
Introduction
to Linux

Operating System

Table of contents

• Operating system tasks

• UNIX history, Linux history

• Linux distributions

• Linux basic features

• Building OS kernels

• Linux kernel modules

• eBPF

• Kernel reports – what is going on in the kernel

2

3

Computer system layers (source: Stallings, Operating Systems)

Operating System is a program that mediates between the user and the computer hardware.

• Hides hardware details of the computer system by creating abstractions (virtual machines).

• Manages resources: memory, processor (CPU), input/output, communication ports

• Other activities: security, job accounting, error detecting tools, etc.

UNIX history

• Created in 1969; authors: Ken Thompson, Denis Ritchie from Bell Laboratories, machine: old PDP-7; had
many features of MULTICS.

 (Brian Kernighan participated in the creation of Unix, he is co-author of the first book about C).

• 1973: UNIX rewritten in C (language designed specifically for this purpose).

• 1974: presented on ACM Symposium on Operating Systems and in CACM, quickly gaining popularity.

• For hobbyists: Unix history, Unix, Linux, and variant history.

• The early days of Unix at Bell Labs, Brian Kernighan (LCA 2022 online).

• Ken Thompson interviewed by Brian Kernighan at VCF East 2019.
4

Ken Thompson Brian Kernighan Denis Ritchie
died 12.10.2011

https://www.levenez.com/unix/
https://www.levenez.com/unix/
https://www.computerhope.com/history/unix.htm
https://www.computerhope.com/history/unix.htm
https://www.computerhope.com/history/unix.htm
https://www.computerhope.com/history/unix.htm
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=ECCr_KFl41E
https://www.youtube.com/watch?v=EY6q5dv_B-o
https://en.wikipedia.org/wiki/Ken_Thompson
https://en.wikipedia.org/wiki/Brian_Kernighan
https://en.wikipedia.org/wiki/Dennis_Ritchie

5 Unix History Diagram - short version (source: Wikipedia)

https://en.wikipedia.org/wiki/Unix

6

Linux history

May 1991, version 0.01: no support for the network, limited number of device drivers, one
file system (Minix), processes with protected address spaces

The Linux Kernel Archives – https://www.kernel.org/

– 2024-02-23, latest stable version 6.7.6

– 2024-02-18, latest mainline 6.8-rc05

 Numbering of the kernel versions – see lab notes or Wikipedia

7

Linus Torvalds
announcing Linux
1.0, 30.03.1994

Richard Stallman, founder of the GNU project and the Free
Software Foundation, co-creator of the GNU GPL license, creator
of the Emacs editor, GCC compiler, GDB debugger.

Linus
Torvalds in

2023

Richard
Stallman in

2019

Linus Torvalds, Finland, born in
the same year as UNIX, i.e. 1969,
creator of the Linux kernel and
the Git version control sysem.

Andrew Tanenbaum in 2012

in conversation
with Dirk Hohndel

at OSS Japan

https://www.kernel.org/
https://en.wikipedia.org/wiki/Linux_kernel
http://pl.wikipedia.org/wiki/Richard_Stallman
http://pl.wikipedia.org/wiki/Linus_Torvalds
http://pl.wikipedia.org/wiki/Linus_Torvalds
http://pl.wikipedia.org/wiki/Linus_Torvalds
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w
https://www.youtube.com/watch?v=N3m6XbK_a_w

Linux statistics and facts

• In 2022, 100% of the world’s top 500 supercomputers run on Linux.

• All of the top 25 websites in the world are using Linux.

• 96.3% of the world’s top one million servers run on Linux.

• 90% of all cloud infrastructure operates on Linux, and practically all the best cloud hosts use it.

• 90% of Hollywood’s special effects are made on Linux

• In July 2022, 2.76% of all desktop operating systems worldwide ran on Linux.

• In June 2022, Linux held a market share of 1.02% of the global desktop/tablet/console market.

• In August 2022, the net market share of Linux was 2.35%.

• In August 2022, 71.85% of all mobile devices run on Android, which is Linux-based.

8

https://webtribunal.net/blog/linux-statistics/

https://www.netmarketshare.com/operating-system-market-share.aspx?options={"filter":{"$and":[{"deviceType":{"$in":["Desktop/laptop"]}}]},"dateLabel":"Trend","attributes":"share","group":"platform","sort":{"share":-1},"id":"platformsDesktop","dateInterval":"Monthly","dateStart":"2018-05","dateEnd":"2019-04","segments":"-1000","plotKeys":[{"platform":"Windows"},{"platform":"Mac OS"},{"platform":"Linux"},{"platform":"Chrome OS"},{"platform":"Unknown"}]}
https://webtribunal.net/blog/linux-statistics/
https://webtribunal.net/blog/linux-statistics/
https://webtribunal.net/blog/linux-statistics/

9 Linux kernel versions (source: Wikipedia)

Jonathan Corbet in 2023 Kernel Report :

Roughly 14% of the code is part of the
"core" (arch, kernel and mm directories),
while 60% is drivers.

https://en.wikipedia.org/wiki/Linux_kernel
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8

Linux distributions

A set of ready-to-install, precompiled packages; tools for package installation and uninstallation (RPM: Red
Hat Package Manager); kernel, but also many service programs; tools for file systems management,
creation and maintenance of user accounts, network management etc.

10

 Debian used in labs

DistroWatch is a website which provides news, popularity
rankings, and other general information about Linux
distributions as well as other free software/open source Unix-
like operating systems.

2023-11-12

http://www.debian.org/
http://www.debian.org/
https://distrowatch.com/

Linux basic features

• Multi-access system (with time sharing) and multi-tasking.
• Multiprocess system, simple mechanisms to create hierarchy of processes, kernel

preemption.
• Available for many architectures.
• Simple standard user interface that can be easily replaced (shell command

interpreter).
• Hierarchical file systems.
• Files are seen as strings of bytes (easy to write filters).
• Loading programs on demand (fork with copy on write).
• Virtual memory with paging.
• Dynamic hard disk cache.
• Shared libraries, loaded into memory dynamically (one code used simultaneously by

many processes).
• Compliance with the POSIX 1003.1 standard.
• Different formats of executable files.

11

Building OS kernels

• Monolithic kernel (the only solution until the 1980s) – Linux belongs to this category.

– the whole kernel runs in a single address space,

– communication via direct function invocation.

• Microkernel (e.g. Mach, MINIX).

– functionality of the kernel is broken down into separate processes (servers),

– some servers run in kernel mode, but some in user mode – all servers have own address
spaces,

– communication is handled via message passing,

– modularity – failure in one server does not bring down another, one server may be swapped
out for another,

– context switch and communication generate extra overhead so currently user mode servers
are rarely used.

• Macrokernel or „Hybrid kernel" (e.g. Windows NT kernel on which are based Windows XP, Vista,
Windows 7, Windows 10).

12

13

Structure of monolithic kernel, microkernel and hybrid kernel-based operating systems (source: Wikipedia)

Readings

1. Tanenbaum – Torvalds debate on kernel architecture (MINIX vs Linux)

• Wikipedia

• Oreilly

2. Comparing Linux and Minix, February 5, 2007, Jonathan Corbet

Linus Torvalds :

“As to the whole ‘hybrid kernel’ thing - it’s just marketing. It’s ‘oh, those microkernels had good PR, how can
we try to get good PR for our working kernel? Oh, I know, let’s use a cool name and try to imply that it has
all the PR advantages that that other system has’.”

https://en.wikipedia.org/wiki/Monolithic_kernel
https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://en.wikipedia.org/wiki/Tanenbaum%E2%80%93Torvalds_debate
https://www.oreilly.com/openbook/opensources/book/appa.html
https://www.oreilly.com/openbook/opensources/book/appa.html
https://lwn.net/Articles/220255/
https://lwn.net/Articles/220255/
https://lwn.net/Articles/220255/
https://lwn.net/Articles/220255/
http://beefchunk.com/documentation/sys-programming/os-linux/l-lkm-pdf.pdf

Linux kernel modules

• Linux borrows much of the good from microkernels: modular design, capability to preempt itself,
support for kernel threads, capability to dynamically load separate binaries (kernel modules).

• Modules – separately compiled, loaded into memory on demand and deleted when they are no longer
needed.

• Examples: a device driver, a file system, an executable file format.

14

• Advantages: saving memory (occupies memory only
when it is needed), the error in the module does not
suspend the system, but only removes the module from
the memory, one can use conflicting drivers without the
need to restart the system, etc.

• name of the module
• memory size of the module, in bytes
• how many instances of the module are
currently loaded
• if the module depends upon another
module(s)

• Disadvantages ???

cat /proc/modules

15

Extended BPF: A New Type of Software, Brendan Gregg at
Ubuntu Masters Conf 2019

(presentation, slides)

But – eBPF makes a change ...

eBPF – Rethinking the Linux Kernel, Thomas Graf, QCon
2020

(presentation, transcript)

Thomas Graf: With BPF, we're starting to implement a microkernel model where we can now dynamically
load programs, we can dynamically replace logic in a safe way, we can make logic composable. We're
going away from the requirement that every single Linux kernel change requires full consensus across the
entire industry or across the entire development community and instead, you can define your own logic,
you can define your own modules and load them safely and with the necessary efficiency.

https://www.youtube.com/watch?v=7pmXdG8-7WU
https://www.slideshare.net/brendangregg/um2019-bpf-a-new-type-of-software
https://www.youtube.com/watch?v=f-oTe-dmfyI
https://www.infoq.com/presentations/facebook-google-bpf-linux-kernel/?utm_source=youtube&utm_medium=link&utm_campaign=qcontalks
https://www.infoq.com/presentations/facebook-google-bpf-linux-kernel/?utm_source=youtube&utm_medium=link&utm_campaign=qcontalks

16

Extended BPF: A New Type of Software, Brendan Gregg at Ubuntu Masters Conf 2019
(presentation, slides)

https://www.youtube.com/watch?v=7pmXdG8-7WU
https://www.slideshare.net/brendangregg/um2019-bpf-a-new-type-of-software

17 http://brendangregg.com

Extended BPF: A New Type
of Software, Brendan

Gregg at Ubuntu Masters
Conf 2019

(presentation, slides)

http://brendangregg.com/
https://www.youtube.com/watch?v=7pmXdG8-7WU
https://www.slideshare.net/brendangregg/um2019-bpf-a-new-type-of-software

What is BPF?
Highly efficient sandboxed
virtual machine in the Linux
kernel making the Linux
kernel programmable at
native execution speed.

18

Linux Development

How to Make Linux Microservice-Aware with Cilium and eBPF, Thomas Graf, QCon 2018,
(presentation, transcript)

Linux Development

https://www.youtube.com/watch?v=_Iq1xxNZOAo&t=1845s
https://www.infoq.com/presentations/linux-cilium-ebpf/?utm_source=youtube&utm_medium=link&utm_campaign=qcontalks

19

eBPF – Rethinking the Linux
Kernel, Thomas Graf, QCon

2020
(presentation, transcript)

https://www.youtube.com/watch?v=f-oTe-dmfyI
https://www.infoq.com/presentations/facebook-google-bpf-linux-kernel/?utm_source=youtube&utm_medium=link&utm_campaign=qcontalks

20

eBPF – Rethinking the Linux
Kernel, Thomas Graf, QCon

2020
(presentation, transcript)

https://www.youtube.com/watch?v=f-oTe-dmfyI
https://www.infoq.com/presentations/facebook-google-bpf-linux-kernel/?utm_source=youtube&utm_medium=link&utm_campaign=qcontalks

eBPF – summary

• In-kernel just-in-time compiler.

• Extensive verification for safety (built-in verifier).

• Many places to attach programs: packet filters, tracepoints, security policies, ...

• Enable the addition of new functionality – no kernel hacking required.

• Highly flexible kernel configuration.

• Fast!

21

The Beginner’s Guide to eBPF, Liza Rice (live programming + source code)

What is eBPF? – eBPF portal

BPF at Facebook, Performance Summit 2019, Alexei Starovoitov

BPF at Facebook, (slides) Kernel Recipes 2019, Alexei Starovoitov

A thorough introduction to eBPF (four articles in lwn.net), Matt Fleming, December 2017.

BPF compiler collection (BCC - Tools for BPF-based Linux IO analysis, networking, monitoring, and more)

Alexei Starovoitov

https://github.com/lizrice/ebpf-beginners
https://github.com/lizrice/ebpf-beginners
https://github.com/lizrice/ebpf-beginners
https://github.com/lizrice/ebpf-beginners
https://github.com/lizrice/ebpf-beginners
https://github.com/lizrice/ebpf-beginners
https://ebpf.io/what-is-ebpf
https://ebpf.io/what-is-ebpf
https://ebpf.io/what-is-ebpf
https://ebpf.io/what-is-ebpf
https://ebpf.io/what-is-ebpf
https://ebpf.io/what-is-ebpf
https://www.youtube.com/watch?v=ZYBXZFKPS28
https://www.youtube.com/watch?v=ZYBXZFKPS28
https://www.youtube.com/watch?v=ZYBXZFKPS28
https://www.youtube.com/watch?v=ZYBXZFKPS28
https://www.youtube.com/watch?v=bbHFg9IsTk8
https://www.youtube.com/watch?v=bbHFg9IsTk8
https://www.youtube.com/watch?v=bbHFg9IsTk8
https://www.youtube.com/watch?v=bbHFg9IsTk8
https://kernel-recipes.org/en/2019/talks/bpf-at-facebook/
https://lwn.net/Articles/740157/
https://lwn.net/Articles/740157/
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc
https://github.com/iovisor/bcc

eBPF – official documentary

22

• In 2014, a group of engineers at Plumgrid needed to find an innovative and cost-effective solution to
handle network traffic in SDN environments. What they created was a landmark in the industry
known as the extended Berkeley Packet Filter (or eBPF). This vital technology allows user-level code
execution inside the Linux Kernel, transforming network traffic handling for SDN environments.
Whether these engineers knew it or not, they had just revolutionized the Linux Kernel.
– Growth of Linux and SDN

– PLUMgrid

– Initial Patch Submission

– eBPF Merged into the Linux Kernel

– Hyperscalers Adopt eBPF

– Cilium Bring eBPF to End Users

– DockerCon 2017 eBPF Takes Off

– eBPF Expands to Security

– eBPF on Windows

– eBPF Everywhere

https://www.youtube.com/watch?v=Wb_vD3XZYOA (30 min)

https://ebpfdocumentary.com/

Thomas Graf
Daniel Borkmann
Chris Wright
Liz Rice
Purvi Desai (Google)
David Miller (network kernel maintainer)
Alexei Starovoitov
Brendan Gregg
Dave Thaler (Microsoft)

https://www.youtube.com/watch?v=Wb_vD3XZYOA
https://www.youtube.com/redirect?event=video_description&redir_token=QUFFLUhqa1RubzZORDg2YlBGYjV6b0o3UWNDWk1YR1c0Z3xBQ3Jtc0ttMzNlUzRfZkhwQmFwdy1yemVZT0pRVHhWQTFhLVRNVmdjZmFaR1JaV01fRUpQUE9tT3pndFdwVmMxX1JNM3JWazJxTW5hNnAtOTJySmlkZUZMMEtGRHFVenFTRUNFUm1WOGNWcnVoZVRhbGh2WDd2WQ&q=https://ebpfdocumentary.com/&v=Wb_vD3XZYOA

What is going on in the kernel – kernel reports

• Linux Weekly News

– Kernel index

– Conference index

23

• The Kernel Report, Jonathan Corbet, Open Source Summit EU 2023

 This talk will review recent events in the kernel development community, discuss the current state of
the kernel and the challenges it faces, and look forward to how the kernel may address those
challenges.

• The Kernel Report, Jonathan Corbet, Open Source Summit 2022

 The Kernel Report, Jonathan Corbet, Linux Plumbers Conference 2021 (starting from 6:45)

• The Kernel Report, Jonathan Corbet, LPC 2020, 2020 edition.

• The Kernel Report, Jonathan Corbet, linux.conf.au 2019 edition.

• The Kernel Report, Jonathan Corbet, Open Source Summit, 2018 edition.

https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/
https://lwn.net/Kernel/Index/
https://lwn.net/Kernel/Index/
https://lwn.net/Kernel/Index/
https://lwn.net/Archives/ConferenceByYear/
https://lwn.net/Archives/ConferenceByYear/
https://lwn.net/Archives/ConferenceByYear/
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=VaA8LGPT3U8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=Wvo-aFCqwc8
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=C-I9qNsgPVQ
https://www.youtube.com/watch?v=kJNNQgJPY3M
https://www.youtube.com/watch?v=kJNNQgJPY3M
https://www.youtube.com/watch?v=kJNNQgJPY3M
https://www.youtube.com/watch?v=kJNNQgJPY3M
https://www.youtube.com/watch?v=kJNNQgJPY3M
https://www.youtube.com/watch?v=yt29BKVfI0I
https://www.youtube.com/watch?v=yt29BKVfI0I
https://www.youtube.com/watch?v=yt29BKVfI0I
https://www.youtube.com/watch?v=yt29BKVfI0I
https://www.youtube.com/watch?v=yt29BKVfI0I
https://www.youtube.com/watch?v=XQGUi5Gu0D8
https://www.youtube.com/watch?v=XQGUi5Gu0D8
https://www.youtube.com/watch?v=XQGUi5Gu0D8
https://www.youtube.com/watch?v=XQGUi5Gu0D8
https://www.youtube.com/watch?v=XQGUi5Gu0D8
https://www.youtube.com/watch?v=yt29BKVfI0I
https://www.youtube.com/watch?v=yt29BKVfI0I

The Kernel Report 2023

• BPF – how far do we go?

– What BPF can do?

 Packet filtering, TCP congestion control, traffic control, rRouting++ w/XDP, infrared drivers, input
drivers, system-call filtering (seccomp), tracing and analysis …

– What BPF might do?

• The extensible scheduler class (write complete CPU schedulers in BPF)

– Developed by engineers from Meta and Google.

– Why: easy experimentation, faster scheduler development, ad hoc schedulers for special
workloads.

– Why not: added mainteance burden, benchmark gaming, vendors may require specific
schedulers, ABI concerns, redirection of work on core scheduler.

– Rejected by scheduler maintainer (Peter Zijlstra).

• Page aging (why: adjust memory-management to workload).

• Io_uring integration (why: better control over sequences of operations, create a complete
programming environment).

24

https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/

The Kernel Report 2023

• Rust

– Has a lot to offer (a stronger type system, no undefined behavior, attractive to newer
developers).

– Why not Rust in the kernel (a new language adds complexity, the language is still evolving
– quickly, maintainers will need to learn Rust, lots of glue code, some things are hard to
do in Rust, conservatism).

– Initial Rust infrastructure has been merge into Linux 6.1 (October 2022).

– More support code in subsequent kernels (access to existing types and functions … but
safer).

– Nothing in a production kernel yet, nothing that anybody is actually using.

– Rust support was merged as an experiment.

– The Rust decision point is coming soon.

25

Rust-for-Linux developer Miguel Ojeda

https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1

The Kernel Report 2023

• The maintainership crisis

– Increasing demands.

– Understaffing.

– Lack of employer support (many maintainers are not paid to
maintain).

– Kernel fuzzers (bad quality bug reports).

– Dark areas (documentation, build system, many core-kernel areas,
drivers for older hardware …).

– Maintainers.

– https://www.kernel.org/doc/html/latest/process/contribution-
maturity-model.html

26 Slides: https://lwn.net/talks/2023/kr-osseu.pdf

https://www.kernel.org/doc/html/latest/process/contribution-maturity-model.html
https://www.kernel.org/doc/html/latest/process/contribution-maturity-model.html
https://www.kernel.org/doc/html/latest/process/contribution-maturity-model.html
https://www.kernel.org/doc/html/latest/process/contribution-maturity-model.html
https://www.kernel.org/doc/html/latest/process/contribution-maturity-model.html
https://lwn.net/talks/2023/kr-osseu.pdf
https://lwn.net/talks/2023/kr-osseu.pdf
https://lwn.net/talks/2023/kr-osseu.pdf

27

2023 Kernel Maintainers Summit group photo

The Kernel Report 2022

• Bugs in the kernel

– Fixing bugs will take a long time.

– Some bugs are very old.

• Rust

– Can help (enforce rules, e.g. locking, eliminate undefinded behavior, bring in new developers).

– What’s the holdup (a difficult learning curve, the language is still evolving, some things are hard to do in Rust,
conservatism).

– Initial Rust infrastructure has been merge into Linux 6.1 (October 2022).

– A pair od Rust kernel modules (NVM Express driver, 9P filesystem server)

• Io_uring

– System calls slow down your program.

– Shared memory area (user, kernel).

– What it brings

• Asynchronous operations.

• Submission/results without system calls.

• Registered files and buffers

• A wide range of commands.

• Chained operations.

28

io_uring is an alternative, high-performance API that runs
within the kernel

https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://www.phoronix.com/news/Rust-Is-Merged-Linux-6.1
https://lwn.net/Articles/907685/
https://lwn.net/Articles/907685/
https://lwn.net/Articles/907685/
https://lwn.net/Articles/907685/
https://lwn.net/Articles/907685/
https://lwn.net/Articles/907685/
https://lwn.net/Articles/907685/
https://lwn.net/Articles/907685/
https://lwn.net/Articles/907685/
https://lwn.net/Articles/907685/

The Kernel Report 2022

• Io_uring (continued)

– User-space block driver using io_uring (ublk)

– Is io_uring the basis for future microkernel architecture?

• Holes in the boundary

– BPF.

– DAMON/DAMOS (memory management decisions to be pushed under user space control).

– Userfaultfd().

– Seccomp().

– XDP (networking subsystem).

29

 Linux systems will look a lot different in the
future.

• Generational change

– An unparalleled depth of skills and experience.

– But also resistance to change (e.g. Rust), lack of diversity, increasingly tired single points of failure.

– Preparing for change (shared maintenance duties, documenation, investment in tools).

https://lwn.net/Articles/903855/
https://lwn.net/Articles/903855/
https://lwn.net/Articles/903855/
https://lwn.net/Articles/903855/
https://lwn.net/Articles/903855/
https://lwn.net/Articles/903855/
https://lwn.net/Articles/903855/
https://lwn.net/Articles/903855/

The Kernel Report 2021
• Security (LLVM Control-flow integrity)

• Core scheduling

– Allow processes to spy on each other or disable SMT (Simultaneous multi-
threading).

– Don’t let untrusting processes share an SMT core (v5.14 or later).

– Processes can be assigned a „cookie” value, SMT siblings only shared by
processes with the same cookie.

• Landlock

– Load rules to restrict filesystem access.

– An unprivileged sandboxing mechanism.

– Merged for 5.13.

• Patch attestation.

• The UMN affair (five buggy patches sent under made-up names).

• Rust in the kernel (a memory-safe environment, avoid undefined behavior)

• Runtime verification.

• Realtime (work started in 2004, in 2022 will finally be merged).

30

The Kernel Report 2021

• io_uring
– Asynchronous I/O that actually works.

– More operations (not just I/O anymore).

– File operations without file descriptors.

– BPF support.

• BPF
– BPF for Windows.

– Atomic operations.

– Sleepable BPF programs.

– Direct calls to kernel functions.

– Signed BPF programs (in progress).

• 30 years later – what have we learnt? (Linus Torvalds 1991)
– Tools matter.

– Maintaining compatibility is important.

– Vendor independence is crucial.

– Code quality and maintainability over features.

– Copyleft holds things together.

– We can do it, we can do it better!

31

Linux structure and kernel functions
Basic concepts

• Linux structure and kernel functions

• Basic concepts – process, user mode and kernel mode, context switch, system calls,

user stack and kernel stack, process state transitions

Linux – the structure and functions of the kernel

33 Source: Wikipedia

https://en.wikipedia.org/wiki/Linux_console

Process, address space, context

• Process is a program in execution; execution runs sequentially, according to the order of instructions in
a process address space.

• Process address space is a collection of memory addresses, referenced by the process during
execution.

• Process context is its operational environment. It includes contents of general and control registers of
the processor, in particular:

– program counter (PC),

– stack pointer (SP),

– processor status word (PSW),

– memory management registers (allow access to code and data of a process).

• Linux is a multiprogramming system. The kernel dynamically allocates resources necessary for
processes to operate and provides security.

 For this purpose, it needs hardware support:

– processor executing in two modes: user mode and system mode (kernel mode),

– privileged instructions and memory protection,

– interrupts and exceptions.
34

Kernel address space

System address space or kernel space comprises code and kernel data structures. Access to them is
only possible in system mode. The kernel has direct access to the address space of the current
process. Occasionally, it can reach up to address space of the other process than the current one.

Kernel thread is executed in kernel mode.

The transition to the execution of the kernel code can occur as a result of several events:

– The process calls the system function (system call). The user process instructs the kernel to
perform certain actions (e.g. I/O operations) on its behalf.

– The processor reports exception while executing the process, e.g. a non-existent instruction. The
kernel handles an exception on behalf of the process that caused it.

– An external device reports an interrupt to the CPU informing about the occurrence of an
asynchronous event, e.g. completion of an input-output operation. Interrupt support is handled
in the interrupt handling routine.

35

Context switching

Context Switching – saving the context of
the current process (in the structure
that is part of the process address
space) and loading the context of
another process into the processor
registers.

The context switch time is an overhead of
the system and depends on hardware
support (can take from a few 100
nanoseconds to a few microseconds).

36

Context switching itself has a cost in performance, due to running the task scheduler, TLB flushes, and
indirectly due to sharing the CPU cache between multiple tasks. L2 cache have substantial impact on the
cost of context switch.

Measuring context switching and memory overheads

https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/
https://eli.thegreenplace.net/2018/measuring-context-switching-and-memory-overheads-for-linux-threads/

37

Transitions between user and kernel mode, source: Bovet, Cesati

Interleaving of kernel control paths, source: Bovet, Cesati

System function call with int 0x80

The details of the system function call depend on the architecture (the figure illustrates i386). The
register eax is used to transmit the number of the function being called. The machine instruction int
0x80 calls the program interrupt 0x80 (decimal 128) – context switching and calling the kernel
function system_call. The function transfers control to the proper system function (uses
system_call_table with eax treated as an index).

After returning from the system function, the syscall_exit function is executed, the resume_userspace
function call returns the control back to the user space. 38

source:
Anatomy of the
Linux kernel,
M.Tim Jones

System call and process stacks

Each process uses two stacks:

– user stack – used in user mode (grows dynamically during program execution),

– kernel stack – in kernel mode (has a fixed, small size); is usually allocated in address space of the
process, but it can not be accessed in the user mode.

39

system_call() starts by saving
the registers in the kernel
stack. After checking other
things such as validating
parameters, it will call the
respective system call.

System call – sequence of steps

System calls: https://linux-kernel-labs.github.io/refs/heads/master/lectures/syscalls.html

This is what happens during a system call:

1. The application is setting up the system call number and parameters and it issues a trap
instruction.

2. The execution mode switches from user to kernel; the CPU switches to a kernel stack; the user
stack and the return address to user space is saved on the kernel stack.

3. The kernel entry point saves registers on the kernel stack.

4. The system call dispatcher identifies the system call function and runs it.

5. The user space registers are restored and execution is switched back to user (e.g. calling
IRET).

6. The user space application resumes.

40

See also: Shadow stacks for user space, Jonathan Corbet February 21, 2022
Whenever a function is called, the return address is pushed onto both the regular stack and the shadow
stack. When that function returns, the return addresses are popped off both stacks and compared; if they
fail to match, the system goes into red alert and kills the process involved.

https://linux-kernel-labs.github.io/refs/heads/master/lectures/syscalls.html
https://linux-kernel-labs.github.io/refs/heads/master/lectures/syscalls.html
https://linux-kernel-labs.github.io/refs/heads/master/lectures/syscalls.html
https://linux-kernel-labs.github.io/refs/heads/master/lectures/syscalls.html
https://linux-kernel-labs.github.io/refs/heads/master/lectures/syscalls.html
https://lwn.net/Articles/885220/

System call conventions

Definition of the system function from the C level (file include/linux/syscalls.h):

 asmlinkage long sys_exit (int error_code);

asmlinkage tells compiler to look on the kernel stack for the function parameters, instead of registers.

In architecture x86 the registers ebx, ecx, edx, esi and edi are used to pass the first five parameters. If there
are more parameters, it is through one register that a pointer to the user's address space is transferred,
where all parameters are placed.

The value passed from the system function is placed in the eax register.

Other registers are used in 64-bit architecture:

– x64 Architecture, registers, calling conventions, addressing modes
– syscall numbers

41

Copying data between the kernel space and the user space is
done using copy_to_user() and copy_from_user().

When executing the system function, the kernel works in the
context of the process (the variable current points to the
current process).

https://msdn.microsoft.com/en-us/library/windows/hardware/ff561499(v=vs.85).aspx
http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/
http://blog.rchapman.org/posts/Linux_System_Call_Table_for_x86_64/

Sysenter and sysexit

Machine instructions sysenter and sysexit were added to x86 processors (newer than Pentium II). They allow a faster
transition (return) to the kernel mode to perform a system function than using the int statement. Support for this
mechanism has been added to the Linux kernel (Sysenter Based System Call Mechanism in Linux 2.6).

Calling the x86 function

– 64-bit version – defined in the file arch/x86/entry/entry_64.S

– 32-bit version – defined in the file arch/x86/entry/entry_32.S

Content of the system function table

– 64-bit version – defined in the file arch/x86/entry/syscalls/syscall_64.tbl

– 32-bit version – defined in the file arch/x86/entry/syscalls/syscall_32.tbl

42

This is the
beginning

In other operating systems, there are many more functions than 435 in Linux 5.6 (32-bit).

http://articles.manugarg.com/systemcallinlinux2_6.html
http://articles.manugarg.com/systemcallinlinux2_6.html
http://articles.manugarg.com/systemcallinlinux2_6.html
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/entry_64.S
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/entry_32.S
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/syscalls/syscall_64.tbl
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/syscalls/syscall_64.tbl
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/syscalls/syscall_64.tbl
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/syscalls/syscall_64.tbl
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/syscalls/syscall_32.tbl
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/syscalls/syscall_32.tbl
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/syscalls/syscall_32.tbl
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/syscalls/syscall_32.tbl
https://elixir.bootlin.com/linux/latest/source/arch/x86/entry/syscalls/syscall_32.tbl

Process and system context
Context of execution – summary:

– user code is executed in user mode and in process context, can only reach the address
space of the process,

– system functions and exceptions (e.g. dividing by zero or violation of memory protection)
are supported in system mode, but in context of the process, they have access to the
process and system address space.

 The kernel acts on behalf of the current process (e.g. by executing a system function), it can
reference the address space of the process and the process stack. It can also block the
current process if it has to wait for resources.

– interrupts are handled in system mode in the context of the system with access only to the
system address space.

 System-wide operations, such as recalculating priorities or handling an external interrupt.
Not performed on behalf of any particular process and therefore take place in the context of
the system. The kernel does not reach to the address space or the stack of the current
process, also it can not block.

43

Process state transitions

44 44 Process states and state transitions, source: U. Vahalia, UNIX Internals: The New Frontiers

The Linux kernel is preemptable and re-entrant, it can support different processes concurrently.

The process during execution changes state.
The basic states of the process are:

– new: the process has been created,

– ready: the process is waiting for the
processor to be allocated,

– executed (more precisely: executed in
user mode or executed in system mode):
process instructions are executed,

– waiting: the process is waiting for an
event to occur,

– finished: the process completed
execution.

