
Paging

Table of contents

• Memory paging (Intel 80x86 architecture)

• Translation Lookaside Buffer (TLB)

• Paging in Linux: page directory and page tables

• Booting the kernel

• Process descriptor

• Process stack in kernel mode and thread_info

• Process address space – introduction

• Process address space – KASLR, KAISER (KPTI)

2

Memory paging (Intel 80x86)

All 80x86 processors, starting from 80386, support paging. It is turned on by setting the PG flag of
the cr0 register – when the flag is zero, linear addresses are interpreted as physical addresses.

3

At the paging stage, the linear address is
translated into physical address.

The page directory address is available in
the cr3 registry.

During the translation, access rights are
checked and if they are not sufficient,
a page fault is raised.

The standard page size for 32-bit
architectures is 4 KB.

Additional reading: Asembler x86/Architektura (in Polish), Control registers

Bovet, Cesati, Understanding the Linux Kernel)

https://pl.wikibooks.org/wiki/Asembler_x86/Architektura
https://pl.wikibooks.org/wiki/Asembler_x86/Architektura
https://pl.wikibooks.org/wiki/Asembler_x86/Architektura
https://pl.wikibooks.org/wiki/Asembler_x86/Architektura
https://en.wikipedia.org/wiki/Control_register
https://en.wikipedia.org/wiki/Control_register
https://en.wikipedia.org/wiki/Control_register

Memory paging (Intel 80x86)

The purpose of multi-level paging is to reduce the amount of RAM used on the process page tables.

In the case of single-level paging, the table would have a 220 positions (if the process used a full 4 GB
linear address space, even if it did not use all addresses in this range).

In the case of multi-level paging, the page tables are allocated only to those addresses that are used.
Each active process needs a directory of pages, while page tables are allocated as needed.

The number of paging levels does not affect the size of the available address space, having n bits one
can address 2n memory cells, regardless of the number of paging levels used.

Starting with the Pentium model, 80x86 microprocessors support the extended paging mechanism,
which allows 4 MB pages (instead of 4 KB) – it is enabled by setting the Page Size flag in page
directory entry.

Extended paging coexists with regular paging; current state is described by PSE (Page Size Extension)
flag of the cr4 register.

Intel's 80386 to Pentium processors used 32-bit physical addresses. Theoretically, it allowed to install
4 GB of RAM, in practice the kernel could not address directly more than 1 GB of RAM (this will be
explained in detail later).

4

Memory paging (Intel 80x86)

Starting with Pentium Pro, all Intel processors can address 236=64 GB RAM. The width of the address
bus increased to 36. Additional memory requires special paging mechanism that translates 32-bit
linear addresses into 36-bit physical addresses. The PAE (Page Address Extension) mechanism is
used for this (PAE flag in cr4). The linear address still has only 32 bits, so system developers must
use the same linear addresses to map different RAM areas.

Linux supports 64-bit architectures, but they require more paging levels (3, 4, 5).

In multiprocessor systems, all processors usually share memory, i.e. they can reach the same blocks
of RAM. Read and write operations on one RAM block must be executed sequentially, a hardware
element called memory arbiter, located between the bus and the RAM block, takes care of this.

The arbiter of memory is also available in single-processor systems, because RAM is accessed not
only by the processor, but also by the DMA (Direct Memory Access) drivers.

5

Paging hardware with TLB (source: Silberschatz, Galvin,
Gagne, Operating System Concepts)

Translation Lookaside Buffer (TLB)

An important role during the translation of linear addresses is
performed by TLB associative registers (Translation Lookaside
Buffer) (well described in Wikipedia).

In multiprocessor systems, each processor has its own TLB.

There may be separate TLBs for instructions and data.

Small:

– 64 entries, 4-way (4KB pages), cover 256KB of data

– 32 entries, 4-way (2MB pages), cover 64MB of data

(page table has 1M entries)

Fast:

– PTE in the TLB: < 1 cycle to translate

– PTE not in the TLB: 10-100 cycles to load PTE from RAM

– Page not in RAM: ~80M cycles to get it from disk

6
PTE – Page Table Entry

http://en.wikipedia.org/wiki/Translation_lookaside_buffer
http://en.wikipedia.org/wiki/Translation_lookaside_buffer

TLB miss
TLB makes virtual memory practical:

 it is small, it can be built directly into the CPU, it runs at full CPU speed. As long as a translation can be found
in the TLB, a virtual access executes just as fast as a physical access.

TLB miss, depending on the CPU architecture, is handled in one of two ways:

– Hardware TLB miss handling: CPU goes ahead and walks the page table to find the right PTE. If the PTE
can be found and is marked present, the CPU installs the new translation in the TLB. Otherwise, the CPU
raises a page fault and hands over control to the operating system.

– Software TLB miss handling: CPU raises a TLB miss fault. The fault is intercepted by the operating system,
which invokes the TLB miss handler. The miss handler walks the page table in software and, if a matching
PTE that is marked present is found, the new translation is inserted in the TLB. If the PTE is not found,
control is handed over to the page fault handler.

Most CISC architectures (such as IA-32) perform TLB miss handling in hardware, and most RISC architectures
(such as Alpha) use a software approach.

A hardware solution is often faster, but is less flexible.

IA-64 provides a hybrid solution that retains much of the flexibility of the software approach without sacrificing
the speed of the hardware approach.

7

TLB flush

On an address space switch, as occurs on a process switch (but not on a thread switch), some TLB entries can become
invalid, since the virtual-to-physical mapping is different.

Options:

1. Completely flush the TLB – after a switch, the TLB is empty and any memory reference will be a miss.

2. Avoid flushing – some CPUs have a process ID register, and the hardware uses TLB entries only if they match the current
process ID.

1. Intel Pentium Pro: the Page Global Enable (PGE) flag in the register CR4 and the global (G) flag of a page
directory or page table entry can be used to prevent frequently used pages from being automatically invalidated.

2. Since 2010 Intel 64 processors support 12-bit PCIDs (process-context identifiers), which allow retaining TLB entries
for multiple linear-address spaces, with only those that match the current PCID being used for address translation.

3. Selective flushing – is an option in software managed TLBs, but in some hardware TLBs (e.g. the TLB in the Intel 80386)
the only option is the complete flushing. Other hardware TLBs (TLB in the Intel 80486 and later x86 processors, TLB in
ARM processors) allow the flushing of individual entries from the TLB indexed by virtual address.

Wikipedia - Address space switch

8

https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/Translation_lookaside_buffer
https://en.wikipedia.org/wiki/Translation_lookaside_buffer

Paging in Linux
Page directories and page tables

Different architectures require a different number of paging levels. Beginning with the
2.6.11 kernel version, Linux supports 4 levels of paging.

Four-level page tables merged (Jonathan Corbet, January 2005).

9

Lwn.net (uppermost 16 bits out of 64 are
discarded)

2 MB huge pages

Beginnig with 4.12 Linux supports 5 levels of paging.

Five-level page tables (Jonathan Corbet, March 2017) – a new level P4D
is inserted between PGD and PUD, 7 bits out of 64 are discarded

Intel 5-level paging

https://lwn.net/Articles/117749/
https://lwn.net/Articles/117749/
https://lwn.net/Articles/117749/
https://lwn.net/Articles/717293/
https://lwn.net/Articles/717293/
https://lwn.net/Articles/717293/
https://lwn.net/Articles/717293/
https://lwn.net/Articles/717293/
https://lwn.net/Articles/717293/
https://lwn.net/Articles/717293/
https://lwn.net/Articles/717293/
https://lwn.net/Articles/717293/
https://lwn.net/Articles/717293/
https://en.wikipedia.org/wiki/Intel_5-level_paging
https://en.wikipedia.org/wiki/Intel_5-level_paging
https://en.wikipedia.org/wiki/Intel_5-level_paging
https://en.wikipedia.org/wiki/Intel_5-level_paging

Paging in Linux
Page directories and page tables

For 32-bit architectures without PAE, two paging levels are sufficient. In that case Linux does not
use Page Upper Directory and Page Middle Directory by setting for them the number of bits to 0
and the number of positions to 1.

Each process has its own page directory and its own set of page tables. During context switch, the
kernel saves the contents of the cr3 register in the task struct of the previously running process
and loads to cr3 the address of the page directory stored in the task struct of the process to which
control will be handed over. When the process resumes execution, it has access to its own set of
pages.

The entries in page directories and page tables have the same structure. Each of them contains the
address of the frame with another table or page (if they are resident in memory). Because the
frame address is a multiple of 4 KB, the youngest 12 bits are always zero. Linux uses them to store
additional information about the page.

The bits of the page's information are marked in large letters. They have exactly the same names and
layout as the hardware-supported bits in CPUs from the 80x86 family (there may be more flags).

10

Paging in Linux
Page directories and page tables

11

Protected-mode memory management in x86
(source: Intel)

http://www.cs.albany.edu/~sdc/CSI500/Fal10/Classes/C22/intelpaging83-94.pdf

Paging in Linux
Page directories and page tables

PRESENT If this bit is 1 on a memory reference, the page is in memory. The address field contains the correct frame address
in physical memory. If this bit is zero, the linear address is inserted into the cr2 register and a page fault error is raised. All
other bits have a different meaning (they determine the position of the page on the swap device).

RW Bit set to 1 means permission to write on a given page. This bit is used to organize page sharing. Set to 1, allows to write
directly to the page, and when is zero, then a page fault error is raised when writing.

USER/SUPERVISOR Bit setting the security level when accessing items in a page table or page. If set to zero, only the kernel
can reach the page.

PCD (Page Cache Disabled) i PWT (Page Write-Through) Flags controlling the handling of a page or page table by the
hardware cache of the processor (all of the cache controls can only be used to reduce caching). See Write-back vs Write-
through.

ACCESSED Linux assumes that this bit is set by hardware to 1 when page is referenced and uses this fact to age the pages
(the operating system changes the value of the flag to 0, it is not done by hardware).

PAGE SIZE Applies only to entries in the page directory. If set, it means that the page has a size of 4 MB (page directory entry
points directly to a 4 MB page), otherwise the size is 4 KB.

DIRTY Applies only to items in the page table. If set, indicates that page has been written to. It is set by hardware (CPU) to 1,
but has to be cleared by the operating system. Used in page replacement algorithms.

G (Global) Applies only to items in the page table. The Global, or 'G' above, flag, if set, prevents the TLB from updating the
address in its cache if CR3 is reset. Note, that the page global enable bit in CR4 must be set to enable this feature. 12

https://stackoverflow.com/questions/27087912/write-back-vs-write-through
https://stackoverflow.com/questions/27087912/write-back-vs-write-through
https://stackoverflow.com/questions/27087912/write-back-vs-write-through
https://stackoverflow.com/questions/27087912/write-back-vs-write-through
https://stackoverflow.com/questions/27087912/write-back-vs-write-through
https://stackoverflow.com/questions/27087912/write-back-vs-write-through
https://stackoverflow.com/questions/27087912/write-back-vs-write-through
https://stackoverflow.com/questions/27087912/write-back-vs-write-through

Paging in Linux
Page directories and page tables

The entire entry of the page table can be set to 0. Linux assigns a physical frame to the process
only when it is referenced. Zero is the initial value to which entries in the page directory and
page tables are usually set.

By allocating a new memory for the process, the kernel does so only logically – through entries
in the page table and segment table.

For the kernel, memory is allocated immediately – a frame is found in physical memory.

The system does not believe the user and tries to optimize his possible excessive requests.

Linux has functions to read and write each flag in PTE.

13

Paging in Linux
Page directories and page tables

Useful macros:

– PAGE_SHIFT – number of offset bits (12 for a 4 KB page)

– PAGE_SIZE – page size, calculated using PAGE_SHIFT

– PAGE_MASK – mask for zeroing all bits of the offset field (0xfffff000 for a 4 KB page)

14

#define PAGE_SIZE (1 << PAGE_SHIFT)
#define PAGE_MASK (~(PAGE_SIZE-1))

Types pte_t, pmd_t, pud_t, pgd_t – define the format of the entry in, respectively, Page Table, Page
Middle Directory, Page Upper Directory, Page Global Directory.

Each process has its own page tables. Also, the kernel has page tables describing the kernel address
space.

The virtual page is a memory protection unit, since all its bytes share the U/S and R/W flags. The same
physical memory can be mapped by different page table entries, with different protection flags.

Nowhere in the PTE there are bits saying about the right to perform (execute). That's why classic paging
in x86 allows you to execute code located on the stack, making it easier for hackers to use buffer
overflow attacks.

Do kernel pages get swapped out?

Do kernel pages get swapped out?

Under normal circumstances kernel pages are not swappable, in fact, once detected (see the page fault
handler source code), the kernel will explicitly crash itself.

In particular, page tables aren't swapped out.

That said, kernel does swap out kernel structures/memory/tasklists etc. during software suspend and
hibernation operation.

And during the resume phase it will restore back the kernel memory from swap file.

15

https://stackoverflow.com/questions/4535379/do-kernel-pages-get-swapped-out

Booting the kernel

17
https://www.youtube.com/watch?v=LGz0Io_dh_I

BIOS, CMOS, UEFI

https://www.youtube.com/watch?v=LGz0Io_dh_I

Booting the kernel
bootstrap – pull oneself up by one's bootstraps

18 Booting the kernel (source: Duarte, Software Illustrated)

Booting with BIOS is shown here, difference between BIOS and UEFI will be explained later.

You press the power button on the computer. Once the motherboard is powered up it initializes its own firmware.
The CPU starts running.

In a multi-processor or multi-core system one CPU is dynamically chosen to be the bootstrap processor (BSP), that
runs all of the BIOS and kernel initialization code. The remaining processors (AP, application processors) remain
halted until later on when they are explicitly activated by the kernel.

The processor is in real mode with memory paging disabled and there is no protection.

https://manybutfinite.com/post/how-computers-boot-up/

Booting the kernel

19

Most registers in the CPU have well-defined values after power
up, including the instruction pointer (EIP).

Intel CPUs use a hack whereby even though only 1 MB of
memory can be addressed in real mode, a hidden base address
(an offset) is applied to EIP so that the first instruction executed
is at address 0xFFFFFFF0 (16 bytes short of the end of 4 GB of
memory and well above one megabyte).

This magical address which is called the reset vector, contains a
jump instruction to the BIOS entry point and is standard for
modern Intel CPUs.

This jump implicitly clears the hidden base address.

Important memory areas when booting the kernel (source: Duarte, Software Illustrated)

https://manybutfinite.com/post/how-computers-boot-up/

Booting the kernel

20

Master Boot Record (MBR) (source: Duarte,
Software Illustrated)

The CPU starts executing BIOS code, which initializes some of the hardware in the machine.

Afterwards the BIOS kicks off the POST (Power-on Self Test), which tests various components in the computer.

After the POST the BIOS wants to boot up an operating system – it reads the first 512-byte sector of the hard
disk, (Master Boot Record, MBR), which normally contains a tiny OS-specific bootstrapping program at the start
of the MBR followed by a partition table for the disk.

BIOS loads the contents of the MBR into memory
location 0x7c00 and jumps to that location to start
executing whatever code is in the MBR.

https://manybutfinite.com/post/how-computers-boot-up/

Booting the kernel

21

The specific code in the MBR could be LILO (old) or GRUB/GRUB2 – Linux loaders.

This program will load the kernel image (e.g. vmlinuz-2.6.22-14-server) from the appropriate partition.

This involves some complications, as the kernel image, even if compressed, will not fit in 640 KB RAM available in real
mode. Yet the boot loader must run in real mode in order to call the BIOS routines for reading from the disk, since the
kernel is not available at that point.

The solution is the unreal mode. This is not a true processor mode, but rather a technique where a program switches back
and forth between real mode and protected mode in order to access memory above 1 MB while still using the BIOS.

In the GRUB source code you can see the instructions for it real_to_prot and prot_to_real.

When finished, the kernel is loaded into
memory and the processor is in real mode.

In the diagram this corresponds to the
situation just before moving from „Boot
Loader” to „Early Kernel Initialization”.

http://en.wikipedia.org/wiki/Unreal_mode

Booting the kernel

22

RAM contents after boot loader is done
(source: Duarte, Software Illustrated)

The processor is working in real mode, it can address 1
MB of memory, and RAM looks like in the picture.

In a moment, there will be a jump to the entry point of the
kernel code.

The kernel image is split into two pieces:

• a small part containing the real-mode kernel code is
loaded below the 640 K barrier;

• the bulk of the kernel, which runs in protected mode,
is loaded after the first megabyte of memory.

https://manybutfinite.com/post/kernel-boot-process/

Booting the kernel

23 Architecture-specific Linux Kernel Initialization (source: Duarte, Software Illustrated)

The execution starts in the part running in real mode.

Before the CPU can be set to protected mode the location of the interrupt vector table is stored in a CPU
register IDTR (Interrupt Descriptor Table register), and the address of the Global Descriptor Table in a CPU
register GDTR (routine go_to_protected_mode calls setup_idt() and setup_gdt()).

Jump into protected mode is done by the routine protected_mode_jump(), which enables protected
mode by setting the PE (ang. Protection Enabled) bit in the CR0 (control register).

Paging is disabled. A processor can now address up to 4 GB of RAM.

https://manybutfinite.com/post/kernel-boot-process/

Booting the kernel

24

The routine then calls startup_32, which does some basic register initializations and calls decompress_kernel()
(prints the familiar „Decompressing Linux…” message, then „done”, then „Booting the kernel.”).

A jump occurs at the kernel entry point in protected mode, at the start of the second megabyte of RAM
(0×100000). This location contains (another) routine startup_32.

It clears the bss segment for the protected-mode kernel, sets up the final global descriptor table for memory,
builds page tables so that paging can be turned on, enables paging, initializes a stack, creates the final
interrupt descriptor table, and finally jumps to the architecture-independent kernel start-up start_kernel().

Architecture-independent Linux Kernel Initialization (source: Duarte, Software Illustrated)

https://manybutfinite.com/post/kernel-boot-process/
https://manybutfinite.com/post/kernel-boot-process/
https://manybutfinite.com/post/kernel-boot-process/

Booting the kernel

25

Routine start_kernel() is a long list of calls to initializations of the various kernel subsystems and data
structures. These include the scheduler, memory zones, time keeping, and so on.

Then it calls rest_init(), which creates a kernel thread passing another routine kernel_init() as the entry
point, then calls schedule() and goes to sleep by calling cpu_idle().

Now thread 1 starts, i.e. kernel_init(), which initiates the rest of the CPUs.

Finally init_post() is called, which tries to execute a user-mode process in the following order: /sbin/init,
/etc/init, /bin/init i /bin/sh.

Additional reading: Analyzing the Linux boot process, Alison Chaiken, January 2018

Thread 1 checks its configuration file to
figure out which processes to launch,
which might include X11 Windows,
programs for logging in on the console,
network daemons, and so on.

Thus ends the boot process.

https://opensource.com/article/18/1/analyzing-linux-boot-process

26 https://www.youtube.com/watch?v=LGz0Io_dh_I

BIOS vs UEFI

https://www.youtube.com/watch?v=LGz0Io_dh_I

27 https://www.youtube.com/watch?v=XpFsMB6FoOs

BIOS vs UEFI

https://www.youtube.com/watch?v=XpFsMB6FoOs

BIOS vs UEFI (Unified Extensible Firmware Interface)

28

UEFI stores all the information about initialization and startup in a .efi file, a file stored on a special
partition called EFI System Partition (ESP). The ESP partition will also contain the boot loader
programs for the operating system installed on the computer.

It is because of this partition, UEFI can directly boot the operating system and save the BIOS self-test
process, which is an important reason for UEFI faster booting.

BIOS UEFI/EFI

Operating mode 16 bit 32/64 bit

Operating memory 1 MB Max available

Interface Text Graphical

Disk MBR GPT (GUID Partition Table)

Partition size Up to 2,2 TB Up to 10 billion TB

Number of partitions Up to 4 Up to 128

Network access No Yes

Mode Real Protected

Secure Boot (DRM – Digital Rights Mngnt) No Yes

Process data structures

• Process descriptor

• Process stack in kernel mode and thread_info

• Process address space – introduction

• Process address space – KASLR, KAISER (KPTI)

29

Process descriptor

30

The Linux process descriptor (source: Bovet,
Cesati, Understanding the Linux Kernel)

– partly obsolete

In Linux, the task_struct type structure
plays the role of the process
descriptor.

It contains all information about the
process (often in the form of pointers
to other structures).

It is a structure associated with every
existing process in the system.

Process descriptor

31

volatile long state – determines the state of the process.

struct nsproxy *nsproxy – pointer to an array with pointers to all per-process name spaces for
different subsystems – fs (mount), uts, network, sysvipc, etc. The nsproxy is shared by tasks which
share all namespaces. As soon as a single namespace is cloned or unshared, the nsproxy is copied.

void *stack – pointer to thread_info containing low-level information about the process, including
the kernel mode stack.

The parent process and the child process after the copy_process() procedure inside
the do_fork() procedure differ in the value of stack.

The thread_info structure stores low-level process information specific to the processor (and
architecture-dependent).

struct thread_struct thread – process context, dependent on the CPU

Process descriptor

32

pid_t pid – unique process identifier (number).

pid_t tgid – the unique identifier of the thread group to which the process belongs.
The group_leader field indicates the process descriptor of the process that is the leader of this thread
group.

struct task_struct *real_parent, parent – family connections of the process: original parent (during
debugging), parent.

struct list_head children, sibling – family connections of the process

Two other identifiers are associated with the process:

– process group ID – the process can belong to a group of processes. The setpgid(pid, pgid) command sets
the ID of the process group to pgid for the process specified by pid.

– session ID – processes can be associated with the same terminal session. To support such relationships,
the setsid() command is used.

These identifiers are not kept directly in the process descriptor, but in the structure used to handle
signals.

Process stack in kernel mode and thread_info

Until recently (and now it is also possible) the process stack in kernel mode was placed in one memory
area together with the thread_info structure containing low-level process information. Both
structures were kept in a single (contiguous), dynamically allocated memory area of a small size
located in directly-mapped kernel memory.

The thread_info structure starts at the beginning of this memory area, while the stack at the end and
grows "down".

33

The thread_info structure and the
process kernel stack

(source: Bovet, Cesati, Understanding
the Linux Kernel)

Process stack in kernel mode and thread_info

Stack size in 32-bit x86 processors – 8 KB (two page frames), 64-bit x86 processors – 16 KB (four page
frames) or more.

34

 #ifdef CONFIG_KASAN
 #define KASAN_STACK_ORDER 1
 #else
 #define KASAN_STACK_ORDER 0
 #endif

 #ifdef CONFIG_64BIT
 #define THREAD_SIZE_ORDER (2 + KASAN_STACK_ORDER)
 #else
 #define THREAD_SIZE_ORDER (1 + KASAN_STACK_ORDER)
 #endif
 #define THREAD_SIZE (PAGE_SIZE << THREAD_SIZE_ORDER)

KernelAddressSANitizer (KASAN) is a dynamic memory error detector. It provides a fast and
comprehensive solution for finding use-after-free and out-of-bounds bugs. KASAN uses compile-
time instrumentation for checking every memory access. Currently KASAN is supported only for the
64-bit x86 and ARM architectures.

Sanitizing the Linux Kernel — On KASAN and other Dynamic Bug-finding Tools, Andrey Konoval

https://www.youtube.com/watch?v=KmFVPyHyfqQ
https://www.youtube.com/watch?v=KmFVPyHyfqQ
https://www.youtube.com/watch?v=KmFVPyHyfqQ
https://www.youtube.com/watch?v=KmFVPyHyfqQ
https://www.youtube.com/watch?v=KmFVPyHyfqQ
https://www.youtube.com/watch?v=KmFVPyHyfqQ
https://www.youtube.com/watch?v=KmFVPyHyfqQ

Process stack in kernel mode and thread_info

Such solution has its advantages and disadvantages (what?). For several years, kernel developers have
been discussing other solutions, assuming a different size and position of the stack
and thread_info:

– 4K stacks by default? Jake Edge, 2008.

– Expanding the kernel stack, Jonathan Corbet, 2014.

– Virtually mapped kernel stacks (!) (Jonathan Corbet, 2016) and Virtually mapped stacks 2:
thread_info strikes back (Jonathan Corbet, 2016).

– KernelNewbies: Linux_4.9 - this release adds support for ... virtually mapped kernel stacks that
make the kernel more reliable and secure ...

– Linus Torvalds' comments on Linux 4.9-rc1, October 2016.

– Randomizing structure layout, Nur Hussein, 2017.

35

https://lwn.net/Articles/279229/
https://lwn.net/Articles/600644/
https://lwn.net/Articles/692208/
https://lwn.net/Articles/692953/
https://lwn.net/Articles/692953/
https://lwn.net/Articles/692953/
https://lwn.net/Articles/692953/
https://kernelnewbies.org/Linux_4.9
https://kernelnewbies.org/Linux_4.9
https://lkml.org/lkml/2016/10/15/112
https://lkml.org/lkml/2016/10/15/112
https://lkml.org/lkml/2016/10/15/112
https://lkml.org/lkml/2016/10/15/112
https://lkml.org/lkml/2016/10/15/112
https://lkml.org/lkml/2016/10/15/112
https://lwn.net/Articles/722293/
https://lwn.net/Articles/722293/
https://lwn.net/Articles/722293/
https://lwn.net/Articles/722293/
https://lwn.net/Articles/722293/

Process stack in kernel mode and thread_info

2008

The memory savings can be significant, especially in the embedded world. It would seem, however, premature to
make 4 KB stacks the default. Folks using xfs could run into problems.

2014

Some developers were trying to shrink the stack to 4 KB, but that effort eventually proved to be unrealistic. Modern
kernels can end up creating surprisingly deep call chains that just do not fit into a 4KB stack. Those call chains
don't even fit into an 8 KB stack on x86-64 systems.

2016

Each process has its own stack for use when it is running in the kernel; in current kernels, that stack is sized at either
8 KB or (on 64-bit systems) 16 KB of memory. The stack lives in directly-mapped kernel memory, so it must be
physically contiguous.

As memory gets fragmented, finding two or four physically contiguous pages can become difficult.

The use of directly mapped memory also rules out the use of guard pages — non-accessible pages that would trap an
overflow of the stack — because adding a guard page would require wasting an actual page of memory.

36

Process stack in kernel mode
and thread_info

2016 continued

Andy Lutomirski’s patch allocates kernel stacks from the vmalloc area.

It seems like a significant improvement to the kernel. There are a few outstanding issues, though.

One of those is performance; allocating a stack from the vmalloc area, makes creating a process with
clone() take about 1.5 µs longer.

The directly mapped area uses huge-page mappings, so the entire kernel (all of its code, data, and
stacks) can fit in a single TLB entry. The vmalloc area uses single-page mappings. Since references to
kernel stacks are common, the possibility of an increase in TLB misses is real if those stacks are
reached via the vmalloc area.

Finally, kernels with this patch set applied will detect an overflow of the kernel stack, but there is still the
problem of the thread_info structure living at the bottom of each stack. An overrun that overwrites
only this structure, without overrunning the stack as a whole, will not be detected.

The proper solution here is to move the thread_info structure away from the kernel stack entirely. The
current patch set does not do that, but Andy has said that he intends to tackle that problem once
these patches are accepted.

37

Process stack in kernel mode and thread_info

2016 continued

In theory there should be no need for a process's kernel stack after that process has died, so one might think that the
stack could be released immediately. The problem is that the core information the kernel maintains about
processes lives in two different places:

– The massive task_struct structure, architecture-independent,

– The small thread_info structure, which is architecture-specific.

The removal of the thread_info structure makes it possible to free the kernel stack as soon as the owning process
exits — no RCU grace period required. That, in turn, makes it sensible to add a small per-CPU cache holding up to
two free kernel stacks.

With the cache the 1.5 µs performance regression becomes a 0.5–1 µs performance gain.

2017

The task_struct structure is a prime example of a structure that benefits from field randomization. Inside task_struct
are sensitive fields such as process credentials, flags for enabling or disabling process auditing, and pointers to
other task_struct structures. Those fields, among others, are juicy targets for potential attackers to overwrite.

However, we can't just randomize the entirety of task_struct, as some fields on the very top and very bottom of the
structure need to be where they are.

Linus: Making "struct task_struct" be something that contains a fixed beginning and end, and just have an unnamed
randomized part in the middle might be the way to go.

38

Process stack in kernel mode and thread_info

The stack and thread_info can still
occupy one area, defined by the
union thread_union, or
thread_info can be placed in the
process descriptor:

39

struct task_struct {
#ifdef CONFIG_THREAD_INFO_IN_TASK
 /*
 * For reasons of header soup (see current_thread_info()), this
 * must be the first element of task_struct.
 */
 struct thread_info thread_info;
#endif

/*
* This begins the randomizable portion of task_struct. Only
* scheduling-critical items should be added above here.
*/
randomized_struct_fields_start
 …..
randomized_struct_fields_end

 /* CPU-specific state of this task: */
 struct thread_struct thread;
 /*
 * WARNING: on x86, 'thread_struct'
 * contains a variable-sized structure.
 * It *MUST* be at the end of 'task_struct'.
 *
 * Do not put anything below here!
 */
};

union thread_union {
#ifndef CONFIG_THREAD_INFO_IN_TASK
 struct thread_info thread_info;
#endif
 unsigned long stack[THREAD_SIZE/sizeof(long)];
};

#ifdef CONFIG_THREAD_INFO_IN_TASK
static inline struct thread_info *task_thread_info(struct task_struct *task)
{
 return &task->thread_info;
}
#elif !defined(__HAVE_THREAD_FUNCTIONS)
define task_thread_info(task) ((struct thread_info *)(task)->stack)
#endif

The thread_info structure is
successively 'slimming'.

Process address space
Introduction

How the kernel manages the virtual address space of user processes? The task is not simple
because:

– each process has its own address space,

– the process address space consists of a set of disjoint areas of different sizes,

– only part of this address space is directly related to physical memory page frames,

– the kernel trusts itself, but it should not trust user processes,

– the Unix model of creating processes can be very ineffective if it is not carefully implemented.

Process address space is a collection of linear addresses referenced by the process during execution.

Each process has its own page directory (the size of one frame – this is also the size of page tables).
The pointer to it is in the mm_struct structure under the name pgd. When changing the context,
Linux makes sure that it is loaded into the appropriate processor register (cr3).

40

Process address space
Introduction

Memory allocation for the process is done by extending the segment (function sys_brk changes the
location of the program break, which defines the end of the process's data segment, i.e. the
program break is the first location after the end of the uninitialized data segment).

Obtaining physical memory is implemented in the page frame management system.
The get_free_page() function obtains a page, clears it and passes its linear address. Hence the new
memory delivered to the process is zeroed.

In a 32-bit architecture, the user process can access a contiguous address space 0-4 GB. The upper
gigabyte (3-4 GB) is visible only in kernel mode. In user mode the user's data is spread in the range
of 0-3 GB. This upper limit is defined by the TASK_SIZE parameter.

41

 #ifdef CONFIG_X86_32
 /*
 * User space process size: 3GB (default).
 */
 #define TASK_SIZE PAGE_OFFSET
 #define TASK_SIZE_MAX TASK_SIZE
 #define STACK_TOP TASK_SIZE
 #define STACK_TOP_MAX STACK_TOP

Process address space
Introduction

Keeping the kernel permanently mapped eliminates the need to flush the TLB when switching
between user and kernel space, and it allows the TLB entries for kernel space to never be flushed.

On contemporary 64-bit systems, the shared address space does not constrain the amount of virtual
memory that can be addressed as it used to, but there is another problem that is related to security.

42

Since the beginning, Linux has mapped the kernel's memory into the address
space of every running process. There are performance reasons for doing this,
and the processor's memory-management unit prevents user space from
accessing that memory.

The pgd_alloc() function creates a new page directory, i.e. gets a page frame, fills
it with zeros, and maps the address space of 3-4 GB to the kernel memory. Zeros
in the page directory and in the page tables are treated as a frame allocated at the
first access. The upper gigabyte is set to the system.

43

(Kernel Address Space Layout Randomization)

KASLR has been
merged into mainline
Linux in 2014.

Hardware insights, Francesco Quaglia

https://francescoquaglia.github.io/TEACHING/AOS/AA-2019-2020/SLIDES/hardware-insights.pdf

Process address space
Introduction

The paper from Daniel Gruss et al. (KASLR is Dead: Long Live KASLR) cites a number of hardware-based
attacks on KASLR (Kernel Address Space Layout Randomization).

They use techniques like exploiting timing differences in fault handling, observing the behavior of
prefetch instructions, or forcing faults using the Intel TSX (transactional memory) instructions.

The processor responds differently to a memory access attempt depending on whether the target
address is mapped in the page tables, regardless of whether the running process can actually
access that location.

These differences can be used to find where the kernel has been placed — without making the kernel
aware that an attack is underway.

Strictly splitting kernel space and user space has been proposed to close these side channels.

This is not trivially possible due to architectural restrictions of the x86 platform.

44

https://www.researchgate.net/publication/318155204_KASLR_is_Dead_Long_Live_KASLR
https://www.researchgate.net/publication/318155204_KASLR_is_Dead_Long_Live_KASLR
https://www.researchgate.net/publication/318155204_KASLR_is_Dead_Long_Live_KASLR
https://www.researchgate.net/publication/318155204_KASLR_is_Dead_Long_Live_KASLR

Process address space
KASLR and KAISER (KPTI)

Additional reading

– KASLR is Dead: Long Live KASLR (June 2017) –
paper introducing KAISER.

– KAISER: hiding the kernel from user space,
Jonathan Corbet, November 2017.

– The current state of kernel page-table isolation,
Jonathan Corbet, December 2017.

– Linux Documentation in GitHub, January 2018.

– Meltdown and Spectre, Piotr Zalas, March 2018.

KASLR – Kernel Address Space Layout Randomization

KAISER – Kernel Address Isolation to have Side-
channels Efficiently Removed (renamed later to KPTI)

45

Kernel Page Table Isolation – KPTI (source: Wikipedia)

https://gruss.cc/files/kaiser.pdf
https://gruss.cc/files/kaiser.pdf
https://gruss.cc/files/kaiser.pdf
https://gruss.cc/files/kaiser.pdf
https://gruss.cc/files/kaiser.pdf
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
https://lwn.net/Articles/738975/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
https://github.com/torvalds/linux/blob/master/Documentation/x86/pti.rst
https://github.com/torvalds/linux/blob/master/Documentation/x86/pti.rst
https://github.com/torvalds/linux/blob/master/Documentation/x86/pti.rst
https://github.com/torvalds/linux/blob/master/Documentation/x86/pti.rst
https://github.com/torvalds/linux/blob/master/Documentation/x86/pti.rst
https://github.com/torvalds/linux/blob/master/Documentation/x86/pti.rst
http://students.mimuw.edu.pl/SR/SR-MONO/meltdown.pdf
http://students.mimuw.edu.pl/SR/SR-MONO/meltdown.pdf
http://students.mimuw.edu.pl/SR/SR-MONO/meltdown.pdf
http://students.mimuw.edu.pl/SR/SR-MONO/meltdown.pdf
https://en.wikipedia.org/wiki/Kernel_page-table_isolation

46
Hardware insights, Francesco Quaglia

https://francescoquaglia.github.io/TEACHING/AOS/AA-2019-2020/SLIDES/hardware-insights.pdf

47 (source: Adrian Huang, Linux kernel initialization, 2022)

Start_kernel() – trap_init()

When the kernel is entered via syscalls, interrupts or
exceptions, the page tables are switched to the full
„kernel” copy.
Entry/exit functions and IDT (Interrupt Descriptor Table)
are needed for userspace page table.

https://www.slideshare.net/AdrianHuang/decompressed-vmlinux-linux-kernel-initialization-from-page-table-configuration-perspective
https://www.slideshare.net/AdrianHuang/decompressed-vmlinux-linux-kernel-initialization-from-page-table-configuration-perspective
https://www.slideshare.net/AdrianHuang/decompressed-vmlinux-linux-kernel-initialization-from-page-table-configuration-perspective
https://www.slideshare.net/AdrianHuang/decompressed-vmlinux-linux-kernel-initialization-from-page-table-configuration-perspective

Process address space
KAISER (KPTI)

Whereas current systems have a single set of page tables for each process, KAISER (KPTI) implements
two (there are two PGDs).

One set is essentially unchanged; it includes both kernel-space and user-space addresses, but it is only
used when the system is running in kernel mode.

The second "shadow" page table contains a copy of all of the user-space mappings, but leaves out the
kernel side.

The processor responds to a hardware interrupt while running in user mode, the kernel code needed to
deal with the interrupt will no longer exist in the address space.

So there must be enough kernel code mapped in user mode to switch back to the kernel PGD and make
the rest available. A similar situation exists for traps, non-maskable interrupts, and system calls.

This code is small and can be isolated from the rest, but there are a number of tricky details involved in
handling that switch safely and efficiently.

48

49 Hardware insights, Francesco Quaglia

https://francescoquaglia.github.io/TEACHING/AOS/AA-2019-2020/SLIDES/hardware-insights.pdf

Process address space
 KAISER (KPTI)

Copying the page tables may sound inefficient, but the copying only happens at the top level of the
page-table hierarchy, so the bulk of that data is shared between the two copies. The patches
were merged into the mainline in January 2018 (4.15).

More recent processors offer process-context identifiers (PCIDs). These identifiers tag entries in
the TLB. Use of PCIDs eliminates the need to flush the TLB at context switches; that reduces the
cost of switching page tables during system calls. The kernel got support for PCIDs in 4.14.

50

Greg Kroah-Hartman said he's seen one report of a „Linux user benchmarking
recent kernel versions on a specific network-heavy load” which showed that,
without anti-Meltdown Linux's Kernel Page Table Isolation (KPTI) patches, the
Linux kernel, 4.15 is 7- to 9-percent faster than April 30, 2017's 4.11 release.

That's the good news. The bad news is that, with KPTI, 4.14 is 1- to 2-percent
slower than 4.11.

https://www.zdnet.com/article/linux-performance-before-and-after-meltdown-and-spectre-fixes/
https://www.zdnet.com/article/linux-performance-before-and-after-meltdown-and-spectre-fixes/
https://www.zdnet.com/article/linux-performance-before-and-after-meltdown-and-spectre-fixes/
https://www.zdnet.com/article/linux-performance-before-and-after-meltdown-and-spectre-fixes/

Process address space
KAISER (KPTI)

Another potential vulnerability comes about if the kernel can ever be manipulated into returning
to user space without switching back to the sanitized PGD.

Since the kernel-space PGD also maps user-space memory, such an omission could go unnoticed
for some time.

The response here is to map the user-space portion of the virtual address space as non-
executable in the kernel PGD. Should user space ever start running with the wrong page
tables, it will immediately crash as a result.

While all existing x86 processors are seemingly affected by information-disclosure vulnerabilities,
future processors may not be.

KPTI comes with a measurable run-time cost, estimated at about 5%. That is a cost that some
users may not want to pay, especially once they get newer processors that lack these
problems.

There is a nopti command-line option to disable this mechanism at boot time.

51

Additional reading

• Inside the Linux boot process, M. Tim Jones.

• A quick history of early-boot memory allocators, Mike Rapoport, July 2018.

• Differences Between UEFI and BIOS, Jenna Tsui, 2020.

• UEFI boot: how does that actually work, then? Adam Williamson, 2014.

• What is UEFI, how it differs from BIOS, Marek Kowalski, 2015 (in Polish).

• UEFI vs BIOS - the most important differences, Marcin Jaskólski, 2011 (in Polish).

• Kernel Address Space Isolation, Alexandre Chartre (Oracle), James Bottomley (IBM), Mike
Rapoport (IBM), Joel Nider (IBM Research), Linux Plumbers Conference, 2019.

• Address Space Isolation in the Linux Kernel, James Bottomley, Mike Rapoport, FOSDEM 2020.

• How programs get run, David Drysdale, January 2015.

• How programs get run: ELF binaries, David Drysdale, February 2015.

• Questions from the lecture (in Polish).

• Don't shoot down TLB shootdowns! (paper), Don't shoot down TLB shootdowns! (presentation
from EuroSys 2020)

52

http://www.ibm.com/developerworks/linux/library/l-linuxboot/
https://lwn.net/Articles/761215/
https://lwn.net/Articles/761215/
https://lwn.net/Articles/761215/
https://lwn.net/Articles/761215/
https://lwn.net/Articles/761215/
https://lwn.net/Articles/761215/
https://lwn.net/Articles/761215/
https://lwn.net/Articles/761215/
https://lwn.net/Articles/761215/
https://lwn.net/Articles/761215/
https://lwn.net/Articles/761215/
https://lwn.net/Articles/761215/
https://lwn.net/Articles/761215/
https://www.maketecheasier.com/differences-between-uefi-and-bios/
https://www.happyassassin.net/2014/01/25/uefi-boot-how-does-that-actually-work-then/
http://softonet.pl/publikacje/poradniki/Co.to.jest.UEFI.czym.sie.rozni.od.BIOSu.i.jak.zainstalowac.Windows.w.komputerze.z.UEFI-poradnik,589
http://www.benchmark.pl/testy_i_recenzje/EFI_vs_BIOS_-_najwazniejsze_roznice-3780.html
http://www.benchmark.pl/testy_i_recenzje/EFI_vs_BIOS_-_najwazniejsze_roznice-3780.html
http://www.benchmark.pl/testy_i_recenzje/EFI_vs_BIOS_-_najwazniejsze_roznice-3780.html
http://www.benchmark.pl/testy_i_recenzje/EFI_vs_BIOS_-_najwazniejsze_roznice-3780.html
http://www.benchmark.pl/testy_i_recenzje/EFI_vs_BIOS_-_najwazniejsze_roznice-3780.html
http://www.benchmark.pl/testy_i_recenzje/EFI_vs_BIOS_-_najwazniejsze_roznice-3780.html
http://www.benchmark.pl/testy_i_recenzje/EFI_vs_BIOS_-_najwazniejsze_roznice-3780.html
https://www.youtube.com/watch?v=rp_WawkcHeU
https://www.youtube.com/watch?v=xjv8Jv58bMs
https://lwn.net/Articles/630727/
https://lwn.net/Articles/631631/
http://students.mimuw.edu.pl/ZSO/Wyklady/03_processes1/3_uzupelnienie_en.html
https://doi.org/10.1145/3342195.3387518
https://doi.org/10.1145/3342195.3387518
https://doi.org/10.1145/3342195.3387518
https://www.eurosys2020.org/wp-content/uploads/2020/04/slides/61_amit_slides.pdf
https://www.eurosys2020.org/wp-content/uploads/2020/04/slides/61_amit_slides.pdf
https://www.eurosys2020.org/wp-content/uploads/2020/04/slides/61_amit_slides.pdf
https://www.eurosys2020.org/wp-content/uploads/2020/04/slides/61_amit_slides.pdf
https://www.eurosys2020.org/wp-content/uploads/2020/04/slides/61_amit_slides.pdf
https://www.eurosys2020.org/wp-content/uploads/2020/04/slides/61_amit_slides.pdf
https://www.eurosys2020.org/wp-content/uploads/2020/04/slides/61_amit_slides.pdf

