
Memory management
Buddy allocator
Slab allocator

Table of contents

• Introduction
• Managing free page frames - Buddy allocator

– Data structures
– Allocating page frames
– Freeing page frames
– Final notes

• Slab allocator
– Introduction
– Alternative allocators
– Slab allocator in Linux
– Data structures of the slab allocator
– Slab coloring
– Slab allocator API

• Memory management – summary

2

Memory management

3 Bootlin.com

https://bootlin.com/doc/training/linux-kernel/linux-kernel-slides.pdf

Introduction

Based on kvmalloc() (Jonathan Corbet, January 2017)

The kernel offers two mechanisms for allocating memory, both of which are built on top of the kernel's
page allocator (zoned buddy allocator):

– slab allocator obtains physically contiguous memory in the kernel's own address space; this
allocator is typically accessed via kmalloc(),

– vmalloc() returns memory in a separate address space; that memory will be virtually contiguous
but may be physically scattered.

As a general rule, slab allocations are preferred for all but the largest of allocations.

– In the absence of memory pressure, the slab allocator will be faster, since it does not need to make
address-space changes or TLB invalidation.

– The slab allocator works best with allocations that are less than one physical page in size
(vmalloc() can only allocate entire page).

– When memory gets fragmented, groups of physically contiguous pages can get hard to find, and
system performance can suffer as the allocator struggles to create such groups.

4

https://lwn.net/Articles/711653/
https://lwn.net/Articles/711653/

(source: Adrian Huang, Physical Memory Management, 2022)

Managing free page frames – Buddy allocator

The kernel often needs contiguous memory areas that span multiple page frames, so when serving memory
allocation requests, it must minimize external fragmentation.

This is the task of the buddy allocator.

The concept of the buddy allocator is to maintain directly-mapped table for memory blocks of various orders.
The bottom level table contains the map for the smallest allocable units of memory (here, pages), and
each level above it describes pairs of units from the levels below – buddies.

5

Linux uses a separate buddy allocator in each zone.

– Each of the buddy allocators uses the
corresponding subset of page descriptors.

– Information about page frames containing free
physical memory areas is stored in the free_area
structure.

– Information about the occupied page frames is
stored in the process page tables and the kernel
page table.

https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf

Buddy allocator – data
structures

The free_area is a table
of structures of type
struct free_area.

6

struct free_area free_area[MAX_ORDER];

struct free_area {
 struct list_head free_list[MIGRATE_TYPES];
 unsigned long nr_free;
};

– The size of the free_area table is specified by the constant MAX_ORDER = 11.

– The i-th element of the table points to a cyclic list of free and contiguous memory areas of size: (2i) * PAGE_SIZE,
where i = 0..MAX_ORDER -1. The first list contains memory areas of the size of one page, and the last memory
areas of the size of 1024 pages.

– Any such memory area is a contiguous block of physical memory.

– The physical address of the first page frame of the block is a multiple of the block size. For example, the start
address of a block with a size of 16 page frames is a multiple of 16 * PAGE_SIZE.

– The list contains the page descriptors of the first page frame of each block, pointers to subsequent items in the
list are stored in the lru field of the page descriptor.

– The field nr_free contains the number of free areas of a given size.

(source: Adrian Huang, Physical Memory Management, 2022)

https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf

Buddy allocator – data structures

7

Linking blocks in the buddy allocator
(source: W. Mauerer, Professional Linux Kernel Architecture)

[RFC][PATCH] no bitmap buddy allocator: remove free_area->map (September 2004)

http://lkml.iu.edu/hypermail/linux/kernel/0409.1/0089.html
http://lkml.iu.edu/hypermail/linux/kernel/0409.1/0089.html
http://lkml.iu.edu/hypermail/linux/kernel/0409.1/0089.html
http://lkml.iu.edu/hypermail/linux/kernel/0409.1/0089.html

Buddy allocator – data structures

The /proc/buddyinfo file shows the status of memory under the supervision of the buddy allocator.

Each column shows the number of pages available in blocks of a given size (order).

 In the case shown (my old workstation) there are 12 blocks of size 22 * PAGE_SIZE in the DMA zone and 47
blocks of size 23 * PAGE_SIZE in the NORMAL zone.

8

On ‘students’ (2024-04-07).

Node 0, zone DMA 111 59 12 1 1 1 1 1 1 1 0
Node 0, zone Normal 2770 753 169 47 0 0 0 0 0 0 1
Node 0, zone HighMem 23 4 2 1 1 0 0 0 0 0 0

Node 0, zone DMA 0 0 0 0 0 0 0 0 1 1 2
Node 0, zone DMA32 34 43 36 142 111 77 63 24 15 39 347
Node 0, zone Normal 413787 278148 92164 197638 54000 14153 3639 481 146 82 0

9

linux/mm/page_alloc.c

/ *
 * This function checks whether a page is free && is the buddy
 * we can do coalesce a page and its buddy if
 * (a) the buddy is not in a hole (check before calling!) &&
 * (b) the buddy is in the buddy system &&
 * (c) a page and its buddy have the same order &&
 * (d) a page and its buddy are in the same zone.
 *
 * For recording page's order, we use page_private(page).
 */
static inline int page_is_buddy(struct page *page, struct page *buddy, unsigned
int order)
{
 ...
 if (PageBuddy(buddy) && page_order(buddy) == order) {
 if (page_zone_id(page) != page_zone_id(buddy))
 return 0;
 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
 return 1;
 }
 return 0;
}

Information about being a free area of a certain size
is included in the structure page:

• the private field of the first page frame in a block 2k
of free page frames holds the number k,

• the _mapcount field of the descriptor holds special
value PAGE_BUDDY_MAPCOUNT_VALUE (-128).

The PageBuddy() returns TRUE, when the page frame
is managed by the buddy allocator.

Useful macros:

__SetPageBuddy()
__ClearPageBuddy()

The code can be found in /include/linux/page-
flags.h.

Buddy allocator – data structures

Allocating page frame – more details

10 (source: Adrian Huang, Physical Memory Management, 2022)

https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf

Buddy allocator – freeing page frames

This function frees the area indicated (indirectly) by page of size: (2order) * PAGE_SIZE and inserts it into one of
the queues in the free_area table.

The freed area had to be once assigned. If it was assigned, it had to be separated from a block two times bigger.
Perhaps its buddy (that is, the other half of this larger block) is also free and can they be combined back
into one larger contiguous area.

If it succeeds, then you can look for a buddy for this larger piece, etc.

The block is then added to the appropriate queue, and the information about those areas as belonging to the
buddy allocator is updated.

Two blocks are buddies if:

– have the same size, e.g. b,

– are adjacent to each other,

– the physical address of the first frame of the first block is a multiple of 2 x b x PAGE_SIZE.

While combining the areas, the kernel has to calculate two values: the address of the buddy and the index of
the pair of buddies after they are combined back.

11

12

Freeing page frame – more details

(source: Adrian Huang, Physical Memory Management, 2022)

https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf
https://www.slideshare.net/AdrianHuang/physical-memory-managementpdf

Buddy allocator – freeing page frames

13

Freeing page frames in buddy allocator – example
(source: W. Mauerer, Professional Linux Kernel Architecture)

14

page *alloc_pages(gfp_mask, order) – allocates 2order of physically contiguous page frames and
returns the pointer to the descriptor of the first one;

unsigned long __get_free_pages(gfp_mask, order) – allocates 2order of physically contiguous page
frames and returns the linear address of the first one (unsigned long). Never use with
__GFP_HIGHMEM because the returned address cannot represent highmem pages. Use
alloc_pages and then kmap if you need to access highmem.

void *page_address() converts the page descriptor into its linear address. Function returns the kernel
virtual address of the page frame or NULL when the frame is in highmem and has not been
mapped.

#define alloc_page(gfp_mask) alloc_pages(gfp_mask, 0)

#define __get_dma_pages(gfp_mask, order) __get_free_pages((gfp_mask | GFP_DMA, (order))

unsigned long get_zeroed_page(gfp_t gfp_mask) {return __get_free_page(gfp_mask | __GFP_ZERO);
}

Buddy allocator API

Buddy allocator – final notes

The kernel tries to counteract fragmentation by dividing pages by type, which depends on the mobility of
the page:

– non-movable pages – most pages of the kernel itself,

– reclaimable pages – can be removed from memory and retrieved from a source, e.g. a file
mapped into memory,

– movable pages – pages that can be moved in memory, e.g. pages of user processes.

Pages of different types are placed on separate lists (therefore the kernel maintains an array of lists of
size MIGRATE_TYPES).

What is the free_area structure for, if the user process which requests several page frames, gets them
one by one and not at all in a contiguous block? This structure was created mainly for the use of the
kernel, which must be able to allocate contiguous memory areas in different sizes.

The buddy allocator is very fast. This is due to the fact that the majority of arithmetic operations involve a
binary shift or a bit change. That's why the free_area array is indexed with the power of two.

Each area added to the queue is inserted at the beginning of the queue, while the retrieval takes place
from the beginning or from the middle (if we want to remove the buddy with the given address).

15

Why do we need yet another memory allocator?

16 (source: Adrian Huang, Slab Allocator in Linux Kernel, 2022)

https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel
https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel
https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel
https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel
https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel

• The SLUB allocator (Jonathan Corbet, February 2007)

• Cramming more into struct page (Jonathan Corbet, 2013).

• Chris Lameter (one of the maintainers) in 2014 delivered the presentation

 Slab allocators in the Linux Kernel: SLAB, SLOB, SLUB (slides, talk)

• Toward a more efficient slab allocator (Jonathan Corbet, January 2015)

• Making slab-allocated objects moveable (Jonathan Corbet, April 2019)

• Pulling slabs out of struct page (Jonathan Corbet, October 2021)

• SLOB nears the end of the road (Jonathan Corbet, December 2022)

17

Slab allocators – readings

https://lwn.net/Articles/229984/
https://lwn.net/Articles/565097/
https://lwn.net/Articles/565097/
https://lwn.net/Articles/565097/
https://lwn.net/Articles/565097/
https://events.static.linuxfound.org/sites/events/files/slides/slaballocators.pdf
https://www.youtube.com/watch?v=h0VMLXavx30
https://lwn.net/Articles/629152/
https://lwn.net/Articles/784964/
https://lwn.net/Articles/784964/
https://lwn.net/Articles/784964/
https://lwn.net/Articles/784964/
https://lwn.net/Articles/784964/
https://lwn.net/Articles/784964/
https://lwn.net/Articles/784964/
https://lwn.net/Articles/784964/
https://lwn.net/Articles/784964/
https://lwn.net/Articles/784964/
https://lwn.net/Articles/871982/
https://lwn.net/Articles/871982/
https://lwn.net/Articles/871982/
https://lwn.net/Articles/871982/
https://lwn.net/Articles/918344/
https://lwn.net/Articles/918344/
https://lwn.net/Articles/918344/
https://lwn.net/Articles/918344/
https://lwn.net/Articles/918344/
https://lwn.net/Articles/918344/
https://lwn.net/Articles/918344/
https://lwn.net/Articles/918344/
https://lwn.net/Articles/918344/
https://lwn.net/Articles/918344/
https://lwn.net/Articles/918344/

18

• The slab allocators of past, present, and future (Vlastimil Babka, Linux Plumbers Conference 2022).

• SL[OA]B removal and future of SLUB (Vlastimil Babka, The Linux Storage, Filesystem, Memory
Management & BPF Summit @ OSS NA 2023).

• Reducing the Kernel's Slab Allocators: Progress Report (Vlastimil Babka, LinuxCon, OSS 2023).

• [PATCH v2 0/6] remove SLOB and allow kfree() with kmem_cache_alloc() @ 2023-03-17 10:43 Vlastimil
Babka.

• The rise and fall of kernel slab allocators (Vlastimil Babka, SUSE Labs Conference 2023).

• SLAB – deprecated in 6.5, removed in 6.8. Kernel developers now have greater freedom to improve SLUB
without worrying about breaking the others.

Slab allocators – readings

Extra reading

• Sanitizing the Linux Kernel – On KASAN and other Dynamic
Bug-finding Tools – Andrey Konovalov

 (how KASAN works, shadow memory, redzone in slabs and
kmalloc)

https://lpc.events/event/16/contributions/1272/
https://www.youtube.com/watch?v=iC237TlvZ2k&list=PLbzoR-pLrL6rlmdpJ3-oMgU_zxc1wAhjS&index=38
https://www.youtube.com/watch?v=KAx1Wa-Q6k8
https://lore.kernel.org/lkml/20230317104307.29328-1-vbabka@suse.cz/T/
https://lore.kernel.org/lkml/20230317104307.29328-1-vbabka@suse.cz/T/
https://lore.kernel.org/lkml/20230317104307.29328-1-vbabka@suse.cz/T/
https://lore.kernel.org/lkml/20230317104307.29328-1-vbabka@suse.cz/T/
https://lore.kernel.org/lkml/20230317104307.29328-1-vbabka@suse.cz/T/
https://www.youtube.com/watch?v=OM-bEHQweHY
https://www.youtube.com/watch?v=KmFVPyHyfqQ
https://www.youtube.com/watch?v=KmFVPyHyfqQ
https://www.youtube.com/watch?v=KmFVPyHyfqQ
https://www.youtube.com/watch?v=KmFVPyHyfqQ
https://www.youtube.com/watch?v=KmFVPyHyfqQ
https://www.youtube.com/watch?v=KmFVPyHyfqQ
https://www.youtube.com/watch?v=KmFVPyHyfqQ

Slab allocators – introduction

The slab allocator supports memory allocation for the kernel.

The kernel needs many different temporary objects, such as the dentry, mm_struct, inode, files_struct
structures.

Temporary kernel objects can be both very small and very large, moreover, they are often allocated and
often freed, so you have to perform these operations efficiently.

The buddy allocator, which operates with areas composed of entire frames of memory, is not suitable for
this.

If the allocator is aware of concepts such as object size, page size, and total cache size, it can make more
intelligent decisions.

If part of the (object) cache is made per-processor (separate and unique to each processor on the system),
allocations and frees can be performed without an SMP lock.

If the allocator is NUMA-aware, it can fulfill allocations from the same memory node as the requestor.

19

• SLOB allocator – designed for small systems. The slob name comes from lists of blocks, the allocator only
takes 600 lines of code, a simple first fit algorithm is used to allocate memory, can suffer from
fragmentation, smallest memory footprint; (removed in 6.4-rc1 by Vlastimil Babka).

• SLAB allocator – based on allocator from Solaris, relatively stable implementation and performance

(better for some workloads?), smaller memory usage than SLUB (?); (deprecated in 6.5,removed in 6.8 by

Vlastimil Babka – kernel developers now have greater freedom to improve SLUB without worrying
about breaking the others).

• SLUB allocator – designed for large systems. Overall best performance, the best debugging features
(always compiled-in, boot-time enabled), primary target for new features (PREEMPT_RT).

Design philosophies:

– SLOB – as compact as possible.

– SLAB – as cache friendly as possible.

– SLUB – simple and instruction cost counts. Defragmentation. Execution time friendly. Default since
2.6.23.

The higher levels of the kernel do not have to be aware of which slab allocator is actually used. The API is the
same.

20

Alternative slab allocators

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a0acd820807680d2ccc4ef3448387fcdbf152c73
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a0acd820807680d2ccc4ef3448387fcdbf152c73
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a0acd820807680d2ccc4ef3448387fcdbf152c73
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a0acd820807680d2ccc4ef3448387fcdbf152c73
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=a0acd820807680d2ccc4ef3448387fcdbf152c73

Slab allocator components

21 (source: Adrian Huang, Slab Allocator in Linux Kernel, 2022)

https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel
https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel
https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel
https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel
https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel

Slab allocator in Linux

The main task of the slab allocator in Linux is to reduce the number of references to the buddy
allocator.

The slab allocator maintains many different caches.

For frequently used objects (such as files_struct) it maintains a dedicated cache, and for other objects a
number of generic caches, one for each area of size being the next power of two.

These are dedicated caches:

22

extern struct kmem_cache *vm_area_cachep;
extern struct kmem_cache *mm_cachep;
extern struct kmem_cache *files_cachep;
extern struct kmem_cache *fs_cachep;
extern struct kmem_cache *sighand_cachep;

Slab allocator in Linux

This is the sample content of the /proc/slabinfo. The columns contain:

23

name cache nam

active_objs number of objects that are currently active (i.e. in use)

num_objs total number of allocated objects (i.e. objects that are both in use and not in use)

object_size size of objects in this slab, in bytes

objsperslab number of objects stored in each slab

pagesperslab number of pages allocated for each slab

active_slabs number of active slabs

num_slabs total number of slabs

24

25

The memory is physically allocated and initialized with whole slabs.

Each slab consists of one or more page frames containing both allocated and free objects.

26

SLAB cache – data structures

(source: Adrian Huang, Slab Allocator in
Linux Kernel, 2022, based on kernel 5.11)

– a pointer to the small array through which recently
freed objects for each CPU can be reached (up to a
limit). The array has one entry for each CPU.

 The entry points to the array_cache, which
contains the data needed to manage the objects.

– array of pointers (one entry per each NUMA node)
to the structure kmem_cache_node, which
contains pointers to three lists: completely full
slabs, partially full slabs, free slabs.

New struct slab
since 2021

(replaced struct page)

The SLAB allocator uses three data structures: cache descriptor, slab
descriptor, object descriptor.

In the cache descriptor (kmem_cache), in addition to many fields for
data management (such as the number of free and allocated
objects and flags) there are two important elements:

https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel
https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel
https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel
https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel
https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel
https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel

SLAB allocator – data
structures

27

https://nasm.re/posts/kmem_cache/
Valid for linux kernel 5.18.12.

New struct slab
since 2021

(replaced struct page)

https://nasm.re/posts/kmem_cache/
https://elixir.bootlin.com/linux/v5.18.12/source/kernel
https://elixir.bootlin.com/linux/v5.18.12/source/kernel
https://elixir.bootlin.com/linux/v5.18.12/source/kernel

28 The rise and fall of kernel slab allocators (Vlastimil Babka, SUSE Labs Conference 2023)

SLUB dedicates whole slab pages for each CPU and also grabs their freelist (and can cache more
slabs in „cpu partial” lists.

Allocations from kmem_cache_cpu->freelist are fast, just a cmpxchg_double().

Freeing if the object belongs to kmem_cache_cpu->slab – equally fast:

• But that’s much less likely than object belonging to the same NUMA node,

• Slab belongs to another CPU – also cmxchg_double() but likely more expensive,

• Slab in on a list – might need to be taken off in some cases, which needs the spinlock.

SLAB cache – data structures

https://www.youtube.com/watch?v=OM-bEHQweHY

SLAB allocator – data structures

The per-CPU pointers are important to best exploit the CPU caches. The LIFO principle is applied when
objects are allocated and returned.

Only when the per-CPU caches are empty are free objects from the slabs used to refill them.

Allocation of objects takes place on three levels and the cost of allocation and the negative impact of
these operations on a processor cache and TLB increases from level to level:

1. Per-CPU objects from the CPU cache.

2. Unused objects from an existing slab.

3. Unused objects from the new slab obtained on request from the buddy allocator.

29

SLAB allocator – data structures

The redzone is used to detect writes after the object. All bytes should always have the same value. If there is any
deviation then it is due to a write after the object boundary. (Redzone information is only available if
SLAB_RED_ZONE is set.)

If the object is inactive then the bytes typically contain poison values. Any non-poison value shows a corruption
by a write after free.

Padding is an unused data to fill up the space in order to get the next object properly aligned.

The kernel sets the page flag PG_slab for each physical page, that is allocated for the slab allocator.

30

SLAB allocator – slab coloring

The final task of the SLAB allocator is optimal hardware cache use.

 If there is space left over after objects are packed into a slab, the remaining space is used to color the
slab. Slab coloring is a scheme that attempts to have objects in different slabs use different lines in
the cache.

By placing objects at a different starting offset within the slab, objects will likely use different lines in
the CPU cache, which helps ensure that objects from the same slab cache will be unlikely to flush
each other.

Space that would otherwise be wasted fulfills a new function.

To use the hardware cache better, the slab allocator will offset objects in different slabs by different
amounts depending on the amount of space left over in the slab.

During cache creation, it is calculated how many objects can fit on a slab and how many bytes would be
wasted. Based on wastage, two figures are calculated for the cache descriptor:

– colour: the number of different offsets that can be used,

– colour_off: the multiple to offset each object in the slab.

31

Disclaimer – probably not
present in current verion

of the kernel

32 SLAB coloring (source: W. Mauerer, Professional Linux Kernel Architecture)

Slabs having different colors store the first object of the slab in different memory locations, while
satisfying the alignment constraint.

Coloring leads to moving some of the free area of the slab from the end to the beginning.

The various colors are distributed equally among slabs of a given object type.

Each slab is created with a different color from the previous one, up to the maximum available colors.

Disclaimer – probably not
present in current verion

of the kernel

SLAB allocator – slab coloring

Slab allocator API

The function used to initialize general caches:

33

void __init kmem_cache_init(void)

The function used to create dedicated caches:

/**
 * kmem_cache_create - Create a cache.
 * @name: A string which is used in /proc/slabinfo to identify this cache.
 * @size: The size of objects to be created in this cache.
 * @align: The required alignment for the objects.
 * @flags: SLAB flags
 * @ctor: A constructor for the objects.
 */

struct kmem_cache *
kmem_cache_create (const char *name, size_t size,
 size_t align, slab_flags_t flags, void (*ctor)(void*))

Slab allocator API

The allocation of the object from dedicated cache memory is performed by kmem_cache_alloc() function.
The function first attempts to allocate the object in a partially filled slab, then in a free slab. If it fails, it
tries to allocate new frames from the buddy allocator.

The kmem_cache_free() function is used to free memory allocated for the kernel. Releasing empty slabs
occurs while deleting the cache. The function of the buddy allocator will be finally called here.

34

void *kmem_cache_alloc(kmem_cache_t *cache, gfp_t flags);

void kmem_cache_free(struct kmem_cache *cachep, void *objp);

Examples of calls to the memory allocation function in the kernel code.

tmp = kmem_cache_alloc(vm_area_cachep, GFP_KERNEL)

struct fs_struct *fs = kmem_cache_alloc(fs_cachep, GFP_KERNEL);

newf = kmem_cache_alloc(files_cachep, GFP_KERNEL);

pgd_t *pgd_alloc(struct mm_struct *mm)

{

 return kmem_cache_alloc(pgd_cachep, PGALLOC_GFP);

}

Slab allocator API

The kmalloc() function, similar to the malloc() function used in user mode, is used to allocate memory for the
kernel from general purpose caches (the parameter is the number of bytes, not the object type).

The function determines the size being the nearest multiple of 2 (rounded up), and then calls
kmem_cache_alloc() indicating the appropriate cache.

The function kfree() is used to release such objects, which is equivalent to free() from user mode.

35

void *kmalloc(size_t size, gfp_t flags);

void kfree(const void *objp);

Examples of calls to the memory allocation function in the kernel code.

c->wbuf = kmalloc(c->wbuf_pagesize, GFP_KERNEL);

/* don't ask for more than the kmalloc() max size */

if (size > KMALLOC_MAX_SIZE)

 size = KMALLOC_MAX_SIZE;

buf = kmalloc(size, GFP_KERNEL);

if (!buf)

 return -ENOMEM;

The kmalloc() function can not allocate high mem.

There is a limit on the memory size allocated by
kmalloc().

It depends on the architecture and configuration of
the kernel.

It can be assumed that this limit is 128 KB (32 frames
size 4 KB).

Memory management – address types

Based on:

– LDD 3rd ed., Allocating Memory (chapter 8),

– Linux Kernel Documentation.

User virtual addresses – these are the regular addresses seen by user-space programs. Each process has its
own virtual address space.

Physical addresses – the addresses used between the processor and the system's memory.

Kernel logical addresses – these make up the normal address space of the kernel. These addresses map
some portion (perhaps all) of main memory and are often treated as if they were physical addresses.

On most architectures, logical addresses and their associated physical addresses differ only by a constant
offset.

Logical addresses use the hardware's native pointer size and, therefore, may be unable to address all of
physical memory on 32-bit systems.

Logical addresses are usually stored in variables of type unsigned long or void *. Memory returned from
kmalloc() has a kernel logical address.

Kernel virtual addresses – they are similar to logical addresses in that they are a mapping from a kernel-
space address to a physical address.

 36

SUMMARY!

https://static.lwn.net/images/pdf/LDD3/ch08.pdf
https://www.kernel.org/doc/Documentation/vm/highmem.txt

Memory management – address types

37

Address types in Linux (source: Jonathan Corbet, Greg Kroah-Hartman, Alessandro Rubini, Linux Device
Drivers, 3rd Edition)

SUMMARY!

Memory management – address types

Kernel virtual addresses do not necessarily have the linear, one-to-one mapping to physical addresses that
characterize the logical address space.

All logical addresses are kernel virtual addresses, but many kernel virtual addresses are not logical
addresses.

Memory allocated by vmalloc() has a virtual address (but no direct physical mapping).

The kmap() function also returns virtual addresses. Virtual addresses are usually stored in pointer variables.

If you have a logical address, the macro __pa() returns its associated physical address.

Physical addresses can be mapped back to logical addresses with __va(), but only for low-memory pages.

The (virtual) address range used by kmalloc() and __get_free_pages() features a one-to-one mapping to
physical memory, possibly shifted by a constant PAGE_OFFSET value, the functions don't need to modify
the page tables for that address range.

The address range used by vmalloc(), on the other hand, is completely synthetic, and each allocation builds
the (virtual) memory area by suitably setting up the page tables.

This difference can be perceived by comparing the pointers returned by the allocation functions.

On some platforms (e.g. x86), addresses returned by vmalloc() are just beyond the addresses that kmalloc()
uses.

38

SUMMARY!

Memory management – high and low memory

Low memory – memory for which logical addresses exist in kernel space.

High memory – memory for which logical addresses do not exist, because it is beyond the address range set
aside for kernel virtual addresses.

Kernel functions that deal with memory are increasingly using pointers to struct page.

This data structure contains the field void *virtual, which keeps the kernel virtual address of the page, if it is
mapped, NULL, otherwise.

Low-memory pages are always mapped, high-memory pages usually are not.

If you want to look at this field, the proper method is to use the page_address() macro.

It returns the kernel virtual address of this page, if such an address exists.

For high memory, that address exists only if the page has been mapped.

 In most situations, you want to use a version of kmap() rather than page_address().

Function kmap() returns a kernel virtual address for any page in the system.

For low-memory pages, it just returns the logical address of the page; for high-memory pages, kmap()
creates a special mapping in a dedicated part of the kernel address space. A limited number of such
mappings is available, so it is better not to hold on to them for too long.

Many kernel data structures must be placed in low memory, high memory tends to be reserved for user-
space process pages. 39

SUMMARY!

Memory management API

Function kmap() can sleep if no mappings are available. For non-blocking mapping use kmap_atomic().

The kernel obtains dynamic memory by calling functions:

– __get_free_pages() or alloc_pages() to get contiguous page frame areas from the buddy
allocator,

– kmem_cache_alloc() or kmalloc() to get objects from the slab allocator (specialized or general
purpose),

– vmalloc() to get a noncontiguous area of memory.

If memory is available, the kernel requests are executed immediately and the function returns the address
of the page descriptor or the linear address identifying the allocated dynamic memory area.

40

SUMMARY!

41
High overview of Virtual Memory subsystem

(source: N. Murray, N. Horman, Understanding Virtual Memory)

