
Process address space

Table of contents

• Data structures to describe the process address space

• Mapping files to memory

• Creating the process address space – fork()

• Implementation of threads and different versions of clone()

• Handling page faults

2

3 (source: Adrian Huang, Process address space, 2022)

Process virtual address space in x86_64

https://www.slideshare.net/AdrianHuang/process-address-space-the-way-to-create-virtual-address-page-table-of-userspace-application-251425396
https://www.slideshare.net/AdrianHuang/process-address-space-the-way-to-create-virtual-address-page-table-of-userspace-application-251425396
https://www.slideshare.net/AdrianHuang/process-address-space-the-way-to-create-virtual-address-page-table-of-userspace-application-251425396
https://www.slideshare.net/AdrianHuang/process-address-space-the-way-to-create-virtual-address-page-table-of-userspace-application-251425396
https://www.slideshare.net/AdrianHuang/process-address-space-the-way-to-create-virtual-address-page-table-of-userspace-application-251425396

4

Kernel virtual address space in x86_64

Documentation/x86/x86_64/mm.rst

(source: Adrian Huang, Process address space, 2022)

https://www.slideshare.net/AdrianHuang/process-address-space-the-way-to-create-virtual-address-page-table-of-userspace-application-251425396
https://www.slideshare.net/AdrianHuang/process-address-space-the-way-to-create-virtual-address-page-table-of-userspace-application-251425396
https://www.slideshare.net/AdrianHuang/process-address-space-the-way-to-create-virtual-address-page-table-of-userspace-application-251425396
https://www.slideshare.net/AdrianHuang/process-address-space-the-way-to-create-virtual-address-page-table-of-userspace-application-251425396
https://www.slideshare.net/AdrianHuang/process-address-space-the-way-to-create-virtual-address-page-table-of-userspace-application-251425396

Process memory descriptor

Each task_struct structure has a mm field which points to the process memory descriptor – a mm_struct structure
describing the process address space.

5 The task_struct and mm_struct (source: Duarte, Software Illustrated)

http://duartes.org/gustavo/blog/category/software-illustrated

Process memory descriptor

6

struct mm_struct {
 struct maple_tree mm_mt;
 u64 vmacache_seqnum;
 unsigned long (*get_unmapped_area)
 (struct file *filp, unsigned long addr,
 unsigned long len, unsigned long pgoff, unsigned long flags);
 unsigned long mmap_base;
 unsigned long task_size;
 pgd_t *pgd;
 atomic_t mm_users;
 atomic_t mm_count;
 int map_count;
 spinlock_t page_table_lock;
 struct rw_semaphore mmap_lock;
 struct list_head mmlist;

 unsigned long start_code, end_code;
 unsigned long start_data, end_data;
 unsigned long start_brk, brk, start_stack;
 unsigned long arg_start, arg_end, env_start, env_end;
 unsigned long total_vm;

};

#define VMACACHE_BITS 2
#define VMACACHE_SIZE (1U << VMACACHE_BITS)

struct vmacache {
 u64 seqnum;
 struct vm_area_struct *vmas[VMACACHE_SIZE];
};

struct task_struct {

 struct mm_struct *mm;
 /* Per-thread vma caching: */
 struct vmacache vmacache;

};

Process memory descriptor

mm_mt: pointer to the maple tree root (replaced red-black tree mm_rb and linear list mmap);

vmacache_seqnum: per-thread VMA cache (why per-thread? why seqnum?),

mmap_base: points to the place from which the dynamic memory area mapping starts;
the get_unmapped_area() function finds the right place for the new mapping,

task_size: the size of the process address space (usually TASK_SIZE),

pgd: Page Global Directory,

mm_users: number of processes sharing this structure (who can share?),

map_count: number of VMA areas,

mmap_lock: semaphore to protect the structure,

start_code, end_code: the beginning (end) address of the code section,

start_data, end_data: the beginning (end) address of the data section,

start_brk, brk: the beginning (end) address of the heap area,

total_vm: total number of pages used by the process.

7

Per-thread VMA cache

There are sequence numbers stored in both struct mm_struct (one per address space) and in struct task_struct (one per
thread).

The purpose of the sequence numbers is to ensure that the cache does not return stale results.

Any change to the address space (the addition or removal of a VMA, for example) causes the per-address-space
sequence number to be incremented.

Every attempt to look up an address in the per-thread cache first checks the sequence numbers; if they do not match,
the cache is deemed to be invalid and will be reset.

Address-space changes are relatively rare in most workloads, so the invalidation of the cache should not happen too
often.

Every call to find_vma() first does a linear search through the cache. Should the VMA be found, the work is done;
otherwise, a traversal of the maple tree will be required. In this case, the result of the lookup will be stored back
into the cache. That is done by overwriting the entry indexed by the lowest bits of the page-frame number
associated with the original virtual address.

Change in cache hit ratio depends on the workload: from 51% to 73%, but also from 1% to 99,97% (multithreaded web
server).

Additional reading: Optimizing VMA caching (Jonathan Corbet, May 2014)

8

https://lwn.net/Articles/589475/
https://lwn.net/Articles/589475/
https://lwn.net/Articles/589475/
https://lwn.net/Articles/589475/
https://lwn.net/Articles/589475/

9

Process address space (source:
Duarte, Software Illustrated)

The BSS segment and the data segment contain static
(global) variables in C: BSS – uninitialized, data segment –
initialized.

The BSS area is anonymous, it does not map any file.

The data segment is not anonymous, it maps the fragment
of the binary program image. This is private mapping, i.e.
changes in this memory area are not transferred to the
file.

The layout of the process address space can be read from
the /proc/<process_pid>/maps file or by function pmap
<process_pid>.

New mappings are created starting from the
address mm_struct mmap_base.

All process memory descriptors are linked in the list (using
mmlist field).

Process address space

http://duartes.org/gustavo/blog/category/software-illustrated

Process address space

In the past, the initial virtual addresses of the segments had the same value for virtually all processes.
Now, randomizing the address space is popular for security reasons. Linux randomizes the stack, the
file mapping segment, and the heap, adding offset to their start address.

Attempting to place more data on the stack than the space allocated results in a page fault that is
handled by the expand_stack() function, which in turn calls acct_stack_growth() to check whether
the stack extension is acceptable. If the stack size does not exceed RLIMIT_STACK (usually 8 MB),
then the stack is expanded, otherwise segmentation fault is generated. The stack is only expanded,
never decreased. A dynamic stack extension is the only case where a reference to an unmapped
memory area can be properly handled.

Below the stack there is an area for mapping files with the mmap() function.

You can also create anonymous mapping that does not match any files. For example, the C library
supports a large memory block request (larger than MMAP_THRESHOLD, 128 KB by default)
using malloc() to create such an anonymous mapping instead of allocating memory on the heap.

The system function brk() is used to expand the heap.

10

vm_area_struct

The process address space consists of many disjoint contiguous memory areas. Each of them is described by
the vm_area_struct structure.

11

struct vm_area_struct {
 unsigned long vm_start;
 unsigned long vm_end;
 struct mm_struct *vm_mm;
 pgprot_t vm_page_prot;
 unsigned long vm_flags;
 /*
 * For areas with an address space and backing store,
 * linkage into the address_space->i_mmap
 * interval tree
 */
 struct {
 struct rb_node rb;
 unsigned long rb_subtree_last;
 } shared;

vm_start: VMA start address,

vm_end: address of the first byte AFTER the end of
VMA,

vm_mm: the address space to which this VMA area
belongs,

vm_page_prot: access rights to this VMA,

vm_flags: flags defining the properties of the area

Relation to address_space will be covered later.

The number of such areas for one process usually fluctuates within 6, although in certain situations it can
reach 3000.

vm_area_struct – continued

12

 /*
 * A file's MAP_PRIVATE vma can be in both i_mmap tree and anon_vma list,
 * after a COW of one of the file pages. A MAP_SHARED vma
 * can only be in the i_mmap tree. An anonymous MAP_PRIVATE, stack
 * or brk vma (with NULL file) can only be in an anon_vma list.
 */
 struct list_head anon_vma_chain; /* Serialized by mmap_lock & page_table_lock */
 struct anon_vma *anon_vma; /* Serialized by page_table_lock */
 struct vm_operations_struct *vm_ops;
 unsigned long vm_pgoff; /* Offset (within vm_file) in PAGE_SIZE units */
 struct file *vm_file; /* File we map to (can be NULL) */

};

anon_vma_chain and anon_vma: used to handle shared pages from anonymous mappings,

vm_ops: a set of pointers for functions performing operations on this VMA

vm_pgoff: if the area belongs to a mapped file, it is an offset in the file (in the number of pages),

vm_file: if the area belongs to a mapped file, then this is the pointer to this file,

Process address space

13 (source: Adrian Huang, Process address space, 2022)

jmd@students:~$ ps
 PID TTY TIME CMD
2513716 pts/51 00:00:00 bash
3322045 pts/51 00:00:00 ps
jmd@students:~$ cat /proc/2513716/maps

Partly obsolete

https://www.slideshare.net/AdrianHuang/process-address-space-the-way-to-create-virtual-address-page-table-of-userspace-application-251425396
https://www.slideshare.net/AdrianHuang/process-address-space-the-way-to-create-virtual-address-page-table-of-userspace-application-251425396
https://www.slideshare.net/AdrianHuang/process-address-space-the-way-to-create-virtual-address-page-table-of-userspace-application-251425396
https://www.slideshare.net/AdrianHuang/process-address-space-the-way-to-create-virtual-address-page-table-of-userspace-application-251425396
https://www.slideshare.net/AdrianHuang/process-address-space-the-way-to-create-virtual-address-page-table-of-userspace-application-251425396

vm_area_struct – maple tree

• There is less need to create new nodes, as nodes may include empty slots that can be filled over time without
additional allocations.

• Each node requires at most 256 bytes, which is a multiple of popular cache line sizes. The increased number of
elements in a node and the cache-aligned size means fewer cache misses when traversing the tree.

• Each node holds keys, called pivots, that separate the node into subtrees. A subtree before a given key contains only
values lower or equal to the key, while subtree after the key contains only values higher than the key (and lower than
the next key). It speeds up searching.

• Maple trees can track gaps, store ranges, and be implemented using read-copy-update (RCU).

• The Linux Maple Tree, Metthew Wilcox, Embedded Linux Conference, 2019.

• Finer-grained kernel address-space layout randomization, Jake Edge, February 2020.

• Maple tree RFC patches sent out as new data structure to help with Linux performance, Michael Larabel, December
2020.

• Introducing maple trees, Marta Rybczyńska, LWN, February 2021.

• Maple Tree, Liam Howlett, Linux Plumbers Conference, 2022. 14

• Maple tree replaced red-black tree and a list.

• They belong to the B-tree family, their nodes can contain more than two
elements — up to 16 elements in leaf nodes, or ten elements in internal nodes.

https://www.youtube.com/watch?v=XwukyRAL7WQ
https://www.youtube.com/watch?v=XwukyRAL7WQ
https://www.youtube.com/watch?v=XwukyRAL7WQ
https://www.youtube.com/watch?v=XwukyRAL7WQ
https://www.youtube.com/watch?v=XwukyRAL7WQ
https://www.youtube.com/watch?v=XwukyRAL7WQ
https://lwn.net/Articles/812438/
https://lwn.net/Articles/812438/
https://lwn.net/Articles/812438/
https://lwn.net/Articles/812438/
https://lwn.net/Articles/812438/
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://www.phoronix.com/scan.php?page=news_item&px=Maple-Tree-Linux-RFC
https://lwn.net/Articles/845507/
https://lwn.net/Articles/845507/
https://lwn.net/Articles/845507/
https://lwn.net/Articles/845507/
https://lwn.net/Articles/845507/
https://www.youtube.com/watch?v=5VVUa7mYLUs&t=1825s
https://www.youtube.com/watch?v=5VVUa7mYLUs&t=1825s
https://www.youtube.com/watch?v=5VVUa7mYLUs&t=1825s

vm_area_struct – reverse mapping

Structures used for reverse mapping. Depending on the origin of the area, they are:

• Tree of intervals, containing areas included in various processes, coming from the same file. The maple tree
binds the areas belonging to one process. You also need a reverse look at the processes to which a specific
piece of the file has been mapped. This is done by the struct shared.

• List of anonymous areas that match the same pages in memory if the area comes from anonymous
mapping. Fields anon_vma_chain and anon_vma are used for that (described in the include/linux/rmap.h
file).

 The purpose of this structure is to make it easier for the kernel to free memory when swapping is required.
By following the list, the kernel can quickly find all mappings for a given page, unmap them, and swap the
page out.

15

http://lxr.free-electrons.com/source/include/linux/rmap.h
http://lxr.free-electrons.com/source/include/linux/rmap.h
http://lxr.free-electrons.com/source/include/linux/rmap.h
http://lxr.free-electrons.com/source/include/linux/rmap.h

Mapping & reverse mapping

16 (source: Adrian Huang, Reverse mapping (rmap), 2022)

https://www.slideshare.net/AdrianHuang/reverse-mapping-rmap-in-linux-kernel
https://www.slideshare.net/AdrianHuang/reverse-mapping-rmap-in-linux-kernel
https://www.slideshare.net/AdrianHuang/reverse-mapping-rmap-in-linux-kernel
https://www.slideshare.net/AdrianHuang/reverse-mapping-rmap-in-linux-kernel
https://www.slideshare.net/AdrianHuang/reverse-mapping-rmap-in-linux-kernel
https://www.slideshare.net/AdrianHuang/reverse-mapping-rmap-in-linux-kernel
https://www.slideshare.net/AdrianHuang/reverse-mapping-rmap-in-linux-kernel

Anonymous reverse mapping

17 Anonymous reverse mappings (source: Jonathan Corbet, January 2004)

A process has several non-shared, anonymous pages in the
same virtual memory area.

When the process forks, there will be multiple page tables pointing to the
same anonymous pages and a single VMA pointer will no longer be adequate.

The new structure anon_vma takes care of that.

https://lwn.net/Articles/75198/
https://lwn.net/Articles/75198/
https://lwn.net/Articles/75198/

Anonymous reverse mapping

18 Anonymous reverse mappings (source: Bovet, Cesati, Understanding the Linux Kernel

vm_operations

Each virtual memory area can be assigned a set of operations specific to pages of this area when
writing them to disk, reading, handling page faults, etc.

When performing such operations, Linux first checks whether the corresponding function is defined
and if so, it is performed.

If not, then the default operation is performed.

In practice, special operations are defined for shared memory pages and for disk file images.

19

 open() – invoked when adding the area to the process address space;
 close() – invoked when removing an area from the process address space;
 fault() – invoked by the page fault handler.

struct vm_operations_struct {
 void (*open)(struct vm_area_struct * area);
 void (*close)(struct vm_area_struct * area);
 int (*fault)(struct vm_fault *vmf);
 ...

Allocation and release of process address space
areas

20

Functions associated with the allocation and release of process address space areas (only some are
listed):

brk() – changes the size of the process heap,
execve() – loads a new executable file, changes the address space of the process,
_exit() – terminates the process and destroys its address space,
fork() – creates a new process, and so the new address space,
mmap() – maps the file to memory, increasing the address space of the process,
munmap() – destroys the file mapping, reduces the address space of the process,
shmat() – attaches a shared memory area,
shmdt() – disconnects the shared memory area.

Each area consists of pages with consecutive numbers.

When the kernel adds the process page, in the corresponding position of the page table it sets the flags
according to the contents of the vm_page_prot field in the corresponding VMA (there are some
exceptions such as Copy On Write).

The relationship of vm_page_prot with protection bits in the page table position is described
in supplement.

http://students.mimuw.edu.pl/ZSO/Wyklady/04_processes2/4_uzupelnienie_en.html

Extending the process heap

21

Heap of the user process (source: Duarte, Software Illustrated)

http://duartes.org/gustavo/blog/category/software-illustrated

Extending the process heap

22 Memory allocation on the heap (source: Duarte, Software Illustrated)

Blue rectangles are pages in the VMA area, arrows are the positions of page tables that map pages to page frames. No
arrow means a flag Present equal to zero. The page has never been brought to memory, or has been swapped out.
Access to these pages will generate a page fault, although the pages are described by some VMA.

VMA is a form of contract
between the program and the
kernel.

The program asks for memory
allocation, the kernel pretends to
have allocated (only PTE knows
the truth), the actual work will be
performed in the future by the
page fault handler.

http://duartes.org/gustavo/blog/category/software-illustrated

Mapping files to memory

The do_mmap() function creates a new linear address interval for the process.

It does not have to be related to the creation of a new VMA (adjacent areas with the same permissions
are combined into one).

If the parameters file and offset are different from NULL, they indicate the area of the file with which
the newly created memory area will be associated.

Otherwise, an anonymous area will be created.

The do_munmap() function is used to remove an existing mapping from the process's address space.

23

unsigned long do_mmap(struct file *file, unsigned long addr,
 unsigned long len, unsigned long prot, unsigned long flags, unsigned long pgoff, ...)

int do_munmap(struct mm_struct *mm, unsigned long start, size_t len, struct list_head *uf)

24

Creating the process address space
fork()

It would seem that the natural way to duplicate the process is the following scheme: the data area of
the parent process is copied, and the code area is shared by both processes, parent and child.

Such an algorithm is very expensive for longer programs that can have a part of the address space on
disk at a given moment.

In older Unix systems, there were two functions: fork() and vfork().

The function fork() worked as described, and vfork() was called only if the next child statement was to
call exec(). In the second case, the address space was not copied.

Linux offers better solution. A copy on write is used, the address space is copied only if one of the two
processes tries to write something. Only the read-only memory, e.g. the program code, will always
be shared.

The file include/linux/syscalls.h contains the following header declarations:

25

asmlinkage long sys_fork(void);
asmlinkage long sys_vfork(void);
asmlinkage long sys_clone(...);

Creating the process address space
fork()

/kernel/fork.c
contains
the following definitions
(simplified form).

26

SYSCALL_DEFINE0(fork)
{
 struct kernel_clone_args args = {
 .exit_signal = SIGCHLD,
 };
 return kernel_clone(&args);
}
SYSCALL_DEFINE0(vfork)
{
 struct kernel_clone_args args = {
 .flags = CLONE_VFORK | CLONE_VM,
 .exit_signal = SIGCHLD,
 };
 return kernel_clone(&args);
}
SYSCALL_DEFINE5(clone, unsigned long, clone_flags, unsigned long, newsp,
 int __user *, parent_tidptr, int __user *, child_tidptr, unsigned long, tls)
{
 struct kernel_clone_args args = {
 ...
 };
 return kernel_clone(&args);
}
/*
 * Ok, this is the main fork-routine.
 * It copies the process, and if successful kick-starts
 * it and waits for it to finish using the VM if required.
*/
pid_t kernel_clone(struct kernel_clone_args *args)

Creating the process address space
fork() copy_process()

The actual work is done in kernel_clone(), which calls copy_process(), and after return wakes up and
starts a new process.

Basically, the child process should be done first (why?)

The copy_process() function performs the following actions:

1. Invokes dup_task_struct(), which creates a new kernel mode stack, a new thread_info structure, and a
new task_struct.

2. Clears or sets new values for different fields in the process descriptor.

3. Sets the status TASK_UNINTERRUPTIBLE for the new process.

4. Invokes alloc_pid, to assign PID to the new process.

5. Depending on the flags set, shares or duplicates

– open file descriptors (copy_files()),

– file system context (copy_fs()),

– signal handlers (copy_sighand()),

– structures describing virtual memory of the parent process (copy_mm()).

27

Creating the process address space
fork() copy_process()

28

 /* copy all the process information */
 if ((retval = copy_semundo(clone_flags, p)))
 goto bad_fork_cleanup_audit;
 if ((retval = copy_files(clone_flags, p)))
 goto bad_fork_cleanup_semundo;
 if ((retval = copy_fs(clone_flags, p)))
 goto bad_fork_cleanup_files;
 if ((retval = copy_sighand(clone_flags, p)))
 goto bad_fork_cleanup_fs;
 if ((retval = copy_signal(clone_flags, p)))
 goto bad_fork_cleanup_sighand;
 if ((retval = copy_mm(clone_flags, p)))
 goto bad_fork_cleanup_signal;
 if ((retval = copy_namespaces(clone_flags, p)))
 goto bad_fork_cleanup_mm;
 if ((retval = copy_io(clone_flags, p)))
 goto bad_fork_cleanup_namespaces;
 retval = copy_thread(clone_flags, stack_start, stack_size, p, regs);
 ...

Creating the process address space
fork() clone_flags

Interesting flags in clone_flags include
 CLONE_FILES,
 CLONE_SIGHAND,
 CLONE_VM,
which determine whether a given resource should be copied or cloned (that is, properly shared by both

processes).

For example, if you call kernel_clone() with the CLONE_FILES flag set, only the reference count to
the files structure that will be shared is increased.

29

#define CSIGNAL 0x000000ff /* signal mask to be sent at exit */
#define CLONE_VM 0x00000100 /* set if VM shared between processes */
#define CLONE_FS 0x00000200 /* set if fs info shared between processes */
#define CLONE_FILES 0x00000400 /* set if open files shared between processes */
#define CLONE_SIGHAND 0x00000800 /* set if signal handlers and blocked signals shared */
#define CLONE_PTRACE 0x00002000 /* set if we want to let tracing continue on the child too */
#define CLONE_VFORK 0x00004000 /* set if the parent wants the child to wake it up on mm_release */
#define CLONE_PARENT 0x00008000 /* set if we want to have the same parent as the cloner */
#define CLONE_THREAD 0x00010000 /* Same thread group? */
...

Creating the process address space
fork() copy _mm()

Kernel_clone() passes clone_flags to the function copy_mm().

• CLONE_VM flag is set, the function increases the reference count for the mm_struct and copies the pointer to that
structure. Both processes have the right to write to the same memory.

• CLONE_VM flag is cleared, it creates a new structure describing the process virtual memory
(structure mm_struct assigned by the function allocate_mm()); creates a new page directory (mm_init()
pgd_alloc()), fills it with zeros, and the space 3-4 GB maps to the kernel memory (but remember about PTI).

 Then copy_mm() copies the entire maple tree from the parent process to the child process (function dup_mmap()).
This is not just a copy, other actions must be done as well.

 If the area comes from a memory mapped file, only the reference count for the pages in this area is increased, and
the area itself is added to the structure of the shared areas.

 If it is a normal area, the function copy_page_range() is called. First, it checks if we can write in the area and whether
it is not shared. Then, in the loop for each page belonging to the area, the RW flag is set to zero. Then, the page
reference count increases.

 If one of the processes wants to save something to such a page, a page protection fault will be reported. The system
will check if the vm_area_struct to which the page is assigned has a write flag set and if so, the page will be copied.

 In the case of the code area, only the reference count of the memory increases, which means that it is released only
after the two processes have finished their work.

30

Implementation of threads and different variants
of clone()

fork() is implemented as a system function call clone() in which the parameter flags specifies both SIGCHLD and all the
cloning flags zeroed, and the parameter that is to point to the child stack has the value of the current stack pointer of
the parent process.

 The parent process and the child process share the user-mode stack temporarily, but thanks to the COW mechanism,
they will get separate copies of the stack at the first attempt to write.

vfork() is implemented as a system function call clone() in which the flags parameter specifies both SIGCHLD and flags
CLONE_VM and CLONE_VFORK, and the parameter that is to point to the child stack has the value of the current stack
pointer of the parent process.

 vfork() does not copy the table entries of the parent process, a child process shares the address space with the
parent process.

 The child process is performed as the only thread in the address space of the parent process, which is blocked until
the child completes exec() or exit(), to prevent the parent process from erasing the data needed for the child process.

Nowadays, when fork() uses COW and starts the child BEFORE the parent process, the only profit from vfork() is to not
copy the page tables.

In the future, Linux will probably make COW for page tables, and then there will be no profit.

31

32

COW in fork()

Handling page faults

33

The kernel must distinguish the exceptions caused by programming errors from referring to a page that
belongs to the process address space, but has not yet been allocated.

Options for handling page faults (source: Mauerer, Professional Linux Kernel Architecture)

34

Handling page faults

The error handling of page fault largely depends on architecture.

For i386, the wrong address (address) is passed to page fault handler do_page_fault() via register cr2.

After verifying that a valid memory context exists, a find_vma() function is invoked, which looks
through the maple tree for the appropriate memory area descriptor (vm_area_struct).

35

extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);

If no VMA exists for the given address, the SIGSEGV (segmentation fault) signal is sent.

If the bottom of the stack has been found (an area has been found whose end address is greater
than address A which caused the error, address A does not belong to this area, however the
area has the VM_GROWSDOWN flag set), then the stack will be expanded
(call expand_stack()).

If the address is correct, then the access rights to the page are checked, and then it calls
the handle_mm_fault() function, which will bring the page.

36 (source: Adrian Huang, Memory Mapping Implementation (mmap), 2022)

Page fault handler for userspace address

1 2 4

Code is located mostly in /mm/memory.c.

3

https://www.slideshare.net/AdrianHuang/memory-mapping-implementation-mmap-in-linux-kernel-251745285
https://www.slideshare.net/AdrianHuang/memory-mapping-implementation-mmap-in-linux-kernel-251745285
https://www.slideshare.net/AdrianHuang/memory-mapping-implementation-mmap-in-linux-kernel-251745285
https://www.slideshare.net/AdrianHuang/memory-mapping-implementation-mmap-in-linux-kernel-251745285
https://www.slideshare.net/AdrianHuang/memory-mapping-implementation-mmap-in-linux-kernel-251745285
https://www.slideshare.net/AdrianHuang/memory-mapping-implementation-mmap-in-linux-kernel-251745285
https://www.slideshare.net/AdrianHuang/memory-mapping-implementation-mmap-in-linux-kernel-251745285
https://www.slideshare.net/AdrianHuang/memory-mapping-implementation-mmap-in-linux-kernel-251745285
https://www.slideshare.net/AdrianHuang/memory-mapping-implementation-mmap-in-linux-kernel-251745285
https://elixir.bootlin.com/linux/latest/source/mm/memory.c
https://elixir.bootlin.com/linux/latest/source/mm/memory.c

Additional reading

• Linux Memory Managment Frequently Asked Questions (Rob Landley).

• Priority trees in the Linux kernel (Michał Jastrzębski) – were replaced (2012) by interval trees. The interval tree is
based on the augmented rbtree.

• mm: per-thread VMA caching (Davidlohr Bueso, February 2014)

• Another attempt at speculative page-fault handling (Nur Hussein, April 2017)

• Microsoft Research: A fork() in the road, A. Baumann, J. Appavoo, O. Krieger, T. Roscoe, HotOS ’19, May 13–15,
2019, Bertinoro, Italy (paper, presentation).

• On-demand-fork: a microsecond fork for memory-intensive and latency-sensitive applications (paper), On-demand-
fork (presentation from EuroSys 2021)

• How to get rid of mmap_sem?, Jonathan Corbet, May 2019.

 Renamed to mmap_lock (v5.8), part of an effort to wrap the lock in an API, hoping to ease its replacement in the
future.

37

https://landley.net/writing/memory-faq.txt
https://landley.net/writing/memory-faq.txt
https://landley.net/writing/memory-faq.txt
https://landley.net/writing/memory-faq.txt
http://students.mimuw.edu.pl/ZSO/Wyklady/00_stud/prio/prio.html
http://students.mimuw.edu.pl/ZSO/Wyklady/00_stud/prio/prio.html
http://students.mimuw.edu.pl/ZSO/Wyklady/00_stud/prio/prio.html
http://students.mimuw.edu.pl/ZSO/Wyklady/00_stud/prio/prio.html
http://students.mimuw.edu.pl/ZSO/Wyklady/00_stud/prio/prio.html
http://lwn.net/Articles/509994/
http://lxr.free-electrons.com/source/Documentation/rbtree.txt
http://lxr.free-electrons.com/source/Documentation/rbtree.txt
https://lwn.net/Articles/588807/
https://lwn.net/Articles/588807/
https://lwn.net/Articles/588807/
https://lwn.net/Articles/588807/
https://lwn.net/Articles/588807/
https://lwn.net/Articles/588807/
https://lwn.net/Articles/588807/
https://lwn.net/Articles/730531/
https://lwn.net/Articles/730531/
https://lwn.net/Articles/730531/
https://lwn.net/Articles/730531/
https://lwn.net/Articles/730531/
https://lwn.net/Articles/730531/
https://lwn.net/Articles/730531/
https://lwn.net/Articles/730531/
https://lwn.net/Articles/730531/
https://lwn.net/Articles/730531/
https://lwn.net/Articles/730531/
https://lwn.net/Articles/730531/
https://lwn.net/Articles/730531/
https://lwn.net/Articles/730531/
https://lwn.net/Articles/785430/
https://lwn.net/Articles/785430/
https://lwn.net/Articles/785430/
https://lwn.net/Articles/785430/
https://lwn.net/Articles/785430/
https://lwn.net/Articles/785430/
https://lwn.net/Articles/785430/
https://lwn.net/Articles/785430/
https://lwn.net/Articles/785430/
https://lwn.net/Articles/785430/
https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19-slides.pdf
https://www.microsoft.com/en-us/research/uploads/prod/2019/04/fork-hotos19-slides.pdf
https://dl.acm.org/doi/10.1145/3447786.3456258
https://dl.acm.org/doi/10.1145/3447786.3456258
https://dl.acm.org/doi/10.1145/3447786.3456258
https://dl.acm.org/doi/10.1145/3447786.3456258
https://dl.acm.org/doi/10.1145/3447786.3456258
https://dl.acm.org/doi/10.1145/3447786.3456258
https://dl.acm.org/doi/10.1145/3447786.3456258
https://dl.acm.org/doi/10.1145/3447786.3456258
https://dl.acm.org/doi/10.1145/3447786.3456258
https://2021.eurosys.org/docs/presentations/7-Zhao - Kaiyang Zhao.pdf
https://2021.eurosys.org/docs/presentations/7-Zhao - Kaiyang Zhao.pdf
https://2021.eurosys.org/docs/presentations/7-Zhao - Kaiyang Zhao.pdf
https://2021.eurosys.org/docs/presentations/7-Zhao - Kaiyang Zhao.pdf
https://2021.eurosys.org/docs/presentations/7-Zhao - Kaiyang Zhao.pdf
https://2021.eurosys.org/docs/presentations/7-Zhao - Kaiyang Zhao.pdf
https://2021.eurosys.org/docs/presentations/7-Zhao - Kaiyang Zhao.pdf
https://2021.eurosys.org/docs/presentations/7-Zhao - Kaiyang Zhao.pdf
https://lwn.net/Articles/787629/
https://lwn.net/Articles/787629/
https://lwn.net/Articles/787629/
https://lwn.net/Articles/787629/
https://lwn.net/Articles/787629/
https://lwn.net/Articles/787629/
https://lwn.net/Articles/787629/
https://lwn.net/Articles/787629/
https://lwn.net/Articles/787629/
https://lwn.net/Articles/787629/

