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Physical memory 

The layout of physical memory depends on architecture. 

At the stage of memory initialization, the kernel builds a map of physical addresses, which indicates the 
range of physical address used by the kernel and inaccessible addresses (containing BIOS data or 
occupied by I/O memory mapped to RAM). 

Frames treated by the kernel as reserved: 

– those from the range of inaccessible addresses, 

– those which contain code and initialized kernel data structures. 

Such page will never be allocated dynamically or swapped out. 

Usually, the Linux kernel is installed in RAM starting from the physical address 0x00100000 (1 MB), that is 
from the second megabyte (usually this address is set when compiling the kernel). The number of 
frames required depends on the configuration.  

Linux prefers to skip the first megabyte to avoid loading into groups of noncontiguous frames.  
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Process and kernel page tables 

In 32-bit architectures the linear address space of the process consists of two parts:     0 – 3 GB and 3 GB 
– 4 GB . 

The content of the first 768 entries of the Page Global Directory that map addresses lower than 
PAGE_OFFSET depends on the specific process. 

The remaining entries should be the same for all processes and equal to the corresponding entries of 
the master kernel Page Global Directory (but KPTI!) 

The kernel initializes its own page tables in two phases: 

– In the first phase (kernel image loaded into memory, CPU running in real mode, paging not 
enabled), kernel creates a limited address space including: 

• the kernel's code and data segments, 

• the initial page tables, 

• some amount of memory for dynamic data structures. 

 This minimal address space is large enough to install the kernel in RAM and to initialize its core 
data structures. 

– In the second phase, kernel takes advantage of all existing RAM and sets up the page tables 
properly. 

4 



Provisional kernel page tables 

Let's assume that the kernel's segments, the provisional page tables, and the amount needed for dynamic 
data structures fit in the first 24 MB of RAM. 

In order to map 24 MB of RAM, six page tables are required (one table contains 210 entries, so it can 
address 210 * 22 * 210 = 4 * 220 = 4 MB). 

Kernel maps the linear addresses: 

– from 0x00000000 (addresss 0) to 0x017fffff (223 + 224 - 1 = 8 MB + 16 MB - 1 = 24 MB - 1) 

– from 0xc0000000 (addresss 3 * 230 = 3 GB) to 0xc17fffff (3 GB + 24 MB - 1) 

into the physical addresses: 

– from 0x00000000 (addresss 0) to 0x017fffff (24 MB - 1) 

The objective of this first phase of paging is to allow these 24 MB of RAM to be easily addressed both in 
real mode and protected mode (using either physical addresses from 0 to 24 MB, or virtual addresses 
from 0 to 24 MB or from 3 GB to (3 GB + 24 MB). Physical addresses are obtained from virtual 
addresses by subtracting PAGE_OFFSET. 

At the end, the kernel enables paging by setting the PG flag of the cr0 control registry. 
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Mapping Linear Addresses to Physical Addresses in Phase One (1) 

Provisional kernel page tables 

physical address linear address 

0x00000000 

0x017fffff 

0xc0000000 

0xc17fffff 

0xffffffff 

24M 

24M 

0x00000000 

0x017fffff 

24M 

4 K 

…
 

4 K 

pt 

4 K 

pgd 

Source: from the presentation by Fu-Hau Hsu 
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Source: from the presentation by Fu-Hau Hsu 

Mapping Linear Addresses to Physical Addresses in Phase One (2) 

Provisional kernel page tables 

physical address linear address 

0x00000000 

0x017fffff 

0xc0000000 

0xc17fffff 

0xffffffff 

24M 

24M 

0x00000000 

0x017fffff 

24M 

4 K 

…
 

4 K 

pt 

4 K 

pgd 
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Provisional kernel page tables 
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Final kernel page tables 

The purpose of the second phase is to fill the kernel page tables so that all linear addresses starting 
with PAGE_OFFSET are mapped to physical addresses starting from 0. 

The mapping depends on the amount of RAM present. Let's assume that the CONFIG_HIGHMEM flag is 
enabled. There are three possible cases: 

1. RAM size is below 900 MB, 

2. RAM size is between 900 MB and 4096 MB, 

3. RAM size is more than 4096 MB. 

Case 1 

If a computer has less than 900 MB of RAM, 32-bit physical addresses are sufficient to address all the 
available RAM. 

Identity mapping of the first 24 MB RAM is needed only to complete the kernel initialization phase, 
after the end of the kernel initialization phase, the corresponding page table entries are reset. 
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Final kernel page tables 

10 Source: from the presentation by Fu-Hau Hsu 

Assumptions: 

CPU is 80x86, 4 MB pages and global TLB 
entries 
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Final kernel page tables 
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Final kernel page tables 

Case 2 

If a computer has more than 900 MB of RAM, but less than 4 GB, RAM cannot be mapped entirely into 
the kernel linear address space.  

• The first 900 MB are mapped as for smaller memories.  

• In order for the program to reach more than 900 MB of physical memory, the kernel 
must dynamically map certain ranges of linear addresses to the appropriate physical addresses.  

 This requires dynamic changes to the page tables. 

 

Case 3 

If a computer has more than 4 GB, then the PAE mechanism must be available, the kernel must be 
compiled with PAE support and use three-level paging (assuming the addresses are 32-bit). 

How to use the upper addresses of the four-gigabyte linear space of the kernel for dynamic mapping will 
be discussed later. 
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Page frame management 

Part of the physical RAM is allocated permanently for code and static kernel data structures. All other 
memory (so-called dynamic memory) is used for the purpose: 

– satisfying kernel requests for buffers, descriptors and others dynamic kernel data structures, 

– satisfying the demands of processes regarding ordinary memory areas and for mapping files to 
memory, 

– increase the efficiency of input-output operations from/to block devices by maintaining a page cache. 
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Dynamic memory (source: Bovet, 
Cesati, Understanding the Linux 

Kernel) 



Page descriptors 

The RAM physical memory is divided into page frames, the frame size is defined by the constant PAGE_SIZE. 
In 32-bit protected mode x86 supports two kinds of pages: 

– Normal-sized pages, which are 4 KB (some architectures allow other values, e.g. 16 KB on ARM64 or 8 
KB, 16 KB or 64 KB on IA64). 

– Huge pages, which are 4 MB (in some architectures that may be 2 MB). 

Default page can by checked by executing from shell:  

    getconf  PAGE_SIZE 

State information of a page frame is kept in a page descriptor of type struct page. All page descriptors are 
stored in the mem_map array. 
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 struct page *mem_map; 



Page descriptors 

The struct page must be as small 
as possible (this is the reason for 
many unions in the definition; 
they are omitted here). 

Size – 64 bytes for every 4KB 
memory page. 

 
See file  
include/linux/mm_types.h 
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struct page { 
   unsigned long flags; 
   union { 
      struct { /* Page cache and anonymous pages */ 
         struct list_head lru; 
         struct address_space *mapping; 
         pgoff_t index; 
         unsigned long private; 
         ... 
      }; 
      struct { 
         ... 
      }; 
      ... 
   }; 
   atomic_t _mapcount; 
   atomic_t _refcount;  
   ... 
#if defined(WANT_PAGE_VIRTUAL) 
   void *virtual;    /* Kernel virtual address (NULL if not kmapped, ie. highmem) */ 
   ... 
}; 



Page descriptors 

Page descriptors are used to describe the state of physical memory frames, not their contents. 

struct page  – field _refcount 

 Page frame's reference counter. The page_count() function returns the value of this field. The frame can 
be used by the page cache (in this case the field mapping points to the object address_space associated 
with this frame), as private data (then the field private points to it) or be mapped from the process page 
table. See include/linux/page_ref.h. 

struct page  – field _mapcount 

 Number of page table entries that refer to the page frame (-1 if none). 

struct page  – field private 

 Available to the kernel component that is using the page (for instance, it is a buffer head pointer in case of 
a buffer page). If the page is free, this field is used by the buddy allocator. 
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Page descriptors 

struct page – field mapping 

Used when the page is inserted into the page cache (points to the address_space), or when it belongs to an 
anonymous region (points to anona_vma), or used by the slab allocator when the page is free.  

struct page – field index 

Used by several kernel components with different meanings. For instance, it identifies the position of the 
data stored in the page frame within the page's disk image or within an anonymous region, or it stores a 
swapped-out page identifier.  

struct page – field lru 

Contains pointers to the least recently used doubly linked list of pages. When the frame is free, it is used in 
the buddy allocator to link free areas.  

struct page – field virtual 

 The kernel virtual address of the frame or NULL. On machines where all RAM is mapped into kernel address 
space, we can simply calculate the virtual address.  

On machines with highmem some memory is mapped into kernel virtual memory dynamically, so we need a 
place to store that address.  
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Page descriptors – flags  

struct page – field flags 

 Flags in the flags field are independent of architecture (unlike bits in page tables). Changing and testing the 
value of this field is usually an atomic operation.  
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enum pageflags { 
    PG_locked,              /* Page is locked. Don't touch. */ 
    PG_referenced, 
    PG_uptodate, 
    PG_dirty, 
    PG_lru, 
    PG_active, 
    PG_error, 
    PG_slab, 
    PG_reserved, 
    ... 
}; 



Struct page flags 

PG_locked bit 

 All process pages can participate in input-output operations: 

– the pages of files mapped to memory can be read from the disk, 

– the pages of the memory mapped files that have been modified and are shared (MAP_SHARED) may have 
to be saved to disk, 

– private pages that have been modified may need to be swapped to the swap area and later reloaded into 
memory. 

 This bit is used to lock a page during the I/O operation. It is set before the operation is initiated and 
cleared after completion. 

PG_referenced  bit 

 This bit together with the accessed bit in the page table is used to manipulate the page age and 
move the page in the active and inactive lists.  

 It is checked and modified in the function responsible for selecting the frame to be released. If the 
frame has the PG_referenced bit set, it is reset and the page is not sent back to the swap device. 
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Struct page flags 

PG_uptodate bit 

 This flag is set after completing a read operation, unless a disk I/O error happened.  

PG_highmem bit 

 The page frame belongs to the ZONE_HIGHMEM zone. The pages with the PG_highmem bit set are not 
permanently mapped to the virtual address space of the kernel, they must be mapped dynamically. The 
struct page (these bits with information) are always mapped to the kernel address space (have a linear 
address).  

PG_error bit 

 An I/O error occurred while transferring the page. 

PG_slab bit 

 The page frame is part of slab (under supervision of the slab allocator).  

PG_reserved bit 

 The page frame is reserved for kernel code or is unusable.  
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Page descriptors 

Extra reading: 

• How many page flags do we really have?,Jonathan Corbet, 2009. 

• Transparent huge pages in 2.6.38, Jonathan Corbet, January 2011. 

• Cramming more into struct page, Jonathan Corbet, August 2013. 

• ZONE_DEVICE and the future of struct page, Jonathan Corbet, March 2017. 

• Willy's memory-management to-do list  – section Cleaning up struct page (Jonathan 
Corbet, April 2018). A set of diagrams showing how the various fields of struct page 
are used. 

• Repurposing page->mapping, Jonathan Corbet, April 2018. 
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• Memory: the flat, the discontiguous, and the sparse, Mike Rapaport, May 2019. 

• Reducing page structures for huge pages, Jonathan Corbet, December 2020. 

• Sidestepping kernel memory management with DMEMFS, Jonathan Corbet, December 2020. 
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Folios 
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Matthew Wilcox 

 

• Compound page is a group of pages, represented by a head page. Other pages are called 
tail pages. 

• A folio is a way of representing a set of physically contiguous base pages. 

• It is a container for a struct page that is guaranteed not to be a tail page. 

• Any function accepting a folio will operate on the full compound page (if, indeed, it is a 
compound page) with no ambiguity.  

• The result is greater clarity in the kernel's memory-management subsystem; as functions 
are converted to take folios as arguments, it will become clear that they are not meant to 
operate on tail pages.  

• The first set of folio patches was merged for the 5.16 kernel.  

• Clarifying memory management with page folios, Jonathan Corbet, March 2021 

• A folio update, Jonathan Corbet, January 2022 

• A memory-folio update, Jonathan Corbet, May2022 

• Memory folios, Matthew Wilcox, Open Source Summit, 2022. 

https://lwn.net/Articles/849538/
https://lwn.net/Articles/849538/
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Zones 

The physical memory of RAM is divided into zones. This division results from the hardware memory 
constraints. The zones do not have any physical relevance but are simply logical groupings used by 
the kernel to keep track of pages. 

Zone types (include/linux/mmzone.h) 

– ZONE_DMA – contains pages that can undergo DMA. 

– ZONE_DMA32 – like ZONE_DMA, contains pages that can undergo DMA. Unlike ZONE_DMA, these 
pages are accessible only by 32-bit devices. 

– ZONE_NORMAL – contains normal, regularly mapped, pages. 

– ZONE_HIGHMEM – contains high memory, which are pages not permanently mapped into the 
kernel's address space. 

– ZONE_MOVABLE – similar to ZONE_NORMAL, except that it contains movable pages with few 
exceptional cases. 

– ZONE_DEVICE – created to satisfy the need to perform DMA operations on persistent memory. 
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Zones 

The layout of the memory zones is architecture-dependent. 

• Some architectures can perform DMA into any memory address. In these architectures, ZONE_DMA is 
empty and ZONE_NORMAL is used for allocations regardless of their use. 

• On the x86 architecture, ISA devices cannot perform DMA into the full 32-bit address space, because 
ISA devices can access only the first 16 MB of physical memory. Consequently, ZONE_DMA on x86 
consists of all memory in the range 0MB-16MB. 

• On 32-bit x86 systems ZONE_HIGHMEM  is all memory above the physical ~900MB mark. A 64-bit 
architecture such as Intel's x86-64 can fully map and handle 64-bits of memory — has no 
ZONE_HIGHMEM, because all memory is directly mapped.  

• On x86 ZONE_NORMAL is all physical memory from 16 MB to ~900 MB. On other 
architectures, ZONE_NORMAL is all available memory. 
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Zones 

25 (source: Adrian Huang, Physical Memory Management, 2022) 

Kernel 5.11, x86_64 
16GB RAM 

https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf


Zones 

Some fields of the zone descriptor: 

– pglist_data – describes the whole memory on a per-zone basis, in particular LRU lists of pages 
accessed by the page reclaim scanner (struct list_head lists[NR_LRU_LISTS]), 

– pageset – data structure implementing special caches for single frames, 

– zone_start_pfn – page frame number of the first page frame in the zone, 

– free_area – identifies the blocks of free page frames in the zone (handled by the buddy 
allocator), 

– present_pages – the total size of the zone in the number of pages, excluding holes. 

The watermarks are per-zone fields, used to determine when a zone needs to be balanced. 

– watermark[WMARK_MIN] – the number of reserved zone frames, 

– watermark[WMARK_LOW] – the lower limit of the number of frames for the page reclaming 
mechanism, 

– watermark[WMARK_HIGH] – the upper limit of the number of frames for the page reclaming 
mechanism, 
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Zone watermarks 

27 (source: Adrian Huang, Physical Memory Management, 2022) 

Some kernel control paths cannot be blocked while requesting memory, e.g. 

– when handling an interrupt, 

– when executing code inside a critical region.  

In these cases, a kernel control path should issue atomic memory allocation requests (using the GFP_ATOMIC flag). 
An atomic request never blocks: if there are not enough free pages, the allocation fails.  

The kernel reserves a pool of page frames for atomic memory allocation 
requests to be used only on low-on-memory conditions. 

Note 1: This is the old 
formula. The new formula 
includes kswapd watermarks 
distance according to the 
scale factor. 
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Zone watermarks 

28 
(source: Edward Liu, Out of memory events and decoding their logging) 
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Zones 

View zone statistics by executing:  

cat /proc/zoneinfo 

 

Servers on students and on duch have zones: 
DMA, DMA32, NORMAL, MOVABLE, DEVICE 

 

Statistics are from students, cut off parts for 
other zones and cpus 1 .. 63 and some from the 
middle 
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Node 0, zone   Normal 
   pages  
      free     16770626         
      min      18955         
      low      104499         
      high     190043         
      spanned  86975744         
      present  86975744         
      managed  85546808         
      protection: (0, 0, 0, 0, 0)       
 nr_free_pages 16770626      nr_zone_inactive_anon 5559787      

nr_zone_active_anon 237185      nr_zone_inactive_file 29311236      
nr_zone_active_file 4831654      nr_zone_unevictable 22199      
nr_zone_write_pending 599       

 nr_mlock     22199       
 nr_page_table_pages 92247       
 numa_hit     39848507292       
 numa_miss    0       
 numa_foreign 0       
 numa_interleave 41435       
 numa_local   39848507292       
 numa_other   0   
pagesets     
 cpu: 0               
      count: 364               
      high:  378               
      batch: 63   
 vm stats threshold: 125   
 vm stats threshold: 125   
 node_unreclaimable:  0   
 start_pfn:           1048576 



Zones 
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Layout of the kernel address space 
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(source: W. Mauerer, Professional 
Linux Kernel Architecture) 

(_PAGE_OFFSET constant – one zero is 
missing) 

IA-32 maps the page frames into the virtual address space starting from PAGE_OFFSET. 

 Kernel runs in a virtual address space, but uses physical addresses to do a lot of things (e.g. preparing the page 
table entry, get dma address for device).  

So kernel needs functions like __va() and __pa(): 

 #define __va(x) ((void *)((unsigned long)(x) + PAGE_OFFSET)) 
 #define __pa(x) ((unsigned long) (x) - PAGE_OFFSET) 

This translation takes place at the compilation time. It does not use page tables.  

This is called directly-mapped memory. 



Mapping frames from highmem 

High memory (highmem) is used when the size of physical memory approaches or exceeds the maximum size of virtual 
memory. It becomes impossible for the kernel to keep all of the available physical memory mapped at all times. The kernel 
needs to start using temporary mappings of the pieces of physical memory that it wants to access. 

Frames from highmem do not have fixed linear addresses. The last addresses of the kernel's linear space are dedicated to 
mapping these frames. Mapping is temporary, because otherwise access would be only to a part of the highmem.  

Allocating frames from the highmem, the kernel uses alloc_pages() and alloc_page()*.  

They do not pass the linear address of the first allocated frame, but the linear address of the frame descriptor (this address 
always exists because the descriptors are allocated in directly addressed memory – this happens during the initialization of 
the kernel data structures). 

– struct page *alloc_pages(gfp_mask, order) – allocates 2order of physically contiguous frames and forwards the link to 
the descriptor of the first of them, 

– struct page *alloc_page(gfp_mask) – allocates a single frame. 

The gfp_mask tells the page allocator which pages can be allocated, whether the allocator can wait for more memory to be 
freed, etc. 
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The kernel uses three mechanisms to map frames 
from highmem.  

*API of the Buddy allocator 



Persistent Kernel Mapping (PKMAP) 

Permanent kernel mappings allow the kernel to establish long-lasting mappings of high-memory page frames into 
the kernel address space.  

They use a dedicated Page Table in the Master Kernel Page Tables. The pkmap_page_table variable stores the 
address of this page table. It maps linear addresses starting from PKMAP_BASE, the LAST_PKMAP macro yields 
the number of entries. 
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(source: W. Mauerer, 
Professional Linux Kernel 

Architecture) 



Persistent Kernel Mapping (PKMAP) 

The array of counters pkmap_count describes the entries in the dedicated page table.  

Descriptors of mapped frames from highmem are available through a hash table (you can not use a linear 
address as an index in a frame table, because there are more frames than linear addresses). Each 
element stored in this table contains a frame descriptor and its assigned linear address. 

The function map_new_virtual():  

– browses the pkmap_count array,  

– finds an unused entry,  

– sets the corresponding linear address,  

– fills the entry in the pkmap_count array and entry in the pkmap_page_table, 

– inserts a new element into the hash table page_address_htable, 

– passes the linear address.  

If there is no free entry, the function blocks the current process until another process does not free the 
entry –  such mapping can not be used in the context of an interrupt. 
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Persistent Kernel Mapping (PKMAP) 

The use of high memory is a problem only for the kernel. The kernel must first use 
the kmap() and kunmap() functions to map frames from high memory to its virtual address space. It does not 
have to do this for frames from other zones. 

 For the user process, there is no difference between frames from high memory and others, because access to 
them always takes place through page tables, never directly. 
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 void * kmap (struct page * page) 
   { 
  if (!PageHighMem(page)) 
   return page_address(page); 
  return kmap_high(page); 
   } 
    
   void * kmap_high (struct page * page) 
   { 
 unsigned long vaddr; 
 lock_kmap(); 
 vaddr = (unsigned long) page_address(page); 
 if (!vaddr) 
  vaddr = map_new_virtual(page); 
 pkmap_count[PKMAP_NR(vaddr)]++; 
 unlock_kmap(); 
 return (void *) vaddr; 
   } 

/arch/x86/mm/highmem_32.c 

The kmap() function must be used if 
highmem pages are to be mapped into kernel 
address space for a longer period (as 
a persistent mapping).  

The page to be mapped is specified by means 
of a pointer to page as the function 
parameter.  

The function creates a mapping when this is 
necessary (i.e. if the page really is a highmem 
page) and returns the address of the data. 



Temporary Kernel Mapping (FIXMAP) 

Mappings done by kmap() are costly. To improve performance, the kernel developers introduced a special 
version: 
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/* 
 * kmap_atomic/kunmap_atomic is significantly faster than kmap/kunmap because 
 * no global lock is needed and because the kmap code must perform a global TLB 
 * invalidation when the kmap pool wraps. 
 * 
 * However when holding an atomic kmap it is not legal to sleep, so 
 * atomic kmaps are appropriate for short, tight code paths only. 
 */ 
  
 /* Find the page of interest. */ 
 struct page *page = find_get_page(mapping, offset); 
 
 /* Gain access to the contents of that page. */ 
 void *vaddr = kmap_atomic(page); 
 
 /* Do something to the contents of that page. */ 
 memset(vaddr, 0, PAGE_SIZE); 
 
 /* Unmap that page. */ 
 kunmap_atomic(vaddr); 



Temporary Kernel Mapping (FIXMAP) 

The function kmap_atomic() differs from kmap(). It creates a mapping on the current CPU, so 
there is no need to bother other processors with it.  

It creates the mapping using one of a very small set of kernel-space addresses. These addresses 
are specified by a set of slot constants. There are about twenty of these slots defined in current 
kernels. 

The use of fixed slots requires that the code using these mappings be atomic. 

The per-CPU nature of atomic mappings means that any cross-CPU migration would be disastrous.  

The kmap_atomic() function does not block the process. It is ideal in short pieces of code that 
need a temporary frame quickly. 

A fixmap linear address is a constant that corresponds to a physical address. Each such address 
maps one physical memory frame. Any physical address can be mapped in this way, without 
maintaining the linear order of addresses.  

Such addressing is very effective. 

See also: Atomic kmaps become local, Jonathan Corbet. November 2020 
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Managing noncontiguous memory areas 
(VMALLOC) 

If references to memory areas are not frequent, instead of allocating areas of adjacent frames, the kernel can 
assigned frames that are not adjacent to each other (noncontiguous memory area), but are in the area 
of contiguous linear addresses. 

 Thanks to this, you can avoid external fragmentation, but you must reach for the kernel page tables.  

The size of the noncontiguous memory area must be a multiple of the page size.  

Linux uses such noncontiguous memory areas by allocating there e.g. 

– data structures for active swap areas, 

– memory for modules, 

– buffers for some input-output drivers. 

38 

(source: Bovet, Cesati, 
Understanding the Linux Kernel) 

Free ranges of linear 
addresses are available 

starting from PAGE_OFFSET.  



Managing noncontiguous memory areas 
(VMALLOC) 

Linear addresses in the range from VMALLOC_START to VMALLOC_END are reserved for noncontiguous 
memory areas.  

Each such area is described as vm_struct descriptor. 
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struct vm_struct { 
    struct vm_struct       *next; 
    void                            *addr; 
    unsigned long           size; 
    unsigned long           flags; 
    struct page                **pages; 
    unsigned int              nr_pages; 
    unsigned long           phys_addr; 
    void                             *caller; 
}; 

addr  – linear address of the first memory cell of the 
area, 

size  – size of the area increased by 4 KB (safety area), 

pages  – pointer to an array of nr_pages pointers to 
page descriptors, 

nr_pages  – number of entries in pages, 

next  – pointer to the next item in the list, 

flags  – flags specifying the area type  
       VM_ALLOC  – pages obtained from vmalloc(),  
       VM_MAP  – already assigned pages mapped with vmap(), 
       VM_IOREMAP  – memory on the hardware device board mapped using ioremap(). 



Managing noncontiguous memory areas 
(VMALLOC) 
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Mapping physical pages into the vmalloc area 
(source: Mauerer, Professional Linux Kernel Architecture) 



Managing noncontiguous memory areas 
(VMALLOC) 

The global variable vmlist points to the beginning of the list of areas vm_struct. 

The function get_vm_area() looks for a free range of linear addresses 
between VMALLOC_START and VMALLOC_END (by browsing the vmlist list).  

If the range of the right size can be found, it passes the completed descriptor. 

The vmalloc() function allocates a noncontiguous memory area of a fixed size: 

– rounds up this size to a multiple of the page frame size (4096 bytes). 

– invokes get_vm_area() to get a correctly filled descriptor. 

– invokes kmalloc() to get a group of contiguous page frames that will store the array with pointers to the 
page descriptors. 

– the memset() function initializes all of them to 0. 

– the function alloc_page() is called in the loop, to allocate a page frame and store the address of the 
corresponding page descriptor in the pages array. Frames can come from highmem, so they may not be 
mapped to linear addresses yet. 

The functions vfree() i vunmap() are used to release noncontiguous memory areas. 
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Managing noncontiguous memory areas 
(VMALLOC) 

The  mapping and unmapping of the physical memory in the virtual address space in the 
kernel comes at price as you now need to consult and maintain the page tables and that 
incurs a performance hit. But: 

1. TLBs alleviate this problem to a certain degree. They cache translations. 

2. Global pages.  

 When you switch between applications and need to flush the current TLB, you can avoid 
invalidating global pages from the TLB by performing Invalidate TLB entries by ASID (Address 
Space Identifier) match with the application's ASID.  

 If you mark the kernel's pages as global, you don't invalidate their translations and the kernel 
itself doesn't suffer from unnecessary TLB invalidations. 

4. The portion of the kernel address space which is identity mapped to RAM (kernel logical 
addresses) are mapped using big pages when possible, which may allow the page table to be 
smaller but more importantly reduces the number of TLB misses. 

Are kernel virtual addresses really translated by the TLB/MMU? YES. 
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To kmalloc() or to vmalloc()? 
The answer is kvmalloc() (Jonathan Corbet, January 2017) 

Regardless of the fact that physically contiguous memory is needed only in special cases, the kernel 
mostly uses kmalloc() and not vmalloc() to allocate memory. The reason is efficiency.  

Allocations with vmalloc() do not need physically contiguous pages and are more likely to succeed 
when memory is tight. But excessive use of vmalloc() is discouraged due to the extra overhead 
involved.  

vmalloc() can only allocate entire pages, so it is not suitable for small requests.  

The address range available for vmalloc() allocations is also limited on 32-bit systems; that 
limitation is not present on 64-bit systems.  

There are a number of places in the kernel where a large allocation must be physically contiguous, 
but there are probably even more where that doesn't matter.  

In the latter case, the code doesn't have a reason to care which allocation method was used to 
obtain its memory, as long as the memory is available. In such case it makes sense to try an 
allocation first with kmalloc(), then fall back to vmalloc() should that attempt fail.  

The kernel is full of code fragments that do exactly that.  
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 kvmalloc() attempts to allocate size bytes from the slab allocator; trying to minimize the 
cost (and avoid out-of-memory killer invocations) when the memory is not immediately 
available.  

 If the attempt fails, kvmalloc() will fall back to vmalloc() to perform the allocation.  

 The kvzalloc() variant will zero the memory before returning it.  
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void *kvmalloc(size_t size, gfp_t flags); 

 void *kvzalloc(size_t size, gfp_t flags); 

To kmalloc() or to vmalloc()? 
The answer is kvmalloc() (Jonathan Corbet, January 2017) 
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An end to high memory?  
(Jonathan Corbet, February 2020) 

64-bit systems do not have the 4GB virtual address space limitation, so they have never 
needed the high-memory concept.  

But high memory remains for 32-bit systems, and traces of it can be seen throughout the 
kernel.  

Calls to kmap() and kmap_atomic() do nothing on 64-bit systems, but are needed to access 
high memory on smaller systems.  

According to Linus high memory should be now considered to be deprecated: "In this day and 
age, there is no excuse for running a 32-bit kernel with lots of physical memory". 

 Removing high-memory would simplify the memory-management code significantly with no 
negative effects on the 64-bit systems that everyone is using now. 

Except, of course, not every system has a 64-bit CPU in it.  

The area of biggest concern is the ARM architecture, where 32-bit CPUs are still being built, 
sold, and deployed.  

See also: The future of 32-bit Linux, Arnd Bergmann, December 2020 
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Additional reading 

• High Memory Management , May 2016. 

• Fixing kmap_atomic(), Jonathan Corbet, 2009. 

• High memory handling, Peter Zijlstra. 

• Stack overflow – Kernel memory (virtual address entries) in TLB. 

• How exactly do kernel virtual addresses get translated to physical RAM? 

• Making kernel objects movable: A history and the way forward, Christoph Lameter, 2017.  

• Highmem in 64-bit architectures 

– ARM64 Linux kernel virtual address space 

– Is highmem relevant in 64 bit Linux? If not, why? 

– Why does highmemory not exist for 64-bit CPU? 

– Why do 64 bit systems have only a 48 bit address space? 

• Linux kernel – memory in 64-bit architectures (Marcin Walas) 
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