Introduction
to Linux
Operating System

Table of contents

Operating system tasks
UNIX history, Linux history
Linux distributions

Linux basic features
Building OS kernels

Linux kernel modules
eBPF

Kernel reports — what is going on in the kernel

Computer system layers (source: Stallings, Operating Systems)

User
Interface
1 Users
Library
Interface Standards utility programs T
l (shell, editors, compliers etc)
System User
call mode
interface Standard library
* (open, close, read, write, fork, etc) l
UNIX operating system *
(process management, memory management, Kernel mode
the file system, 1/O, etc) +

Hardware
(CPU, memory, disks, terminals, etc)

Operating System is a program that mediates between the user and the computer hardware.
* Hides hardware details of the computer system by creating abstractions (virtual machines).
* Manages resources: memory, processor (CPU), input/output, communication ports

e Other activities: security, job accounting, error detecting tools, etc.

[\ UNIX history

)

* Created in 1969; authors: Ken Thompson, Denis Ritchie from Bell Laboratories, machine: old PDP-7; had
many features of MULTICS.

(Brian Kernighan participated in the creation of Unix, he is co-author of the first book about C).

Denis Ritchie

Ken Thompson Brian Kernighan

died 12.10.2011

 1973: UNIX rewritten in C (language designed specifically for this purpose).

 1974: presented on ACM Symposium on Operating Systems and in CACM, quickly gaining popularity.
* For hobbyists: Unix history, Unix, Linux, and variant history.

 The early days of Unix at Bell Labs, Brian Kernighan (LCA 2022 online).

 Ken Thompson interviewed by Brian Kernighan at VCF East 2019.

https://www.levenez.com/unix/
https://www.levenez.com/unix/
https://www.computerhope.com/history/unix.htm
https://www.computerhope.com/history/unix.htm
https://www.computerhope.com/history/unix.htm
https://www.computerhope.com/history/unix.htm
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=EY6q5dv_B-o
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Brian_Kernighan
https://en.wikipedia.org/wiki/Dennis_Ritchie

159

1571 w0 1573

15741 1575

1578

1573

1580
1581

18962
189&3
1584
1585
1985
1987
193
15&3

1550
1591

1992

1993
1554
1555
1555
1557

2000
2011
20012 10 3014
200510 2016
2T
208
2018 to 2022

Unisdike systems

- Qpen source

1 Mixedishared source
- Closad source

Unix History Diagram - short version (source: Wikipedia)

1965

1971 o 1573

1974 i 1973

1578

1973

i g |
2OLE vo 2014
2015 00 26

T

2018
2009 to 2002

https://en.wikipedia.org/wiki/Unix

A Linus Torvalds, August 1991

)

Hello everybody out there using minix -

I'm doing a (free) operating system (just a hobby, won't be
big and professional like gnu) for 386(486) AT clones. This
has been brewing since april, and is starting to get ready.
I'd like any feedback on things people like/dislike in
minix, as my OS resembles it somewhat (same physical layout
of the file-system (due to practical reasons) among other
things) .

I've currently ported bash(1.08) and gcc(1.40), and things
seem to work. This implies that I'll get something
practical within a few months, and I'd like to know what
features most people would want. Any suggestions are
welcome, but I won't promise I'll implement them :-)

Linus (torv...@kruuna.helsinki.fi)

PS. Yes - it's free of any minix code, and it has a
multi-threaded fs. It is NOT protable (uses 386 task
switching etc), and it probably never will support anything
other than AT-harddisks, as that's all I have :-(.

Linus
Torvalds in
2023

A Linux history

)

in conversation
with Dirk Hohndel
at OSS Japan

Linus Torvalds
announcing Linux
1.0, 30.03.1994

Linus Torvalds, Finland, born in
the same year as UNIX, i.e. 1969,
creator of the Linux kernel and
the Git version control sysem.

Richard Stallman, founder of the GNU project and the Free RiCthd'
Software Foundation, co-creator of the GNU GPL license, creator Stallman in
2019

of the Emacs editor, GCC compiler, GDB debugger.

May 1991, version 0.01: no support for the network, limited number of device drivers, one ,
file system (Minix), processes with protected address spaces ¥
The Linux Kernel Archives — https://www.kernel.org/
— 2024-02-23, |atest stable version 6.7.6

— 2024-02-18, latest mainline 6.8-rc05
Numbering of the kernel versions — see lab notes or Wikipedia Andrew Tanenbaum in 2012

https://www.kernel.org/
https://en.wikipedia.org/wiki/Linux_kernel
http://pl.wikipedia.org/wiki/Richard_Stallman
http://pl.wikipedia.org/wiki/Linus_Torvalds
http://pl.wikipedia.org/wiki/Linus_Torvalds
http://pl.wikipedia.org/wiki/Linus_Torvalds
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w

Linux statistics and facts

In 2022, 100% of the world’s top 500 supercomputers run on Linux.

All of the top 25 websites in the world are using Linux.

96.3% of the world’s top one million servers run on Linux.

90% of all cloud infrastructure operates on Linux, and practically all the best cloud hosts use it.

90% of Hollywood’s special effects are made on Linux

In July 2022, 2.76% of all desktop operating systems worldwide ran on Linux.

In June 2022, Linux held a market share of 1.02% of the global desktop/tablet/console market.
In August 2022, the net market share of Linux was 2.35%.

In August 2022, 71.85% of all mobile devices run on Android, which is Linux-based.

https://webtribunal.net/blog/linux-statistics/

https://www.netmarketshare.com/operating-system-market-share.aspx?options={"filter":{"$and":[{"deviceType":{"$in":["Desktop/laptop"]}}]},"dateLabel":"Trend","attributes":"share","group":"platform","sort":{"share":-1},"id":"platformsDesktop","dateInterval":"Monthly","dateStart":"2018-05","dateEnd":"2019-04","segments":"-1000","plotKeys":[{"platform":"Windows"},{"platform":"Mac OS"},{"platform":"Linux"},{"platform":"Chrome OS"},{"platform":"Unknown"}]}
https://webtribunal.net/blog/linux-statistics/
https://webtribunal.net/blog/linux-statistics/
https://webtribunal.net/blog/linux-statistics/

Million Lines of Code

Jonathan Corbet in 2023 Kernel Report :

Release Date Commits Devs 1%time

6.0 Oct2 15,402 2,034 236
6.1 Dec 11 13,942 2,043 303

40 - 6.2 Feb 19 15536 2,088 294
6.3 Apr24 14,424 1971 250

e 6.4 Jun25 14835 1,980 282
6.5 Aug 27 13,561 1,921 271

" 6.6* Oct29 12,330 1,685 197

25 — - IS é? > u%? &

_ o £ o & S 5w 8 S
. g 8 E558458 & &
B [[Bl e
Corporate affiliation of contributions to the Linux kernel, 4.8-4.13[218]
15 -
Roughly 14% of the code is part of the
10 "core" (arch, kernel and mm directories), -
while 60% is drivers. - -
L0 o
T = = e B 8 oo mu
= = = _ .
0 I
100 200 210 220 230 240 250 260 3.0 4.0

Kernel Version

Linux kernel versions (source: Wikipedia)

5.0

35.14

6.0

35.55

6.1

https://en.wikipedia.org/wiki/Linux_kernel
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8

A Linux distributions

)

A set of ready-to-install, precompiled packages; tools for package installation and uninstallation (RPM: Red
Hat Package Manager); kernel, but also many service programs; tools for file systems management,
creation and maintenance of user accounts, network management etc.

Page Hit Ranking

Data span: DistroWatch is a website which provides news, popularity
Last 6 months v| Go rankings, and other general information about Linux
Rank ST HPD" distributions as well as other free software/open source Unix-
1 IMX Linux 26384 like operating systems.
2 Mint 2129-
3 EndeavourOS 1722«
4 Debian 15484 < Debian used in labs
5 | Manjaro 1198¥
6 Ubuntu 10244
7 Popl O5 909+
8 [Fedora 9054
9 openSUSE f79v
10 Zonn 6454 2023-11-12

10

http://www.debian.org/
http://www.debian.org/
https://distrowatch.com/

Linux basic features

Multi-access system (with time sharing) and multi-tasking.

Multiprocess system, simple mechanisms to create hierarchy of processes, kernel
preemption.

Available for many architectures.

Simple standard user interface that can be easily replaced (shell > command
interpreter).

Hierarchical file systems.

Files are seen as strings of bytes (easy to write filters).
Loading programs on demand (fork with copy on write).
Virtual memory with paging.

Dynamic hard disk cache.

Shared libraries, loaded into memory dynamically (one code used simultaneously by
many processes).

Compliance with the POSIX 1003.1 standard.
Different formats of executable files.

A Building OS kernels

e

* Monolithic kernel (the only solution until the 1980s) — Linux belongs to this category.
— the whole kernel runs in a single address space,
— communication via direct function invocation.

* Microkernel (e.g. Mach, MINIX).
— functionality of the kernel is broken down into separate processes (servers),

— some servers run in kernel mode, but some in user mode — all servers have own address
spaces,

— communication is handled via message passing,

— modularity — failure in one server does not bring down another, one server may be swapped
out for another,

— context switch and communication generate extra overhead so currently user mode servers
are rarely used.

* Macrokernel or ,Hybrid kernel" (e.g. Windows NT kernel on which are based Windows XP, Vista,
Windows 7, Windows 10).

"Hybrid kkernel"
based Operating System

Maonaolithic Kernel Microkernel
based Operating System based Operating System

System

Operating system

Structure of monolithic kernel, microkernel and hybrid kernel-based operating systems (source: Wikipedia)

Linus Torvalds :
“As to the whole ‘hybrid kernel’ thing - it’s just marketing. It’s ‘oh, those microkernels had good PR, how can
we try to get good PR for our working kernel? Oh, | know, let’s use a cool name and try to imply that it has

27

all the PR advantages that that other system has’.

Readings

1. Tanenbaum — Torvalds debate on kernel architecture (MINIX vs Linux)
* Wikipedia
e Oreilly

2. Comparing Linux and Minix, February 5, 2007, Jonathan Corbet
13

https://en.wikipedia.org/wiki/Monolithic_kernel
https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://www.oreilly.com/openbook/opensources/book/appa.html
https://www.oreilly.com/openbook/opensources/book/appa.html
https://lwn.net/Articles/220255/
https://lwn.net/Articles/220255/
https://lwn.net/Articles/220255/
https://lwn.net/Articles/220255/
http://beefchunk.com/documentation/sys-programming/os-linux/l-lkm-pdf.pdf

Linux kernel modules

Linux borrows much of the good from microkernels: modular design, capability to preempt itself,
support for kernel threads, capability to dynamically load separate binaries (kernel modules).

Modules — separately compiled, loaded into memory on demand and deleted when they are no longer
needed.
Examples: a device driver, a file system, an executable file format.

cat /proc/modules

Advantages: saving memory (occupies memory only
when it is needed), the error in the module does not
suspend the system, but only removes the module from
the memory, one can use conflicting drivers without the
need to restart the system, etc.

Disadvantages ???

* name of the module

* memory size of the module, in bytes
* how many instances of the module are 1 hfsplus,hfs
currently loaded '
* if the module depends upon another
module(s)

But — eBPF makes a change ...

Modern Linux is becoming Microkernel-ish

User-mode Kernel-mode
Applications Services & Drivers

BPF | |BPF| |BPF

Smaller
Kernel

Hardware

The word "microkernel” has already been invoked by Jonathan Corbet, Thomas Graf, Greg Kroah-Hartman, ...

ﬁ@PF is turning the Linux
kernel into a microkernel

e An increasing amount of new kernel
functionality is implemented with eBPF

e 100% modular and composable

e New additions can evolve at a rapid pace
Much quicker than normal kernel
development

Example: The linux kernel is not aware of
containers and microservices (it only knows
about namespaces). 8 Cilium is making the
Linux kernel container and @ Kubermetes
aware

Extended BPF: A New Type of Software, Brendan Gregg at
Ubuntu Masters Conf 2019
(presentation, slides)

eBPF — Rethinking the Linux Kernel, Thomas Graf, QCon
2020
(presentation, transcript)

Thomas Graf: With BPF, we're starting to implement a microkernel model where we can now dynamically
load programs, we can dynamically replace logic in a safe way, we can make logic composable. We're
going away from the requirement that every single Linux kernel change requires full consensus across the
entire industry or across the entire development community and instead, you can define your own logic,
you can define your own modules and load them safely and with the necessary efficiency.

15

https://www.youtube.com/watch?v=7pmXdG8-7WU
https://www.slideshare.net/brendangregg/um2019-bpf-a-new-type-of-software
https://www.youtube.com/watch?v=f-oTe-dmfyI
https://www.infoq.com/presentations/facebook-google-bpf-linux-kernel/?utm_source=youtube&utm_medium=link&utm_campaign=qcontalks
https://www.infoq.com/presentations/facebook-google-bpf-linux-kernel/?utm_source=youtube&utm_medium=link&utm_campaign=qcontalks

50 Years, one (dominant) OS model

Applications

System Calls

Kernel

Hardware

Modern Linux: Event-based Applications

User-mode
Applications

Kernel-mode
Applications (BPF)

U.E.

) J

A\ /

f 3 I

AN 7
Scheduler

$

Kernel

Kernel Events

Hardware Events (incl. clock)

Modern Linux: A new OS model

User-mode Kernel-mode
Applications Applications (BPF)
System Calls BPF Helper Calls
Kernel
Hardware
BPF 2019

User-Defined BPF Programs
SDN Configuration

DDoS Mitigation

Intrusion Detection

Observability

Firewalls

|
|
|
| Container Security
|
|
|

Device Drivers

Kernel

Runtime Event Targets

sockets

verifier

W

il

| kprobes

BPF uprobes

I tracepoints
BPF

actions perf_events

A

Extended BPF: A New Type of Software, Brendan Gregg at Ubuntu Masters Conf 2019

(presentation, slides)

16

https://www.youtube.com/watch?v=7pmXdG8-7WU
https://www.slideshare.net/brendangregg/um2019-bpf-a-new-type-of-software

BPF Internals

A New Type of Software

BPF Instructions Events
Verifier | PEE
£ ' Context
Interpreter JIT Compiler
\A * User
11 «—| Machine Code .| BPF ,. Restof
Registers Execution Helpers Kernel
T Kernel
Y
Map Storage (Mbytes) BPF
filetop ocpensnoop <* java* node% php* javathreads gethostlatency
filelife fileslower atatanod thon* ruby* memleak
P BY ¥
vEscount wfsstat Syncsnoop mysgld gslower inistacks sslsniff
. ioprofile dbstat dbalower
Eadiat ek Gaarutit scread| © bashreadline threadsnoop
writesync F ucalls uflow mysqgld_clat pmlock pmheld
uobjnew ustat bashfune gyscount
cachestat cachetop uthreads ugc bashfunclat killsnoop
e r destat desnoop | 1 hell
F 3 mount snocop L ‘ } shellsnoop
: : signals naptime
icstat Applications eperm setuids
bufgrow Runtimes elfsnoop modsnoop
OO S seadeband ’l execsnoop exitsnoop
i i pidpersec
writeback | System Libraries " *
trace * > cpu 13: -::puw;
argdist L] Systern Call Interface y4 Tung :unqr:Tng
funcoount i
funcslower ‘ s K // cpuunclaimed
funolatenay VF 4 Sockets T deadlock
stackcount Scheduler - offcputime wakeuptime
g profile File Systems / TCP/UDP n ‘_“‘- offwaketime softirga
]j]:)li |~ offcpuhist threaded
btrfzdist I X pidnzs mlock mheld
Yrlormanea T . btrfsslower V0|U 3 Manage}/ P Virtual - smpcalls workg
TIOFTIELICE 1001 extddist extdslower . Memory | e
nfsslower nfsdist Block Dewce MNet Device slabratetop
xfaslower xfsdist 4 :momk:.ll ;liml&ak
' zfsslowar zfsdist // Device DFIVETST \ \\ \ sShmsnoop SNooR
overlayfs 4 kmem kpages numamowve
brkstack
pagiash scsllatenCY -‘-i&zﬁﬂﬂ-jﬁﬂan n::::j:: 1pecn mp;;ﬁ;ﬁa ;f:u;:a
bictop biosnoop scsiresult femetatency superping fmapfault hfaults
biclatency sot’dsnoop teptop teplife toptracer qdise—fg vmzean swapin
bitesize tcpoconnect tcpaccept N,
seeksize tepoconnlat topretrans hardirgs
B biopattern zz;ij::;ni":::;g tcpsubnet topdrop criticalstat
b:o.stackg soconnect scaccept tepstates . Other:; ttysnoop
L d: bioerr socketio sockeize tcpeynbl tcpwin '
7] egen i iosched . iniat solstbyte Copnagle topreset capable llastat CPUs
ﬁ;‘::oioiéiol blkthrot skbdrop skblife udpeonnect ;3;1;3«;1::: cpufreg

http://brendangregg.com

Execution User
model

task ves
task no
event yes

defined

Compil- Security Failure

ation mode

any user abort
based

static none panic

JIT, verified, error

CO-RE JIT message

Resource
access

syscall,
fault

direct

restricted
helpers

Extended BPF: A New Type
of Software, Brendan
Gregg at Ubuntu Masters

Conf 2019

(presentation, slides)

17

http://brendangregg.com/
https://www.youtube.com/watch?v=7pmXdG8-7WU
https://www.slideshare.net/brendangregg/um2019-bpf-a-new-type-of-software

What is BPF?

Highly efficient sandboxed
virtual machine in the Linux
kernel making the Linux
kernel programmable at
native execution speed.

The Good:

e Open and transparent process
e Excellent code quality

e Stability

o Available everywhere

e Almost entirely vendor neutral

Linux Development

section(“to_netdev”)
- int handle(struct sk_buff *skb) {

agent
(e.g. Cilium)

bpf (BPF_MAP...)

o
(0%}

if (tep->dport == 80)
redirect(1lxc@);

return DROP_PACKET;

L g o8

clang -target bpf [...]

LLVM (o)

bpf (BPF_PROG_LOAD, ...}

The Bad:

o Hard to change

e Shouting is involved (getting better)

e Large and complicated codebase

e Upstreaming code is hard, consensus has to
be found

° Upstreaming is time consuming

e Depending on the Linux distribution
merged code can take years to become
generally available

e Everybody maintains forks with 100-1000s
backports

- cannot crash the kernel : e:i::;:
- as fast as kernel module | P
- stable API guarantees ¥

ethe

BPF_PROG_RUN(code) I

Stack (App)

userspace

: kernelspace

How to Make Linux Microservice-Aware with Cilium and eBPF, Thomas Graf, QCon 2018,
(presentation, transcript)

18

https://www.youtube.com/watch?v=_Iq1xxNZOAo&t=1845s
https://www.infoq.com/presentations/linux-cilium-ebpf/?utm_source=youtube&utm_medium=link&utm_campaign=qcontalks

eBPF Runtime

<|> Process

A
sendmsg(): : recvmsg()

e
-

TCP/IP

Network Device

LL
Q.
3 o
% &

Safety & Security

The verifier will reject any
unsafe program and
provides a sandbox.

Continuous Delivery
Programs can be exchanged
without disrupting workloads.

0 Performance

The JIT compiler ensures
native execution
performance.

Where can you hook? kernel functions (kprobes), userspace functions (uprobes), system calls,
fentry/fexit, tracepoints, network devices (tc/xdp), network routes, TCP congestion algorithms,

sockets (data level)

<[> Process

v |
File Descriptor
| Visgr—

eBPF — Rethinking the Linux
Kernel, Thomas Graf, QCon
2020
(presentation, transcript)

eBPF Hookhs

st ABPF

recvmsg()

sendmsg()

write()! read()
PF

Network Device
é 4
BPF

19

https://www.youtube.com/watch?v=f-oTe-dmfyI
https://www.infoq.com/presentations/facebook-google-bpf-linux-kernel/?utm_source=youtube&utm_medium=link&utm_campaign=qcontalks

eBPF Maps

Controller @ Admin <|> Process

sendmsg()| |recvmsg()
BPF
y |
. | T
Map

-

Linux
Kernel

Network Device

Map Types: What are Maps used for?

- Hash tables, Arrays e Program state

- LRU (Least Recently Used) e Program configuration

- Ring Buffer e Share data between programs
- Stack Trace e Share state, metrics, and

- LPM (Longest Prefix match) statistics with user space

eBPF — Rethinking the Linux
Kernel, Thomas Graf, QCon
2020
(presentation, transcript)

eBPF Tail and Function Calls

Linux
Kernel

What are Tail Calls used for?

e Chain programs together
e Split programs into independent

logical components

e Make BPF programs composable

HBPF &BPF
HBPF i‘ ?
HePF BPF

What are Functions Calls used for?

Reuse functionality inside of a

program

Reduce program size (avoid

inlining)

eBPF Helpers

What helpers exist?
e Random numbers
e Get current time
e Map access
e Get process/cgroup context
e Manipulate network packets and
forwarding

<|> Process

Y
sendmsg(): :recvmsg()

e

¥

BPF

Network Device

Access socket data
Perform tail call

Access process stack
Access syscall arguments

https://www.youtube.com/watch?v=f-oTe-dmfyI
https://www.infoq.com/presentations/facebook-google-bpf-linux-kernel/?utm_source=youtube&utm_medium=link&utm_campaign=qcontalks

A eBPF — summary

“It seems that the Linux kernel continues its
march towards becoming BPF runtime-powered
microkernel.”

— Toke Hgiland-Jgrgensen, December 2019

* In-kernel just-in-time compiler.

* Extensive verification for safety (built-in verifier).

* Many places to attach programs: packet filters, tracepoints, security policies, ...
* Enable the addition of new functionality — no kernel hacking required.

* Highly flexible kernel configuration.

* Fast!

The Beginner’s Guide to eBPF, Liza Rice (live programming + source code) _ _
What is eBPF? — eBPF portal Alexei Starovoitov

BPF at Facebook, Performance Summit 2019, Alexei Starovoitov

BPF at Facebook, (slides) Kernel Recipes 2019, Alexei Starovoitov
A thorough introduction to eBPF (four articles in lwn.net), Matt Fleming, December 2017.
BPF compiler collection (BCC - Tools for BPF-based Linux 10 analysis, networking, monitoring, and more)

21

https://github.com/lizrice/ebpf-beginners
https://github.com/lizrice/ebpf-beginners
https://github.com/lizrice/ebpf-beginners
https://github.com/lizrice/ebpf-beginners
https://github.com/lizrice/ebpf-beginners
https://github.com/lizrice/ebpf-beginners
https://ebpf.io/what-is-ebpf
https://ebpf.io/what-is-ebpf
https://ebpf.io/what-is-ebpf
https://ebpf.io/what-is-ebpf
https://ebpf.io/what-is-ebpf
https://ebpf.io/what-is-ebpf
https://www.youtube.com/watch?v=ZYBXZFKPS28
https://www.youtube.com/watch?v=ZYBXZFKPS28
https://www.youtube.com/watch?v=ZYBXZFKPS28
https://www.youtube.com/watch?v=ZYBXZFKPS28
https://www.youtube.com/watch?v=bbHFg9IsTk8
https://www.youtube.com/watch?v=bbHFg9IsTk8
https://www.youtube.com/watch?v=bbHFg9IsTk8
https://www.youtube.com/watch?v=bbHFg9IsTk8
https://kernel-recipes.org/en/2019/talks/bpf-at-facebook/
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc

A

)

eBPF — official documentary

https://www.youtube.com/watch?v=Wb vD3XZYOA (30 min)

In 2014, a group of engineers at Plumgrid needed to find an innovative and cost-effective solution to
handle network traffic in SDN environments. What they created was a landmark in the industry
known as the extended Berkeley Packet Filter (or eBPF). This vital technology allows user-level code
execution inside the Linux Kernel, transforming network traffic handling for SDN environments.
Whether these engineers knew it or not, they had just revolutionized the Linux Kernel.

— Growth of Linux and SDN

— PLUMgrid Thomas Graf

— Initial Patch Submission Daniel Borkmann

— eBPF Merged into the Linux Kernel Chris Wright

— Hyperscalers Adopt eBPF Liz Rice

— Cilium Bring eBPF to End Users Purvi Desai (Google)

— DockerCon 2017 eBPF Takes Off David Miller (network kernel maintainer)
— eBPF Expands to Security Alexei Starovoitov

— eBPF on Windows Brendan Gregg

— eBPF Everywhere Dave Thaler (Microsoft)

https://ebpfdocumentary.com/

22

https://www.youtube.com/watch?v=Wb_vD3XZYOA
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqa1RubzZORDg2YlBGYjV6b0o3UWNDWk1YR1c0Z3xBQ3Jtc0ttMzNlUzRfZkhwQmFwdy1yemVZT0pRVHhWQTFhLVRNVmdjZmFaR1JaV01fRUpQUE9tT3pndFdwVmMxX1JNM3JWazJxTW5hNnAtOTJySmlkZUZMMEtGRHFVenFTRUNFUm1WOGNWcnVoZVRhbGh2WDd2WQ&q=https://ebpfdocumentary.com/&v=Wb_vD3XZYOA

A What is going on in the kernel — kernel reports

e The Kernel Report, Jonathan Corbet, Open Source Summit EU 2023

This talk will review recent events in the kernel development community, discuss the current state of
the kernel and the challenges it faces, and look forward to how the kernel may address those
challenges.

e The Kernel Report, Jonathan Corbet, Open Source Summit 2022
The Kernel Report, Jonathan Corbet, Linux Plumbers Conference 2021 (starting from 6:45)

* The Kernel Report, Jonathan Corbet, LPC 2020, 2020 edition.

* The Kernel Report, Jonathan Corbet, linux.conf.au 2019 edition.

 The Kernel Report, Jonathan Corbet, Open Source Summit, 2018 edition.

* Linux Weekly News ﬂ LWN

— Kernel index 5 net
D=l

News from the source 73

— Conference index

https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/Kernel/Index/
https://lwn.net/Kernel/Index/
https://lwn.net/Kernel/Index/
https://lwn.net/Archives/ConferenceByYear/
https://lwn.net/Archives/ConferenceByYear/
https://lwn.net/Archives/ConferenceByYear/
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=kJNNQgJPY3M
https://www.youtube.com/watch?v=kJNNQgJPY3M
https://www.youtube.com/watch?v=kJNNQgJPY3M
https://www.youtube.com/watch?v=kJNNQgJPY3M
https://www.youtube.com/watch?v=kJNNQgJPY3M
https://www.youtube.com/watch?v=yt29BKVfI0I
https://www.youtube.com/watch?v=yt29BKVfI0I
https://www.youtube.com/watch?v=yt29BKVfI0I
https://www.youtube.com/watch?v=yt29BKVfI0I
https://www.youtube.com/watch?v=yt29BKVfI0I
https://www.youtube.com/watch?v=XQGUi5Gu0D8
https://www.youtube.com/watch?v=XQGUi5Gu0D8
https://www.youtube.com/watch?v=XQGUi5Gu0D8
https://www.youtube.com/watch?v=XQGUi5Gu0D8
https://www.youtube.com/watch?v=XQGUi5Gu0D8
https://www.youtube.com/watch?v=yt29BKVfI0I
https://www.youtube.com/watch?v=yt29BKVfI0I

A The Kernel Report 2023

* BPF-how far do we go?
— What BPF can do?

Packet filtering, TCP congestion control, traffic control, rRouting++ w/XDP, infrared drivers, input
drivers, system-call filtering (seccomp), tracing and analysis ...

— What BPF might do?

* The extensible scheduler class (write complete CPU schedulers in BPF)

— Developed by engineers from Meta and Google.

— Why: easy experimentation, faster scheduler development, ad hoc schedulers for special
workloads.

— Why not: added mainteance burden, benchmark gaming, vendors may require specific
schedulers, ABI concerns, redirection of work on core scheduler.

— Rejected by scheduler maintainer (Peter Zijlstra).
* Page aging (why: adjust memory-management to workload).

* lo_uring integration (why: better control over sequences of operations, create a complete

programming environment).
24

https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/

A The Kernel Report 2023

)

* Rust

— Has a lot to offer (a stronger type system, no undefined behavior, attractive to newer
developers).

— Why not Rust in the kernel (a new language adds complexity, the language is still evolving
— quickly, maintainers will need to learn Rust, lots of glue code, some things are hard to
do in Rust, conservatism).

— Initial Rust infrastructure has been merge into Linux 6.1 (October 2022).

— More support code in subsequent kernels (access to existing types and functions ... but
safer).

— Nothing in a production kernel yet, nothing that anybody is actually using.
— Rust support was merged as an experiment.

— The Rust decision point is coming soon.

“There are possibly some well-designed and
written parts which have not suffered a memory
safety issue in many years. It's insulting to
present this as an improvement over what was fArli : :
achieved by those doing all this hard work.” Rust-for-Linux developer Miguel Ojeda

— a longtime kernel developer 25

https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1

A The Kernel Report 2023

)

° The maintainership crisis :Belng maintainer feels like a puniShment,
. -and that cannot stand. We need help.
— Increasing demands. {— Darrick Wong
— Understaffing.
— Lack of employer support (many maintainers are not paid to Maintainers/longtime developers are
maintain)_ burnlng out. .
— Josef Bacik

— Kernel fuzzers (bad quality bug reports).

— Dark areas (documentation, build system, many core-kernel areas,
drivers for older hardware ...).

— Maintainers.

— https://www.kernel.org/doc/html/latest/process/contribution-
maturity-model.html

Slides: https://lwn.net/talks/2023/kr-osseu.pdf 26

https://www.kernel.org/doc/html/latest/process/contribution-maturity-model.html
https://www.kernel.org/doc/html/latest/process/contribution-maturity-model.html
https://www.kernel.org/doc/html/latest/process/contribution-maturity-model.html
https://www.kernel.org/doc/html/latest/process/contribution-maturity-model.html
https://www.kernel.org/doc/html/latest/process/contribution-maturity-model.html
https://lwn.net/talks/2023/kr-osseu.pdf
https://lwn.net/talks/2023/kr-osseu.pdf
https://lwn.net/talks/2023/kr-osseu.pdf

A 2023 Kernel Maintainers Summit group photo

e e R SR ——mepm R B S SR R e R e s
Back row: Alexei Starovoitov, Dave Chinner, Konstantm Ryabltsev Thomas Gleixner, Jakub Kicinski, Josef Bac1k, Dan Wllhams Wolﬁ‘am Sang, Rafael Wysocki,
Kees Cook, Greg Kroah-Hartman, Jiri Kosina.

Front row: Tejun Heo, Jens Axboe, Sasha Levin, Ted Ts'o, Jan Kara, Linus Torvalds, Martin Petersen, Christian Brauner, Steve Rostedt, Arnd Bergmann.

Floor: Miguel Ojeda.

A

e Bugsin the kernel
— Fixing bugs will take a long time.

The Kernel Report 2022

— Some bugs are very old.

* Rust

— Can help (enforce rules, e.g. locking, eliminate undefinded behavior, bring in new developers).

— What’s the holdup (a difficult learning curve, the language is still evolving, some things are hard to do in Rust,
conservatism).

— Initial Rust infrastructure has been merge into Linux 6.1 (October 2022).

— A pair od Rust kernel modules (NVM Express driver, 9P filesystem server)

* lo_uring Submission Completion
queue queue
— System calls slow down your program.
It
— Shared memory area (user, kernel). e
. . ¢—Kernel
— What it brlngs Kernel —»{ command
. command
hd Asynchronous operatlons. command result l4——User space
.. . command result
* Submission/results without system calls. command result
.) command result
* Registered files and buffers User space —

A wide range of commands. io_uring is an alternative, high-performance API that runs

Chained operations. within the kernel 28

https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://lwn.net/Articles/907685/
https://lwn.net/Articles/907685/
https://lwn.net/Articles/907685/
https://lwn.net/Articles/907685/
https://lwn.net/Articles/907685/
https://lwn.net/Articles/907685/
https://lwn.net/Articles/907685/
https://lwn.net/Articles/907685/
https://lwn.net/Articles/907685/
https://lwn.net/Articles/907685/

A The Kernel Report 2022

* lo_uring (continued)

— User-space block driver using io uring (ublk)

— Isio_uring the basis for future microkernel architecture?
 Holesin the boundary
— BPF.
— DAMON/DAMOS (memory management decisions to be pushed under user space control).

— Userfaultid(). An increasingly porous boundary
— Seccomp().
— XDP (networking subsystem). U Sace

Linux systems will look a lot different in the -——svstemca"s——

future.

* Generational change

(Stolen from https://www.redhat.com/en/blog/architecting-containers-part-1-why-understanding-user-
space-vs-kermnel-space-matters)

— An unparalleled depth of skills and experience.
— But also resistance to change (e.g. Rust), lack of diversity, increasingly tired single points of failure.
— Preparing for change (shared maintenance duties, documenation, investment in tools). -

https://lwn.net/Articles/903855/
https://lwn.net/Articles/903855/
https://lwn.net/Articles/903855/
https://lwn.net/Articles/903855/
https://lwn.net/Articles/903855/
https://lwn.net/Articles/903855/
https://lwn.net/Articles/903855/
https://lwn.net/Articles/903855/

A The Kernel Report 2021

)

e Security (LLVM Control-flow integrity)
e Core scheduling

— Allow processes to spy on each other or disable SMT (Simultaneous multi-
threading).

— Don’t let untrusting processes share an SMT core (v5.14 or later).

— Processes can be assigned a ,,cookie” value, SMT siblings only shared by
processes with the same cookie.

* Landlock
— Load rules to restrict filesystem access.
— An unprivileged sandboxing mechanism.
— Merged for 5.13.
e Patch attestation.
 The UMN affair (five buggy patches sent under made-up names).
* Rustin the kernel (a memory-safe environment, avoid undefined behavior)
* Runtime verification.
* Realtime (work started in 2004, in 2022 will finally be merged). 30

A The Kernel Report 2021

=
* jo_uring
— Asynchronous I/0 that actually works.

— More operations (not just I/O anymore).
— File operations without file descriptors.
— BPF support.

— BPF for Windows.

— Atomic operations.

— Sleepable BPF programs.

— Direct calls to kernel functions.

— Signed BPF programs (in progress).

* 30 years later — what have we learnt? (Linus Torvalds 1991)

— Tools matter.

— Maintaining compatibility is important. “I'm doing a (free) operating system (just a hobby,
won't be big and professional like gnu) for 386(486) AT

, L clones. This has been brewing since april, and is
— Code quality and maintainability over features. starting to get ready.”

— Copyleft holds things together. — Linus Torvalds, August 1991
— We can do it, we can do it better!

— Vendor independence is crucial.

31

A Linux structure and kernel functions
Basic concepts

 Linux structure and kernel functions

e Basic concepts — process, user mode and kernel mode, context switch, system calls,
user stack and kernel stack, process state transitions

Linux — the structure and functions of the kernel

Linux kernel SCI (System Call Interface)

)

Memory Process
I/O subsystem management management
subsystem subsystem
4 Linux kernel 4 N 0
Virtual File System i :
y Virtual Signal
Terminals Sockets File systems memory handling
Metfilter / Mftables Genenc
@ :
o £ Network block layer Paging process/thread
c o2 age '
a9 protocols Pag c:rea_tlon_ &
D Linux kernel replacement termination
5
Linux kernel I/O Scheduler
— Packet Scheduler
Character Network Block Page ;”r‘géggz
device device device cache
: : : Scheduler
drivers drivers drivers
'y ") J

Source: Wikipedia

33

https://en.wikipedia.org/wiki/Linux_console

Process, address space, context

Process is a program in execution; execution runs sequentially, according to the order of instructions in
a process address space.

Process address space is a collection of memory addresses, referenced by the process during
execution.

Process context is its operational environment. It includes contents of general and control registers of
the processor, in particular:

program counter (PC),

stack pointer (SP),

processor status word (PSW),

memory management registers (allow access to code and data of a process).

Linux is @ multiprogramming system. The kernel dynamically allocates resources necessary for
processes to operate and provides security.

For this purpose, it needs hardware support:

processor executing in two modes: user mode and system mode (kernel mode),
privileged instructions and memory protection,

interrupts and exceptions.
34

A Kernel address space

e

System address space or kernel space comprises code and kernel data structures. Access to them is
only possible in system mode. The kernel has direct access to the address space of the current
process. Occasionally, it can reach up to address space of the other process than the current one.

Kernel thread is executed in kernel mode.

The transition to the execution of the kernel code can occur as a result of several events:

— The process calls the system function (system call). The user process instructs the kernel to
perform certain actions (e.g. /O operations) on its behalf.

— The processor reports exception while executing the process, e.g. a non-existent instruction. The
kernel handles an exception on behalf of the process that caused it.

— An external device reports an interrupt to the CPU informing about the occurrence of an

asynchronous event, e.g. completion of an input-output operation. Interrupt support is handled
in the interrupt handling routine.

A Context switching

Context Switching — saving the context of

the current process (in the structure -
that is part of the process address

space) and loading the context of 15
another process into the processor]
registers. £

10

The context switch time is an overhead of
the system and depends on hardware
support (can take from a few 100
nanoseconds to a few microseconds). ’

Context switch Context switch memcpy G4k Thread launch Process launch
pinned) junpinned)

Measuring context switching and memory overheads

Context switching itself has a cost in performance, due to running the task scheduler, TLB flushes, and

indirectly due to sharing the CPU cache between multiple tasks. L2 cache have substantial impact on the
cost of context switch.

https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/

USER MODE

KERNEL MODE

TIME

7S em call Interrupt
ll Randier I i\ Scheduler I ll handler I

System call Timer interrupt Device interrupt

KERNEL MODE
I Intr .

Interleaving of kernel control paths, source: Bovet, Cesati

37

A System function call with int 0x80

Lser-space Kernel-space

[User a:}plicaii-:m) (C-Library) (FKearnel j [System call)

getpid(void) Load [arguments
- — eax= [NR_detpid,

L

sylscall exit

I

transition o kermel (int Eﬂj: system_call source:
call
systam_call_tabla[aax]= o A.natomy Of the
o Linux kernel,
retum | M.Tim Jones

resumg usgyspace

Retum

&

The details of the system function call depend on the architecture (the figure illustrates i386). The
register eax is used to transmit the number of the function being called. The machine instruction int
0x80 calls the program interrupt 0x80 (decimal 128) — context switching and calling the kernel
function system_call. The function transfers control to the proper system function (uses
system_call_table with eax treated as an index).

After returning from the system function, the syscall_exit function is executed, the resume_userspace
function call returns the control back to the user space. -

A System call and process stacks

e

Each process uses two stacks:

— user stack — used in user mode (grows dynamically during program execution),

— kernel stack — in kernel mode (has a fixed, small size); is usually allocated in address space of the
process, but it can not be accessed in the user mode.

system_call() starts by saving
the registers in the kernel
stack. After checking other
things such as validating
parameters, it will call the
respective system call.

CPU
r N\ . RSP
RAX [RCX | arcdl
— H
RBX RDX ™
R14 | [R15 argsS
N J argé
__NR X
RSP
€ ~ interrupt £ x interrupt
— + E
% g frame i L% = frame
RBP > i RBP >
DISPATCHER PARAMETERS COPY

RSP

' RBP

argl

arg5

argé6

__NR X

interrupt
frame

SYSCALL

39

A System call — sequence of steps

)

System calls: https://linux-kernel-labs.github.io/refs/heads/master/lectures/syscalls.html

This is what happens during a system call:

1. The application is setting up the system call number and parameters and it issues a trap
instruction.

2. The execution mode switches from user to kernel; the CPU switches to a kernel stack; the user
stack and the return address to user space is saved on the kernel stack.

3. The kernel entry point saves registers on the kernel stack.
4. The system call dispatcher identifies the system call function and runs it.

5. The user space registers are restored and execution is switched back to user (e.g. calling
IRET).

6. The user space application resumes.

See also: Shadow stacks for user space, Jonathan Corbet February 21, 2022

Whenever a function is called, the return address is pushed onto both the regular stack and the shadow
stack. When that function returns, the return addresses are popped off both stacks and compared; if they

fail to match, the system goes into red alert and kills the process involved. 40

https://linux-kernel-labs.github.io/refs/heads/master/lectures/syscalls.html
https://linux-kernel-labs.github.io/refs/heads/master/lectures/syscalls.html
https://linux-kernel-labs.github.io/refs/heads/master/lectures/syscalls.html
https://linux-kernel-labs.github.io/refs/heads/master/lectures/syscalls.html
https://linux-kernel-labs.github.io/refs/heads/master/lectures/syscalls.html
https://lwn.net/Articles/885220/

A System call conventions

e

Definition of the system function from the C level (file include/linux/syscalls.h):
asmlinkage long sys_exit (int error_code);

asmlinkage tells compiler to look on the kernel stack for the function parameters, instead of registers.

In architecture x86 the registers ebx, ecx, edx, esi and edi are used to pass the first five parameters. If there
are more parameters, it is through one register that a pointer to the user's address space is transferred,
where all parameters are placed.

The value passed from the system function is placed in the eax register.

Other registers are used in 64-bit architecture:

eax return value
— x64 Architecture, reqisters, calling conventions, addressing modes edx dividend register
— syscall numbers ecx count register
Copying data between the kernel space and the user space is ebx local register variable
done using copy_to_user() and copy_from_user(). ebp stack frame pointer (optional)
_ _ . esl local register variable
When executing the system function, the kernel works in the . . .
_) ed1 local register variable
context of the process (the variable current points to the :
esp stack pointer

current process).

https://msdn.microsoft.com/en-us/library/windows/hardware/ff561499(v=vs.85).aspx
http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

A

)

Sysenter and sysexit

Machine instructions sysenter and sysexit were added to x86 processors (newer than Pentium Il). They allow a faster
transition (return) to the kernel mode to perform a system function than using the int statement. Support for this
mechanism has been added to the Linux kernel (Sysenter Based System Call Mechanism in Linux 2.6).

Calling the x86 function

— 64-bit version — defined in the file arch/x86/entry/entry 64.S
— 32-bit version — defined in the file arch/x86/entry/entry 32.S

Content of the system function table

— 64-bit version — defined in the file arch/x86/entry/syscalls/syscall 64.tbl

— 32-bit version — defined in the file arch/x86/entry/syscalls/syscall 32.tbl
The abi is always "1386" for this file.

#
This is the 0
beginning ;
3
il
5
6
7
8

In other operating systems, there are many more functions than 435 in Linux 5.6 (32-bit).

1386
1386
1386
1386
1386
1386
1386
1386
1386

restart_syscall
exit

fork

read

write

open

close

waitpid

creat

sys_restart_syscall
sys_exit

sys_ fork

sys_ read

sys_write

sys_open

sys _close

sys waitpid
sys_creat

compat_sys_open

42

http://articles.manugarg.com/systemcallinlinux2_6.html
http://articles.manugarg.com/systemcallinlinux2_6.html
http://articles.manugarg.com/systemcallinlinux2_6.html
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/entry_64.S
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/entry_32.S
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/syscalls/syscall_64.tbl
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/syscalls/syscall_64.tbl
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/syscalls/syscall_64.tbl
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/syscalls/syscall_64.tbl
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/syscalls/syscall_32.tbl
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/syscalls/syscall_32.tbl
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/syscalls/syscall_32.tbl
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/syscalls/syscall_32.tbl
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/syscalls/syscall_32.tbl

A

)

Process and system context

Context of execution — summary:

— user code is executed in user mode and in process context, can only reach the address
space of the process,

— system functions and exceptions (e.g. dividing by zero or violation of memory protection)
are supported in system mode, but in context of the process, they have access to the
process and system address space.

The kernel acts on behalf of the current process (e.g. by executing a system function), it can
reference the address space of the process and the process stack. It can also block the
current process if it has to wait for resources.

— interrupts are handled in system mode in the context of the system with access only to the
system address space.

System-wide operations, such as recalculating priorities or handling an external interrupt.
Not performed on behalf of any particular process and therefore take place in the context of
the system. The kernel does not reach to the address space or the stack of the current

process, also it can not block.
43

A Process state transitions

)

The Linux kernel is preemptable and re-entrant, it can support different processes concurrently.

The process during execution changes state. — ; Key

The basic states of the process are: running in 4.2/4.3BSD, not
fetumi from O in SVR2/SVR3

— new: the process has been created, syscall, (10 ol or

i . interrupt | | .
— ready: the process is waiting for the Lyuerpt
processor to be allocated, kernel S8L T wuiibie T
running
— executed (more precisely: executed in sleep
user mode or executed in system mode): o ;
. . wakeup

process instructions are executed, Y asleep
)

— waiting: the process is waiting for an stop”

| :
stop | | continue

3
@]
=
e,
=
ot
o
\

event to occur, siop

— finished: the process completed
execution.

Process states and state transitions, source: U. Vahalia, UNIX Internals: The New Frontiers

