistent with the drivers configuration (for example a graphics adapter driver
requests resources of a block device), the operating system can deny such a request.

SIP-based device drivers are regular Singularity applications and as such they contain an
application manifest. Manifests for device drivers contain additional data about hardware
resources required by the driver. This section of the manifest is usually generated
automatically during compilation, based on the resources declared by the driver.

In listing 3 is presented a complete declaration of hardware resources and communication
channels for the S3Trio graphics adapter driver (communication channels will be discussed in
the next section). The S3TrioConfig class, which stores all system objects for the driver’s
resources, contains several system object declarations. Each of the declared fields has an
attribute! which specifies what resources will be represented by the object. For example the
frameBuffer object (declared in line 6) represents a memory region in the graphics adapter
device’s memory, whose length is 0x400000 bytes and the default address of the region is
0x£8000000. The textBuffer object (declared in line 9) is similar to the previous object,
however, it represents a memory region at a fixed location in the graphics adapter’s memory.
The region’s size is 0x8000 bytes and the region starts at address 0xb8000. The fontBuffer
is declared similarly. The ports which will be used for communication with the graphics
adapter are declared in lines 14-21.

When the driver is loaded and initialized, the operating systems verifies each of the
specified resources. First of all, the system verifies whether the specified resources are not
used by any other driver and whether they are consistent with the driver’s manifest. If there
are no conflicts, then the system objects (such as IoMemoryRange and IoFixedPortRange)
are created by the kernel and references to the objects are stored in the proper fields. For
example, the IToMemoryRange object which represents the text buffer is stored in the field
declared in line 9.

!The attributes mechanism is provided by the C# programming language to enable adding custom data
to various language constructs, such as variables, classes, methods, etc. The information is included in the
compiled MSIL code and is usually retrieved during code compilation or at run-time.

26

00 O Ui W N

Lo W W WWWNDNNDNDNDDNDDNDNDNDDLN = = = =
QU W N R O OO UUhRE WINHFRF OOWOOIDUkWwNnFE OO

Listing 3: Resource and communication declarations for the S3Trio graphics
adapter

[DriverCategory]

[Signature ("pci/ven_5333&dev_8811&cc_0300")]

internal class S3TrioConfig: DriverCategoryDeclaration

{
[IoMemoryRange (0, Default = 0xf8000000, Length = 0x400000)]
internal readonly IoMemoryRange frameBuffer;

[IoFixedMemoryRange (Base = 0xb8000, Length = 0x8000)]
internal readonly IoMemoryRange textBuffer;
[IoFixedMemoryRange (Base = 0xa0000, Length = 0x8000)]
internal readonly IoMemoryRange fontBuffer;
[IoFixedPortRange (Base = 0x03c0, Length = 0x20)]
internal readonly IoPortRange control;
[IoFixedPortRange (Base = 0Ox4ae8, Length = 0x02)]
internal readonly IoPortRange advanced;
[IoFixedPortRange (Base = 0x9ae8, Length = 0x02)]

internal readonly IoPortRange gpstat;

[ExtensionEndpoint]
internal TRef<ExtensionContract.Exp:Start> ec;

[ServiceEndpoint (typeof (VideoDeviceContract))]
internal TRef<ServiceProviderContract.Exp:Start> video;

[ServiceEndpoint (typeof (ConsoleDeviceContract))]
internal TRef<ServiceProviderContract.Exp:Start> console;

internal int DriverMain(string instance) {
return S3Control.DriverMain(this);

}

To sum up, the only way SIP-based device drivers can access hardware resources, is
by specifying the resources in their application manifest. This in turn provides the system
with precise information about what resources are used by which drivers. The system is
responsible for providing the driver with system objects encapsulating the specified hardware
resources when the driver is initialized. Resources can be easily declared in driver code using
C# attributes and the driver’s manifest can be generated automatically when the driver is
compiled to MSIL code.

2.2.4. Channel Communication

All SIP-based device drivers use channels to communicate with their environment. The I/0
manager controls drivers through a special channel and requests for the driver are delivered
through another channel. This section describes what contracts are used by managed device
drivers and how incoming messages are serviced by them.

27

—_

O © 00O Uk Wi+

Listing 4: ServiceContract definition

contract ServiceContract

{
out message ContractNotSupported();
state Start : one {
ContractNotSupported! -> DoneState;
}
state DoneState : omne { }
}

Singularity’s SIP-based driver model heavily relies on the contract extension mechanism.
Device drivers define their capabilities by contracts which extend other contracts and the
base contracts define capabilities which are common for several device drivers. This enables
the system to treat device drivers generically if there is no need to use driver-specific
capabilities. Such a mechanism also simplifies implementing special (for example hardware-
specific) driver features. For example a graphics device driver can implement some hardware-
specific operations, by defining them in a contract which extends Singularity’s standard video
driver contract. This way the system and all applications can use the driver as a regular video
driver through the standard contract and the special operations can be accessed through the
new, driver-specific contract.

The most important base contracts will now be introduced. The ServiceContract
(presented in listing 4) is the base contract for all contracts used to define driver capabilities.
It can be seen as a base, abstract contract, similar to the Object class in object-oriented
programming languages. The contract does not support any operations, all it does is
sending ContractNotSupported messages. Contracts which extend the ServiceContract
must override the start state and provide new states which send and receive meaningful
messages. The purpose of the ServiceContract is to represent a generic service.

The ExtensionContract (presented in listing 5) extends the ServiceContract and adds
initialization and shutdown support. The contract sends a Success message after successful
initialization. Subsequently it waits for a Shutdown message to perform deinitialization.
Finally it sends a AckShutdown or NakShutdown depending whether the deinitialization was
completed successfully.

The next important contract is the ServiceProviderContract (presented in listing 6).
It is used by applications which provide services that can be accessed by several clients and
it is also used by device drivers to accept requests from their environment. Applications
which expose services using the ServiceProviderContract, register their endpoints in the
system namespace. An application which wishes to use the service must send a Connect
message and pass a channel endpoint which extends the ServiceContract. If the service
provider supports the specified channel contract, then it will send a AckConnect message
in reply. If the specified contract is not supported, then a NackConnect will be sent (with
the channel endpoint specified in the Connect message). Subsequently, the service provider
will communicate with the application using the specified endpoint. Obviously, the service
provider must support simultaneous communication with many applications, through several
channels.

Listing 7 presents a fragment of Singularity’s video driver code. This code will be used
to present how SIP-based device drivers process requests through channels. Note that some

28

O O UL W N+

—
W= O o

Listing 5: ExtensionContract definition

contract ExtensionContract : ServiceContract
{

in message Shutdown ();

out message AckShutdown ();

out message NakShutdown ();

out message Success ();

override state Start : one {
Success! -> Ready;

}

state Ready : omne {
Shutdown? -> (AckShutdown! or NakShutdown!) -> Ready;
}

Listing 6: ServiceProviderContract definition.

contract ServiceProviderContract
{
in message Connect(ServiceContract.Exp:Start! exp);
out message AckConnect ();
out message NackConnect(ServiceContract.Exp:Start exp);

state Start : Connect? -> Ack;
state Ack : one {

AckConnect! -> Start;
NackConnect! -> Start;

less important code fragments have been omitted from the listing to increase readability.

After initialization, in line 3, the driver sends a Success message through the ec channel,
which implements ExtensionContract. It is the same channel which is declared among
the driver’s resources in listing 3. This informs the I/O manager, that the driver has been
successfully initialized.

Next, in lines 5-6 is the declaration of the vs collection, which is a set of channel endpoints,
which implement the contract VideoDeviceContract, Singularity’s standard video driver
contract. Furthermore, endpoints stored in the set must be in the Ready state. The collection
will be used to store endpoints from clients which connect with the driver through the ec
channel.

Lines 10-39 contain a for loop which is iterated as long as the boolean run variable is set
to true. The loop will process all requests received by the driver’s channels. Inside the loop is
used a switch receive construct, which receives messages from one or more channels. Each
type of message is handled in a separate case clause.

The Shutdown message of the ExtensionContract channel (ec) is handled in lines 13-16.
A AckShutdown message is replied over the ec channel and the run variable is set to false
to stop processing messages in the outer for loop.

29

Lines 18-29 handle the Connect message of the ServiceProviderContract, which is sent
by applications that wish to use the driver. The Connect message contains a channel endpoint
which implements a contract which extends ServiceContract. The driver supports only
the Singularity’s standard video driver contract, so the as operator is used to dynamically
check whether the endpoint implements VideoDeviceContract. If the video contract is
implemented by the endpoint, then the newClient variable will be a valid reference to the
video contract channel, otherwise, the variable will be null. If the variable is null, then
a NackConnect is sent to reject the incoming connection (in line 27). Otherwise, the new
client endpoint is added to the vs collection and a AckConnect message is sent over the
ServiceProviderContract channel.

The rest of the case clauses of the switch receive construct handle messages of the
VideoDeviceContract. For example the contract’s Plot message, which draws a point on
the screen, is handled in lines 20-24. Note that the Plot messages are received from one of the
endpoints in the vs collection, using Sing#’s in operator. The switch receive construct is
implemented in a way that guarantees fairness. In other words, none of the client endpoints
in the vs collection will have to wait infinitely long to be processed.

After the for loop is terminated by a Shudown message, the ec and ve channel endpoints
are closed using the delete operator. Subsequently, the vs collection is disposed, which will
lead to closing all client endpoints.

2.3. System Namespace Layout

This section describes how device and driver data is organized in Singularity’s system
namespace. Although the namespace contains information related to many aspects of the
system, such as security, system services and diagnostic information, only the parts of the
namespace related to devices and drivers are presented here.

One of the most important parts of the system namespace, related to the I/O subsystem,
is the /dev directory. It contains symbolic links to channel endpoints for each loaded driver.
These entries are used by the rest of the system to connect and communicate with the drivers.
That’s why these entries are called public endpoint names. Note that these entries are only
links to the entries which represent the real endpoints (which are stored in the subdirectories
of the /hardware tree).

The layout of a sample /dev directory is presented in listing 8. There are four public
names in the namespace. The disk0@ and disk1@ entries point to the DiskDrive driver.
Note that the links point to endpoints of different instances of the driver. Additionally, there
is a link for the keyboard driver (keyboard@) and the network adapter device driver (nic0@).

Most of the I/O-related namespace entries are stored in the /hardware directory,
which contains three important subdirectories. The /hardware/devices directory stores
information about available devices. Each device is represented in the tree by a subdirectory,
which contains entries specifying the device’s driver and to which bus the device is connected.
The /hardware/drivers directory stores information about devices drivers which have been
registered in the system. Each driver instance contains a separate subdirectory in the tree.
The /hardware/registrations directory contains entries which map device signatures to
the drivers which support the devices specified by the signatures. The layout of a sample
/hardware directory is presented in listing 9. Due to the enormous size of a real /hardware
directory, only the most important subdirectories and entries have been presented.

The /hardware tree is built in two phases. The first phase consists of building
subdirectories based on the system configuration and device information provided by

30

0O Ui Wi+

R R R R R W W W W W W W W W W NDNDDNDNDNDDNDNDNDLN e e e e e e e
NN OO U W OO Ulk W OOl W O OO0 Ut WwWwNh—O o

Listing 7: Channel processing in S3Trio driver

ExtensionContract.Exp! ec = resources.ec.Acquire();
ServiceProviderContract.Exp! ve = resources.video.Acquire();
ServiceProviderContract.Exp! te = resources.console.Acquire();

ec.SendSuccess () ;

ESet<VideoDeviceContract.Exp:Ready> vs
= new ESet<VideoDeviceContract.Exp:Ready>();

for(bool run = true; run;) {
switch receive {

case ec.Shutdown ():
ec.SendAckShutdown () ;
run = false;
break;

case ve.Connect(candidate):
VideoDeviceContract .Exp newClient
= candidate as VideoDeviceContract.Exp;
if (newClient !'= null) {
newClient .SendSuccess () ;
vs.Add (newClient) ;
ve.SendAckConnect ();
}
else {
ve.SendNackConnect (candidate);
}

break;

case ep.Plot(x, y, color32) in vs:
device.Plot(x, y, new RGB(color32));
ep.SendAckPlot ();
vs.Add (ep);
break;

(-

delete ec;
delete ve;
vs.Dispose ();

31

SOl W N

Listing 8: Sample system namespace layout in Singularity — dev directory

+ <dir> dev

| + <chan> conout

| <link> disk0O@ -> /hardware/drivers/DiskDrive/instance0O/endpointl

| <link> disk1@ -> /hardware/drivers/DiskDrive/instancel/endpointl

| <link> keyboard@ -> /hardware/drivers/LegacyKeyboard/.../endpointl
| <link> nic0@ -> /hardware/drivers/Tulip/instance0O/endpointl

+ 4+ 4+

bus drivers. Firstly, the /hardware/drivers directory is created based on the system
configuration. A subdirectory in the tree is created for each installed driver. Then for each
driver, a symbolic link named image@ is created. It points to the directory which contains
the driver’s manifest and binary files, which are usually stored in the /init directory. Next,
bus drivers are used to detect all devices present in the system and a subdirectory in the
/hardware/devices and /hardware/registrations trees are created for each device. Each
device has a signature, which specifies its type and the bus to which the device is connected.
The names of the subdirectories usually depend on the device’s signature. For example the
keyboard, which has the signature /pnp/PNP0303, is represented in the namespace by the
directory /hardware/devices/pnp/PNP0303/instance0.

The second phase of building the /hardware tree occurs when device drivers are activated.
For each driver which has to be started, the system finds the driver’s root directory (such
as /hardware/drivers/LegacyKeyboard) and the root directory of the device which will be
supported by the driver (such as /hardware/devices/pnp/PNP0303/instance0). First of all,
a directory is created which will represent the new instance of the driver. For example, for
the keyboard driver, such a directory might be /hardware/drivers/DiskDrive/instanceO.
Such naming enables running many instances of the same driver, which might be required if
there are many instances of the same device type connected (for example many hard drives
of the same model). Next, the driver’s SIP is started based on the application manifest from
the driver’s directory, which is determined by the image® link in the driver’s root directory.
At this point the driver instance must be associated with its device instance. This is done
by creating two symbolic links. The first one, called device@, is created in the driver’s
instance directory and points to the device’s instance directory in the /hardware/devices
tree. The second one, called driver@, is created in the device’s instance directory and points
to the driver’s instance directory. Further, all channel endpoints of the driver are set up,
which completes the driver’s activation procedure. Now that all channel endpoints have been
created, the devices’ public names can be created in the /dev directory.

2.4. Driver Loading Procedure

The driver loading procedure, which occurs during system startup, consists of two phases —
registration and activation. This part of the chapter describes how they work.

2.4.1. Driver Registration

The purpose of the registration phase is to find out what drivers are available in the system
and what devices they can support.

First, all drivers compatible with the current hardware architecture are found by looking
through the system-wide manifest. For each found and compatible driver, an entry is created
in the system namespace, in the /hardware/drivers node. Next, the system discovers what

32

0~ O U W N

S R W0 W W W W W W W W WRNDNDNDNDDNDNDNDNDN = e e e e e e
N OO0 Uk WNDRFE OO0 IDNUUkR WNRFE O OO0 Utk wNn—=O©o

Listing 9: Sample system namespace layout in Singularity — hardware directory

+
I
I
[
||
||
[
[
[
[
I
[
[
| +
[
||
[
[
[
[
||
[
[
[
[
[
I
[
| +
[
[
[
[
[
[
[
[
[
[
[
[
I

+

<dir> hardware
+ <dir> devices

<dir> ata

+ <dir> controller

| + <dir> instanceO

| | + <link> driver@ -> /hardware/drivers/DiskDrive/instance0

| | + <link> location® -> /hardware/locations/acpiO/.../controllerO
| + <dir> instancel

| | + <link> driver@ -> /hardware/drivers/DiskDrive/instancel

| | + <link> instance@ -> /hardware/locations/acpiO/.../controllerl

<dir> drivers

+

|
|
|
|
|
+
+
|
|
|
|

<dir> DiskDrive

+ <link> image® -> /init/DiskDrive

+ <dir> instanceO

| + <link> device@ -> /hardware/devices/ata/controller/instanceO
+ <dir> instancel

| + <link> device@ -> /hardware/devices/ata/controller/instancel
| + <chan> endpointil

<dir> kermnel

<dir> LegacyKeyboard

+ <link> image@ -> /init/LegacyKeyboard

+ <dir> instanceO

| + <link> device@ -> /hardware/devices/pnp/PNP303/instance0

| + <chan> endpointil

<dir> registrations

+
|
|

+
|

+
|

+
|
|
I

<dir> ata

+ <dir> controller

| + <link> driver@ -> /hardware/drivers/DiskDrive
<dir> pci

<dir> pnp
<dir> root

+ <dir> acpiO
| + <1link> driver@ -> /hardware/drivers/kernel

devices can be supported by the driver, by finding all device signatures declared by the driver
in its manifest. The discovered information is registered in a data structure maintained by
the I/O manager.

When the mentioned procedure is completed, all SIP-based device drivers are registered
in the system. The next step is to register internal, kernel drivers. This is done statically
in kernel code, by registering signatures of kernel-supported devices and mapping them to
proper kernel drivers.

33

2.4.2. Driver Activation

The next phase involves finding what devices are present in the system and loading proper
drivers for them. In this phase also device instances are resolved with their drivers.

The driver activation phase is executed iterationally. In each iteration a driver which can
be activated is found, it is associated with a device instance, initialized and loaded. A driver
can be activated if all its dependencies are satisfied and there is a device in the system with
a matching signature and without a driver.

A driver may specify more than one signature and it does not have to match the
device signature exactly. This enables drivers to support generic groups of hardware. For
example the IDE bus driver specifies the signature pci/cc_0101, which partially matches the
device signature pci/ven_8086&dev_7111&cc_0101&subsys_00000000&rev_01. During driver
activation, the I/O manager tries to find a driver with an exactly matching signature and
if such a driver does not exist, then it tries to find a driver with the best partial signature
match.

If a driver which was just activated supports a bus device, then it is used to enumerate
the bus and discover new devices in the system. The following iterations associate the new
devices with compatible drivers (if drivers are available for them) and activated. The first
bus device, called the ACPI PNP bus, is registered by the kernel in an early system startup
phase. This bus device enumerates the Basic Input/Output System (BIOS) to find all basic
hardware. Later on, during the driver activation phase, additional buses, such as the PCI
bus, are discovered.

The activation phase is completed when there are no more drivers to activate.

34

Chapter 3

SIP-based Bus Driver Model
Implementation

The previous chapters presented the major ideas behind Singularity and the I/O subsystem.
This part of the thesis describes the main effort of this thesis — a new bus driver model for
Singularity, which allows to execute bus drivers in separate software isolated processes. This
chapter describes how the original I/O system was extended to support the new driver model
and presents details of the model’s implementation. Finally, the last section of this chapter
presents tests which were performed on the that implementation.

3.1. Singularity Bus Drivers Overview

The Singularity RDK 2.0 contains six bus drivers. The following sections briefly describe the
purpose of each of those drivers and summarize which drivers were implemented using the
SIP-based bus driver model.

3.1.1. Kernel Bus Drivers

The Pseudo bus driver is not actually a real device driver. It allows to register pseudo-devices
which are typically layers in the I/O stack which may be associated with physical devices.
However, at the time of the RDK 2.0 release, the Pseudo driver was used only for testing
purposes.

The ACPI and PNP drivers support the Basic Input/Output System to discover basic
low-level hardware. Only one of these drivers is used depending on the actual hardware
platform.

Furthermore, there is a driver to support the PCI bus and an additional driver to support
Low-Pin Count PCI devices. The latter is used to reroute integrated peripheral interrupts.

Finally, there is a driver to support the IDE/ATA bus controllers. Actually there are
three variations of the driver, one of which is used depending on the actual hardware.

3.1.2. SIP-based Bus Drivers

Two of the mentioned drivers were successfully implemented using the new SIP-based bus
driver model — namely the PCI and IDE drivers.

The ACPI/PNP drivers are used at a very early stage in the system’s startup process,
in which the I/O system is not yet initialized completely and therefore the driver cannot be
executed using the new model. The case of the Pseudo bus driver is analogous.

35

The Low-Pin Count PCI driver was not re-implemented due to the lack of hardware on
which the driver could be tested.

From the three variations of IDE drivers, the most common one (the one which is used
on the virtual platform on which Singularity is usually used) was successfully implemented
using the new driver model. The rest of the IDE drivers could also be easily implemented in
the new model. However, similarly to the Low-Pin Count PCI driver, the implementations
were not done due to the lack of hardware to test them.

3.2. SIP-based Bus Driver Model

This part of the thesis describes the new SIP-based bus driver model. The main objective of
the new model is to improve system stability by protecting it from bus driver crashes.

3.2.1. Problem Overview

The basic difficulty in implementing bus drivers outside the kernel, is the fact that these
drivers, in the kernel implementation, create HAL resource objects for discovered hardware.
This obviously cannot be done outside the kernel. Therefore to implement bus drivers in
SIPs, the discovery process must be divided between the driver and kernel, so that the driver
reports the new hardware configuration and the kernel creates HAL objects which represent
the hardware’s resources.

Another problem is that some bus drivers rely on information about the devices in the
system and their resources. This information is easily available inside the kernel, however
it is limited in SIPs due to Singularity’s driver model which is designed to minimize the
information available to particular drivers. Therefore the question arises how this required
information can be conveyed to bus drivers.

3.2.2. Model Overview

The purpose of a SIP-based bus driver is to find out the hardware configuration of the
devices connected to its bus and report this information to a kernel component called the
bus manager.

Similarly to other SIP-based drivers, bus drivers communicate with bus devices using
resource objects implemented in the Hardware Abstraction Layer. These objects are allocated
by the kernel at driver startup, accordingly to the hardware resources specified in the bus
driver’s manifest.

Every SIP-based bus driver must use at least two channels to communicate with the
kernel. The first channel implements a ServiceProviderContract to communicate between
the driver and the I/O manager. However, this channel is not used to exchange hardware
configuration information between the driver and the kernel. The ServiceProviderContract
is meant to implement services which can be used by applications running in Singularity, and
bus drivers should be used only by the kernel. Additionally the service provider channel
is used to unify the startup and communication across all SIP-based drivers in Singularity
(the SIP-based driver model requires that all drivers have such a channel).

Information about the hardware configuration discovered by the bus driver is sent to
the bus manager using a dedicated channel which implements the BusControlContract (the
contract is discussed in detail in the next subsection). This channel is called the bus control
channel.

36

Channel Channel
I/O Manager (service Bus Driver (bus control Bus Manager
contract) contract)

loMemory loPort loDma lolrgq

Hardware Abstraction Layer

Hardware

Figure 3.1: SIP-based Bus Driver Communication

After the bus driver is started, it communicates with the bus device to find out what
devices are connected to the bus. Then it sends this information over the bus control channel
to the bus manager, which registers the devices and loads drivers for the new devices. After
this initial bus enumeration, the bus driver may terminate or it may continue to monitor the
bus and notify the bus manager when new devices are connected to the bus. This makes
sense only for bus devices which support hot-pluggable devices (for instance the USB bus).
Unfortunately such buses are not yet implemented in Singularity, so all of the implemented
bus drivers exit after the initial enumeration, which occurs during system startup.

The communication model of SIP-based bus drivers is presented in figure 3.1.

3.2.3. Bus Device Driver Contract

Now the contract of bus control channels will be discussed. The definition of the contract is
presented in listing 10.

Each bus driver has two phases of execution. The first phase is when the driver performs
an initial enumeration of the devices connected to the bus. The second phase is when the
driver monitors the bus for newly connected devices.

After a bus driver is successfully initialized, it sends a Success message to the bus manager
and begins the first phase of execution. For each discovered device, the driver sends a
DeviceFound message which contains information about the device’s configuration in XML
format (the format of this XML document is discussed in the next subsection). The bus
manager acknowledges each device by sending a DeviceFoundAck message or rejects the
device by sending a DeviceFoundNack message. Devices may be rejected if they conflict with
other devices in the system or due to invalid data specified by the bus driver. After all devices
have been reported to the bus manager, the driver sends an EnumerationComplete message
and waits until the bus manager acknowledges it. This completes the first phase of execution
and begins the second one.

In the second phase, the driver monitors its bus device and sends a DeviceFound message
to the bus manager when a new device is discovered. Since not every bus device supports
dynamically attached hardware, bus drivers which do not support monitoring the bus device
may notify the kernel that they are no longer needed, by sending a Finished message to the
bus manager. The kernel will acknowledge this message by replying with a FinishedAck or

37

Listing 10: The bus control channel contract

1 public contract BusControlContract

2 A

3 out message Success ();

4

) out message DeviceFound(char[]! in ExHeap devicelInfo);

6 in message DeviceFoundAck ();

7 in message DeviceFoundNack();

8

9 out message EnumerationComplete ();

10 in message EnumerationCompletelck();

11

12 in message Shutdown();

13 out message ShutdownAck();

14 out message ShutdownNack();

15

16 out message Finished ();

17 in message FinishedAck();

18 in message FinishedNack () ;

19

20 state Start: omne {

21 Success! -> Enumerating;

22 }

23

24 state Enumerating: omne {

25 DeviceFound! -> (DeviceFoundAck? or DeviceFoundNack?)
26 -> Enumerating;

27 EnumerationComplete! -> EnumerationCompleteAck?

28 -> Enumerated;

29 }

30

31 state Enumerated: one {

32 DeviceFound! -> (DeviceFoundAck? or DeviceFoundNack?)
33 -> Enumerated;

34 Shutdown? -> (ShutdownAck! or ShutdownNack!) -> Done;
35 Finished! -> (FinishedAck? or FinishedNack?) -> Done;
36 }

37

38 state Done : one { }

39 }

FinishedNack message. In the first case, the driver SIP may exit, otherwise, it must stay
running. The kernel should never send a FinishedNack message. However, the protocol
leaves such an option, should it be required in the future. An active bus driver must be ready
to receive a Shutdown message, which is a request from the kernel to shut down the driver.
When the driver is deinitialized successfully it must send a ShutdownAck message and exit.
In case of an error (for example if it is unable to shutdown the bus device or release used
resources), the driver should send a ShutdownNack message. The Shutdown messages are
usually sent to bus drivers when the system is shut down.

38

3.2.4. Hardware Information Exchange Format

The DeviceFound message of the BusControlContract contains an array of characters which
specify an XML document describing the discovered device.

FEach DeviceFound message describes an object of the IoConfig class, which is imple-
mented in Singularity’s hardware abstraction layer. Such an object encapsulates the device’s
signature, location and its fixed and dynamic resources, represented as HAL resource objects.
The kernel versions of bus drivers instantiate these classes directly. In the SIP-based bus
driver model, these objects are instantiated by the bus manager, accordingly to the device
information sent by the bus driver.

Most devices are represented using the generic PnpConfig class, which just encapsulates
many ranges of resources. This object encapsulates a range of HAL resource objects and
device identifiers. Listing 11 presents a sample document which describes a PnpConfig object
representing a disk controller device connected to the IDE bus.

The root node of the document describes a single IoConfig object. In the case
of the example document in the listing this is an object of type PnpConfig (from the
Microsoft.Singularity.Io namespace). The type of the object is declared explicitly
as an attribute of the root element. Stating the type explicitly makes the bus manager
implementation resistant to changes in the Hardware Abstraction Layer. For example, if
new IoConfig classes are implemented to support new hardware, then new bus drivers can
use the new objects without any changes in the bus driver support code. Additionally,
the attributes of the IoConfig element specify the name of the bus, to which the device
is connected and the device’s signature and location. The Identifiers subnode specifies
a list of identifiers associated with the device. In the listing there is only one identifier
specified — /ata/controller. Further, there is a list of XML elements which describe HAL
resource objects used by the device. In the case of the IDE controller in the listing, there is a
single interrupt and three ranges of hardware ports. The types of the HAL resource objects
are declared explicitly for extensibility reasons (for example, in the future Singularity may
represent hardware ports using many classes which differ in behavior).

Devices connected to the PCI bus are represented by specialized PciConfig objects.
These objects specify only one identifier and they encapsulate a PCI port which consists of
an address port and a data port. The Hardware Abstraction Layer supports three types of
PCI objects — the PciDeviceConfig, PciBridgeConfig and PciCardbusConfig. An example
of an XML description of a PciDeviceConfig object is presented in listing 12.

3.3. SIP-based Bus Driver Model Implementation

This section of the thesis presents how the SIP-based bus driver model was implemented in
the Singularity RDK 2.0 version.

3.3.1. The Bus Manager

Most of the newly written code is part of the new bus manager component. Actually, this
code could be a part of the I/O manager, however to keep the architecture of Singularity’s
I/O system clean, the code was isolated into a separate component, which is used by the I/0
manager. The bus manager is primarily responsible for two tasks — starting SIP-based bus
drivers and registering in the system devices which were discovered by bus drivers.

Bus drivers are started by the BusManager . StartBusDriver method. The bus manager is
designed to allow starting only one bus driver at a time. This means that bus drivers cannot

39

1
2
3
4
)
6
7
8

9
10
11
12
13
14
15
16
17
18
19
20
21

[t
— O © 00O Ui Wi+

—_

Listing 11: An XML document which describes a generic PNP device

<IoConfig Bus="ide"
Signature="/controllerO"
Location="/pci/bus0000/dev0007/func0001/controller0"
Type="Microsoft.Singularity.Io.PnpConfig">
<Identifiers>
<Identifier Id="/ata/controller" />
</Identifiers>
<Ranges>
<Irq Type="Microsoft.Singularity.Io.IoIrqRange"
Line="14" Size="1" />
<Portsl Type="Microsoft.Singularity.Io.IoPortRange
Port="496" Size="8"
Readable="true" Writable="true" />
<Ports2 Type="Microsoft.Singularity.Io.IoPortRange
Port="1012" Size="4"
Readable="true" Writable="true" />
<Ports3 Type="Microsoft.Singularity.Io.IoPortRange
Port="65440" Size="8"
Readable="true" Writable="true" />
</Ranges >
</IoConfig>

Listing 12: An XML document which describes a device connected to the PCI
bus

<IoConfig Bus="pci" Identifier="57"
Signature="/bus0000/dev0007/func0001"
Location="/pci/bus0000/dev0007/func0001"
Type="Microsoft.Singularity.Io.PciDeviceConfig">
<AddressPort Type="Microsoft.Singularity.Io.IoPort"
Port="3320" Size="4"
Readable="False" Writable="True" />
<DataPort Type="Microsoft.Singularity.Io.IoPort"
Port="3324" Size="4"
Readable="True" Writable="True" />
</IoConfig>

be started simultaneously from multiple threads (in the current implementation they are
started only at system startup). The reason for such a design is to simplify synchronization
to various kernel structures and resources.

The StartBusDriver method uses Singularity’s standard mechanism for starting SIP-
based drivers. Before the driver’s process is started, the bus manager must create all channels
and HAL resource objects required by the driver. Resource objects are allocated accordingly
to the resources defined in the driver’s manifest. As far as channels are concerned, always two
endpoints are binded to the driver SIP at startup — the service provider and the bus control
channel endpoint. Obviously, the driver may create new channels explicitly after startup.
Additionally, after the bus driver’s process is started, the bus manager updates the system
namespace (for example the public names are created it the /dev directory).

Next, the bus manager performs the initial device enumeration accordingly to the bus
control channel contract, which was described earlier. Each newly discovered device is

40

registered in the I/O system, so that it can be activated in future iterations of the driver
activation process. In the current implementation, the bus manager assumes that bus
enumeration occurs only during driver activation at system startup. To support hot-swap
attached devices, the bus manager would have to restart the driver activation procedure after
registering new devices. However, this is not yet supported by Singularity’s I/O system.

When the bus driver finishes enumerating devices, the manager stores the driver’s bus
control channel endpoint on a list, which is handled by a special kernel thread, called the bus
handler thread. This thread monitors all endpoints on the list (by using a switch receive
statement, which was introduced in chapter 1 of the thesis) for incoming messages. When a
message is received from the bus driver, it is handled by the bus handler thread. According
to the bus control contract, the driver may send one of the two messages. It can either
send a DeviceFound message to register a newly discovered device or a Finished message to
terminate its execution. Since registering new devices after system startup is not supported,
the bus manager always sends a DeviceFoundNack reply to a DeviceFound message. In case
of a Finished message, it is acknowledged by the bus manager and the driver’s endpoint is
removed from the endpoints list (since no more messages may be received from the endpoint).

When the system is shutting down, the bus manager terminates the bus handler thread
and sends a Shutdown message to all endpoints from the list which is monitored by the thread.
This causes all active bus drivers to release any used resources and terminate their processes.

3.3.2. The Bus Driver Helper Library

The communication mechanism described in the previous section, requires relatively many
lines of code to implement bus drivers. Furthermore, much of this code is similar and
duplicated in each bus driver. That is why the new bus driver model implementation
introduced a kernel library, called the Bus Driver Helper Library, which greatly simplifies
writing SIP-based bus drivers. Currently, the library supports only bus drivers which
enumerate their bus devices and finish their execution. However, it should be possible
to extend the library to support drivers which monitor bus devices after startup, when
Singularity’s I/O system fully supports such drivers. This subsection introduces the Bus
Driver Helper Library and describes how bus device drivers can be implemented using the
library.

Bus drivers implemented using the Bus Driver Helper Library are comprised of at least
three classes. For two of them, the library provides super-classes, which implement most
of the functionality associated with channel communication with the bus manager. Driver
implementors only need to create subclasses and override some methods to implement the
logic of device enumeration.

The DriverCategoryDeclaration class

The first class, which has to be implemented by the driver is the DriverCategoryDeclaration
class. This class is actually a part of Singularity’s generic driver model and it is implemented
by all Singularity drivers. It encapsulates the channels and HAL resource objects used by the
driver and it specifies the signatures of devices which the driver supports. Furthermore,
by convention, this class also implements the entry point of the driver process, called
DriverMain. Similarly to other Singularity drivers, this class is used to build the application’s
manifest which declares the driver’s resources and service channels.

41

The BusDriver class

The second required class is a subclass of the BusDriver class, which is implemented in the
Bus Driver Helper Library. This class implements the entire channel communication with
the bus manager.

Usually, drivers need to override only one method of this class — the CreateEnumerator
method, which returns a BusEnumerator object for the driver (which is discussed later in
this chapter). The method’s single argument is the DriverCategoryDeclaration object
which encapsulates the device’s resources. Typical implementations pass this object to the
BusEnumerator, which then uses the HAL resource objects to perform device enumeration.

Drivers can override two additional methods if required. The Initialize method is
called after the BusEnumerator object has been created (by the CreateEnumerator method).
It has three parameters — DriverCategoryDeclaration object, the bus control channel
endpoint and the BusEnumerator object. This method may perform required initialization
or validation. It may also stop the driver from performing bus enumeration (for instance in
case of unsatisfied hardware state conditions) by returning false as its result. Otherwise,
the method must return true.

The Finalize method is called after device enumeration. Drivers can override it to
perform cleanup. It has the same parameters as the Initialize method, however it does
not return any value.

The BusEnumerator class

Classes which extend the BusEnumerator class, implement the actual logic of enumerating
the bus devices. The BusDriver class uses such classes to create DeviceFound messages,
which are sent over to the bus manager.

The BusEnumerator class defines an abstract method, called EnumerateDevices. This
method is called by the BusDriver to generate a sequence of messages, which describe the
devices connected to the bus. However, the method does not return any value. The XML
messages are built by calling special helper methods of the BusEnumerator class. These
methods are presented in listing 13.

When the enumerator discovers a device, it must begin a new XML message by calling the
StartPciConfig or StartPnpConfig method, depending on what IoConfig object should
represent the device in the I/O manager. Next the enumerator calls methods which add
information about the device’s resources to the XML message. Hardware ports can be added
using one of the methods: WriteIoPort, WriteIoMappedPort or WriteIoPortRange. IoDma
objects are declared using the WriteIoDma method, and so on. After all resources are added
to the message, the bus enumerator must call EndPciConfig or EndPnpConfig. This method
completes the XML message and after that the bus enumerator may start a new one.

The use of such API makes it easy for the BusEnumerator to perform its task easily
and simply, without touching any XML. However, all methods presented in listing 13
are declared as virtual, which means that they can be overridden in subclasses. The
underlying XmlWriter object can be obtained using the GetWriter method. This enables bus
enumerators to change or fine-tune the actual XML which is passed over to the bus manager.

Moreover, the BusEnumerator class provides virtual methods to implement initialization
and cleanup. The InitializeEnumerator is called before device enumeration. If the method
returns false then the enumeration is not performed. After the enumeration is completed
and the XML document containing device descriptions is ready, the FinalizeEnumerator
method is called.

42

00 O Ui W N

POR DN DR NN R N D R s s e
S 0TS AR WN OO~ U R WN RO O

Listing 13: Methods of the BusEnumerator class for building XML messages
which describe devices discovered by the bus driver

void StartPciConfig(string! type, uint identifier,
string! signature, string location);

void EndPciConfig();

void StartPnpConfig(string! type, string[] identifiers,
string! signature, string location);

void EndPnpConfig();
void StartRangelList ();
void EndRangelist ();

void WriteIoPort(string! name, ushort port, ushort size,
bool readable, bool writeable);

void WriteIoMappedPort(string! name, uint address, uint size,
bool readable, bool writeable);

void WIiteIoPortRange(string! name, uint port, uint size,
bool readable, bool writeable)

void WriteIoDmaRange (string! name, int channel, int size);
void WriteIoIrqRange(string! name, byte line, byte size);

void WriteIoMemoryRange (string! name, UIntPtr addr, UIntPtr size,
bool readable, bool writeable);

There are also two methods which can be used to modify the beginning and end of
the XML document which contains descriptions of the IoConfig objects sent to the bus
manager. The InitializeXmlDocument method is called to write the document’s root node.
The method has a single parameter of the XmlWriter and it does not return any value.
The default implementation creates a root XML node called BusEnumeration. After the
device enumeration is complete, the FinalizeXmlDocument method is called. Similarly to
InitializeXmlDocument, the method has a single parameter of the XmlWriter and it does
not return any value.

3.3.3. Example — The PCI Bus Driver

This subsection presents the new PCI bus driver as an example of using the Bus Driver Helper
Library to build a SIP-based bus driver.

First of all, the driver must implement the DriverCategoryDeclaration class, which
is presented in listing 14. The driver supports devices with signatures /pnp/PNPOA03 and
/pnp/PNPOA0S. It defines a single port range for the PCI port and a standard channel service
provider channel. The bus control channel is not specified here, because it is not a service
provider contract channel. It will be automatically binded by the Bus Driver Helper Library
and we will access its endpoint later.

43

0O Uik Wi

—
W N = OO

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

Listing 14: The DriverCategoryDeclaration subclass for the PCI bus driver

[DriverCategory]

[Signature ("/pnp/PNPOAO3")]

[Signature ("/pnp/PNPOAO8")]

internal class PciBusResources : DriverCategoryDeclaration

{
[IoFixedPortRange (Base = 0x0cf8, Length = 0x08, Shared = true)]
internal IoPortRange configPort;

[ServiceEndpoint (typeof (BusContract))]
internal TRef<ServiceProviderContract.Exp:Start> sp;

internal int DriverMain(string instance)

{

// Verify resources

ServiceProviderContract.Exp sp = ((!)sp).Acquire();
try {
PciBusDriver driver = new PciBusDriver ();
driver .Run(this, sp);
}
finally {
delete sp;
}

return O;

The DriverMain method, which is the entry point of the driver application, needs to verify
that all required resources are present or exit the application otherwise. Next, the application
acquires the service provider channel endpoint, creates a PciBusDriver and invokes its Run
method. This method implements the main switch receive statement on the bus control
channel and when it finishes its execution, the driver’s process is terminated.

The BusDriver subclass, which is presented in listing 15, is very simple in case of the
PCI bus driver. It only implements a parameterless constructor which automatically specifies
PciBus as the name of the driver and overrides the abstract CreateEnumerator method and
returns an instance of the PciEnumerator class — the BusEnumerator class implementation
for the PCI bus driver.

The BusEnumerator subclass for the PCI driver is presented in listing 16 (some of the
code was omitted to minimize the size of the listing).

Fist of all, the class implements a constructor with a IoPortRange parameter, which
stores the PCI address and data port in local variables.

Next, the abstract EnumeratedDevices method is overridden, to implement enumerating
the PCI bus. The method loops through all available PCI device identifiers (lines 14-15) and
tries to find a device for each identifier (using the PCI ports stored by the constructor). If a
device is found then a signature is generated for the device (line 23) and the proper type of
the IoConfig object which will represent the device is determined (lines 24-31).

Finally, the helper methods from the BusEnumerator superclass are used to generate an

44

1
2
3
4
)
6
7
8

9
10
11
12

Listing 15: The BusDriver subclass for the PCI bus driver

internal class PciBusDriver : BusDriver

{
public PciBusDriver () : base("PciBus")
{
}

protected override BusEnumerator! CreateEnumerator (
DriverCategoryDeclaration! resources)
{
return new PciEnumerator (pciResources.configPort);
}
b

XML document for the device (lines 34-39). The StartPciConfig method is used to generate
an XML node representing a PciConfig object. Then we write out the address and data ports
for the PCI device, which will be nested in the root XML node. Finally, the EndPciConfig
method is used to close the XML node representing the PCI device.

That’s all what the enumerate method must do. The Bus Driver Helper Library will
automatically create a DeviceFound message and send it over the bus control channel to the
bus manager.

3.4. Tests

This section presents results of tests which were performed to compare the performance and
reliability of the bus device drivers using the new bus driver model with the drivers using the
old kernel-based model.

Due to lack of compatible hardware, I was not able to run Singularity in a non-virtual
environment. Therefore, for testing purposes Singularity ran in a virtual machine on Microsoft
Virtual PC. The host system was Microsoft Windows 7 Ultimate, running on an Intel®
Core™ i7 CPU (1.73 GHz) with a Mobile Intel PM55 chipset and 4 GB of DDR3 RAM
(1333 MHz). The virtual machine was configured to use 512 MB of RAM.

Performance tests were run against the initialization procedure of Singularity’s 1/0O
subsystem. In the kernel-based model this procedure includes enumerating available
devices and loading their drivers. In the new SIP-based model the procedure also
includes initialization of the bus manager, starting driver SIPs and all channel-based
communication between bus drivers and the kernel. All measurements were made using the
Microsoft.Singularity.PerfSnap type, which accesses usage statistics gathered by the
Hardware Abstraction Layer and various kernel structures (such as the Memory Manager).

The IDE bus driver executes a lot longer than the PCI bus driver and most of the time
is spent on initializing and loading IDE disks. That’s why tests were performed on two
configurations of the I/O subsystem. The first one uses all bus drivers and the second one
does not use the IDE driver.

3.4.1. CPU Usage and Execution Time

The first test was performed to measure the number of CPU cycles and execution time of
Singularity I/O subsystem’s initialization procedure. The SIP-based model implementation
introduces many new threads, which need to synchronize with each other. This may cause

45

Listing 16: The BusEnumerator subclass for the PCI bus driver

internal class PciEnumerator

private IoPort! addr;
private IoPort! data;

public PciEnumerator (IoPortRange!

BusEnumerator

ports) : base("pci")

null);

{
addr = (!)ports.PortAtOffset (0, 4, Access.Write);
data = (!)ports.PortAtOffset (4, 4, Access.ReadWrite);
}
protected override void EnumerateDevices ()
{
for (uint bus = 0; bus < MAXBUSES; bus++) {
for (uint device = 0; device < MAXDEVICES; device++) {
uint identifier = IdentifierFromUnits (bus, device, 0);
uint u = Read32(identifier, 0);
// Try to find device with id: identifier
if (u == “0u || u == 0) continue;
hadDevices = true;
string signature =
string configType = "Microsoft.Singularity.JIo.";
switch (u & PciConfig.PCI_TYPE_MASK) {
case PciConfig.PCI_DEVICE_TYPE:
configType += "PciDeviceConfig"; break;
default:
hadDevices = false; break;
}
if (hadDevices) {
StartPciConfig(configType, identifier, signature,
WriteIoPort ("AddressPort", addr.Port, addr.Size,
addr .Readable, addr.Writable);
WriteIoPort ("DataPort", data.Port, data.Size,
data.Readable, data.Writable);
EndPciConfig();
}
}
if ('hadDevices) break;
}
}

46

an increase in execution time without increasing the number of CPU cycles. Additionally,
execution time depends on hardware latencies. Therefore, both measures may indicate
different results.

The test was performed ten times for each system configuration to analyze the stability of
the results. The CPU usage during initialization of the I/O subsystem for ten system startups
is presented in figure 3.2 and the execution times are presented in figure 3.3. Analogous results
for the configuration without the IDE bus driver are presented in figure 3.4 and 3.5'. The
table in figure 3.6 summarizes the results of the tests (CPU usage is presented in clock cycles
and time is presented in nanoseconds).

The tests indicate that the new driver model introduces a slight overhead, which increases
CPU usage, as well as execution time. The overhead is larger in case of the configuration
without the IDE driver, however, the results are much more variable in that configuration
compared to the configuration using all drivers.

3.4.2. Memory Usage

The next test measured memory usage of the new implementation in comparison to the kernel-
based model. The amount of memory used by the initialization procedure is deterministic
and is always the same for each system startup. Furthermore, the amount of used memory
does not depend on the total amount of memory available to the system.

Figure 3.7 presents the total number of bytes allocated during initialization of Singularity’s
I/O subsystem?. The tests indicate a significant increase in memory usage in the new
implementation. The configuration with all bus drivers required 74.33% more memory than
the kernel-based implementation and the configuration without the IDE driver needed 54.64%
more memory. The reason for this fact is the necessity to allocate memory for the driver’s
SIPs and memory needed to build the XML-based messages containing device descriptions.
Maybe some of this additional memory would be released by the garbage collector when free
memory runs low in the system, however none of the performed tests proved this case.

However, performance was not the main goal of the new bus driver model implementation
and it can probably be well optimized, if required. Nevertheless, an increase in memory usage
by a couple of megabytes should not be an issue on modern computer systems.

3.4.3. Crash Test

The final test was performed to check the reliability of the new SIP-based bus drivers
compared to the kernel-based drivers. The test was performed by implementing a failure
during device enumeration in the PCI bus driver. This simulates quite accurately an
unexpected failure of the driver.

Predictably, the faulty kernel-based driver caused a failure which halted the kernel and
stopped the system from booting successfully. On the other hand, the faulty SIP-based driver
caused the driver’s process to end unexpectedly, however the system booted successfully.
Moreover, in the latter case, the PCI devices which were detected before the failure, were
properly registered in the system.

This test seems to prove, that SIP-based drivers greatly enhance system stability and
reliability. Especially, this concerns drivers for modern bus devices, which are more prone to
failures due to their complexity.

'Note that the system startups in this test are distinct from the startups presented in the previous test.
2The test takes into account the number of bytes which were released during the initialization of the 1/0
subsystem.

47

26000

25500

25000 ’/ /7

24500

o ﬁ"‘w’“‘\jﬁ

Millions

Clock Cycles

23000

22500

2 2000 T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10

System Startup Number

==@==Kernel-based drivers ==fll=SIP-based drivers

Figure 3.2: CPU usage during initialization of the I/O subsystem with all bus drivers

8000
7800

7600
7400 /\\ \\
7200

7000 - \/
6600

6400

6200 T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10

System Startup Number

Milliseconds

=@ Kernel-based drivers =jll=SIP-based drivers

Figure 3.3: Execution times during initialization of the I/O subsystem with all bus drivers

48

250000

(%]

T

=

a

£ 200000

Q

=
g " »
Q
2 150000
Q
o) \/
>
9 100000
(o]

50000
O T T T T T T T T T 1

1 2 3 4 5 6 7 8 9 10
System Startup Number

=@==Kernel-based drivers =ll==SIP-based drivers

Figure 3.4: CPU usage during initialization of the I/O subsystem without the IDE bus driver

1400
1200 /\..\
1000 - A
1]
§ 800 - v’
= 600
=
400
200
O T T T T T T T T T 1
1 2 3 4 5 6 7 8 9 10
System Startup Number
==@==Kernel-based drivers =fll==SIP-based drivers

Figure 3.5: Execution times during initialization of the I/O subsystem without the IDE bus
driver

49

Kernel-based drivers| SIP-based drivers |Kernel-hased drivers| SIP-based drivers
(all drivers) (all drivers) (no IDE) (no IDE)
CPU

Average 23872162526 24913202158 141785232,6 180074410,6
Overhead - 4,36% - 27,01%

Standard Deviation 328084164 582865626 14684426,6 18888686,55
AVG / STDEV 1,37% 2,34% 10,36% 10,49%

Execution Time
Average 7158430,7 7400911,4 833639,7 1005339,1

Overhead - 3,28% - 17,08%

Standard Deviation 290061,7326 278580,0033 79688,71977 130594,647
AVG / STDEV 4,05% 3,76% 9,56% 12,99%

Figure 3.6: Summary of CPU usage and execution time tests

Bytes

7000000

6119424

6000000

5000000

4000000 -

3000000 -

2000000 -

1000000 -

0 -

u Kernel-based drivers (all)

3686400

m SIP-based drivers (all)

m Kernel-based drivers (no IDE) m SIP-based drivers (no IDE)

Figure 3.7: Number of bytes allocated during initialization of the I/O subsystem

50

Chapter 4

Conclusions

Isolating device drivers in separate processes leads to a better system reliability and stability.
The operating system is protected from bugs in driver code and drivers may be sandboxed
more easily. Moreover, in many cases, it should be possible to restart crashed drivers without
restarting the entire operating system. However, implementing process-based device drivers
is not a simple task. It requires specific system mechanisms and cannot be generally done on
any operating system. Furthermore, implementing process-based device drivers requires more
work from programmers, since process-oriented driver models are more complicated then the
kernel-oriented ones. Despite the mentioned difficulties, in specific operating systems, such as
Singularity, implementing process-based driver models is completely attainable and beneficial.

It seems that for some low-level devices, implementing process-based drivers does not
make much sense and this also concerns low-level buses, such as the Basic Input/Output
System. On the other hand, complex hardware such as graphic adapters, storage controllers,
etc. highly benefit from the process-based driver model in terms of crash resistance.

During my work on this thesis, I designed and implemented a new bus driver model,
which supports process-based bus device drivers for Singularity. To minimize the amount of
work needed to create new bus drivers, I developed a new helper library which implements
most of the functionality required to implement bus drivers using the new model. This library
avoids code duplication and takes advantage of many high-level, object-oriented programming
language constructs. Additionally, I analyzed the source code of Singularity’s 1/O subsystem
and described the subsystem in this thesis.

In the case of Singularity, implementing process-based bus drivers is more complicated
than implementing regular isolated drivers, due to their tight interconnection with the I/0
subsystem. However, the bus driver model presented in this thesis enables implementing SIP-
based drivers in Singularity for most bus devices. Tests showed that the overhead introduced
by this more complex driver model is acceptable. Furthermore, thanks to the Bus Driver
Helper Library, the amount of work required from device driver programmers is minimized.

While working on this thesis, I encountered many problems involving the design of the
new bus driver model, as well as its implementation. Designing the presented driver model
required a detailed understanding of Singularity concepts, such as channels and contracts.
During the design of the driver model, I had many ideas which did not turn to work out (for
example implementing I/O resource objects as rep structs). Later, during implementation
of the driver model and new drivers, I encountered many problems concerning details of the
I/O subsystem. Lack of documentation was one of the major difficulties.

This thesis will be sent to the team which currently maintains the Singularity project at
Microsoft. Hopefully, the thesis will be published on Singularity’s website and it will serve as

o1

a documentation of Singularity’s I/O subsystem for future developers working on the project.
I hope it will be useful for Singularity driver developers, and especially bus driver developers.

4.1. Future Work

There are still some areas of research associated with the issues discussed in this thesis, which
might be addressed in the future.

Most of all, drivers for dynamically attached hardware, such as USB devices, are well
worth considering in context of Singularity. Implementing such drivers would enable further
verification of the developed SIP-based driver models and could find potential problems with
their design. This might not be a simple task, because it requires implementing drivers for
complex bus devices (for instance the USB bus) and extending Singularity’s I/O subsystem
to support loading drivers and registering hardware not only during startup, but also later
when the system is running.

Another minor issue is the current implementation of registering available bus drivers,
which is done statically in kernel code. It would make sense to implement some mechanism
which would automatically detect installed bus drivers and register them in the system. This
would probably be done best by extending the manifests of the bus drivers.

52

Bibliography

Mike Barnett, K. Rustan, M. Leino, and Wolfram Schulte, The Spec# Programming
System: An Overview, Proceedings of Construction and Analysis of Safe, Secure and
Interoperable Smart Devices (CASSIS), Springer Verlag, Marseille, France, 2004,
http://research.microsoft.com/en-us/projects/specsharp/krml136.pdf

Manuel Fahndrich, Mark Aiken, Chris Hawblitzel, Orion Hodson, Galen Hunt, James
R. Larus, Steven Levi, Language Support for Fast and Reliable Message-based Commu-
nication in Singularity OS, EuroSys 2006, Association for Computing Machinery, Inc.,
April 2006,

http://research.microsoft.com/apps/pubs/default.aspx?id=67482

Galen C. Hunt, James R. Larus, David Tarditi, and Ted Wobber, Broad New OS
Research: Challenges and Opportunities, Microsoft Research, in Proceedings of Tenth
Workshop on Hot Topics in Operating Systems (HotOs), USENIX, June 2005

Galen C. Hunt, James R. Larus, Martin Abadi, Mark Aiken, Paul Barham, Manuel
Fahndrich, Chris Hawblitzel, Orion Hodson, Steven Levi, Nick Murphy, Bjarne Steens-
gaard, David Tarditi, Ted Wobber, Brian D. Zill, An Overview of the Singularity Project,
Microsoft Research, October 2005,

http://research.microsoft.com/pubs/52716 /tr-2005-135.pdf

Galen C. Hunt, James R. Larus, Singularity: Rethinking the Software Stack, ACM
SIGOPS Operating Systems Review, no. 41/2, page 37-49, Association for Computing
Machinery, Inc., April 2007,
http://research.microsoft.com/apps/pubs/default.aspx?id=69431

Michael B. Jones, Joseph S. Barrera III, Alessandro Forin, Paul J. Leach, Daniela
Rosu, Marcel-Catalin Rosu, An Querview of the Rialto Real-Time Architecture, Microsoft
Research, July 1996,

http://www.barrera.org/rialto/rialto.htm

Michael Spear, Tom Roeder, Orion Hodson, Galen C. Hunt, Steven Levi, Solving
the Starting Problem: Device Drivers as Self-Describing Artifacts, EuroSys 2006,
Association for Computing Machinery, Inc., March 2006,
http://research.microsoft.com/apps/pubs/default.aspx?id=69432

Dachuan Yu, Andrew J. Kennedy, and Don Syme, Formalization of Generics for the
.NET Common Language Runtime, Microsoft Research, January 2004,
http://research.microsoft.com/pubs/64032/formalizationofgenerics.pdf

Attributes Overview, Microsoft Developer Network
http://msdn.microsoft.com/en-us/library /xtwkdas5%28VS.90%29.aspx

53

Appendix A

CD Contents

A CD has been attached to this thesis. The contents of the folders on that CD is described
in this appendix.

thesis/ — contains the source and graphic files of this document (in IXTEXformat) and
test results,

source/rdk.zip — contains source files of the original Singularity OS (Research
Development Kit 2.0 version),

source/impl.zip — contains source files of the extended Singularity OS with SIP-based
bus drivers,

iso/rdk-all.iso — compiled binary version of the Singularity RDK 2.0 with kernel-based
bus drivers,

iso/rdk-noide.iso — compiled binary version of the Singularity RDK 2.0 with kernel-
base bus drivers (IDE driver disabled),

iso/impl-all.iso — compiled binary version of the extended Singularity OS with SIP-
based bus drivers,

iso/impl-noide.iso — compiled binary version of the extended Singularity OS with
SIP-based bus drivers (IDE driver disabled)

docs/license.txt — Singularity RDK license,

docs/Building and Running Singularity RDK 2.0.pdf - information about
building, running and debugging Singularity on Virtual PC.

55

