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Kernel threads 
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Kernel threads are standard processes that exist only in the kernel space and are used by the kernel 
to perform certain operations in the background (e.g. writing cache blocks to disk, sweeping 
unused pages to disk).  

They are implemented as ordinary processes that share certain resources with other processes (such 
as the address space).  

The difference between kernel threads and normal processes lies in the fact that for kernel threads 
the pointer to memory descriptor (mm) is NULL.  

They work only in the kernel space and never switch context to the user space.  

They are subject to scheduling and can be preempted –  just like ordinary processes.  

They are created, for example, at the initial startup of the system, when loading some modules, 
mounting some devices, mounting some filesystems.  

Usually, they perform their functions in an infinite loop. They exist until the system is closed.  
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The ancestor of all processes is process 0, also called idle or swapper. This 
is the kernel thread created manually during the initialization of Linux 
data structures. 

At the end of the system boot the next kernel thread is created, called init 
or process 1. The init process has PID=1 and shares all the needed data 
structures with process 0.  

After being selected by the scheduler, it finishes kernel initialization and 
tries to load the executable file in the order: /sbin/init, /etc/init, 
/bin/init and /bin/sh. The try_to_run_init_process() function called by 
it is the wrapper for the system function sys_execve().  

A regular process (no longer a kernel thread) with its own data structures 
is created, and will run in user mode.  

The kernel_thread() 
function creates a new 
kernel thread. 

pid_t  kernel_thread(int (*fn)(void *), void *arg, const char *name, unsigned long flags) 
{ 
        struct kernel_clone_args args = { 
 .flags = ((lower_32_bits(flags) | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL), 
 … 
        } 
        return kernel_clone(args); 
}  

Kernel threads 

Simplified version 

static int kernel_init(void * unused) 
{ 
   ... 
    /* We try each of these until one succeeds.   */ 
 if (!try_to_run_init_process("/sbin/init") || 
     !try_to_run_init_process("/etc/init") || 
     !try_to_run_init_process("/bin/init") || 
     !try_to_run_init_process("/bin/sh")) 
  return 0; 
 panic(“…"); 
} Simplified version 



Kernel threads 
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The init process works until the kernel 
stops, monitoring the activity of all 
processes.  

Other kernel threads: kswapd, kworker, 
ksoftirqd.  

They can be easily recognized on the list 
generated by ps, because their names 
are printed in square brackets. 

The shown command was run on 
‘students’. 

jmd@students:~$ ps fax | more 
    PID TTY      STAT   TIME COMMAND 
      2 ?        S      0:02 [kthreadd] 
      3 ?        I<     0:00  \_ [rcu_gp] 
      4 ?        I<     0:00  \_ [rcu_par_gp] 
      6 ?        I<     0:00  \_ [kworker/0:0H-events_highpri] 
      9 ?        I<     0:00  \_ [mm_percpu_wq] 
     10 ?        S      0:00  \_ [rcu_tasks_rude_] 
     11 ?        S      0:00  \_ [rcu_tasks_trace] 
     12 ?        S      0:10  \_ [ksoftirqd/0] 
     13 ?        I     12:48  \_ [rcu_sched] 
     14 ?        S      0:01  \_ [migration/0] 
     15 ?        S      0:00  \_ [cpuhp/0] 
     16 ?        S      0:00  \_ [cpuhp/1] 
     17 ?        S      0:01  \_ [migration/1] 
     18 ?        S      0:05  \_ [ksoftirqd/1] 
     20 ?        I<     0:00  \_ [kworker/1:0H-kblockd] 
     21 ?        S      0:00  \_ [cpuhp/2] 
     22 ?        S      0:01  \_ [migration/2] 
     23 ?        S      0:04  \_ [ksoftirqd/2] 
     25 ?        I<     0:00  \_ [kworker/2:0H-events_highpri] 
     26 ?        S      0:00  \_ [cpuhp/3] 
     27 ?        S      0:01  \_ [migration/3] 
     28 ?        S      0:04  \_ [ksoftirqd/3] 
     30 ?        I<     0:00  \_ [kworker/3:0H-events_highpri] 
     31 ?        S      0:00  \_ [cpuhp/4] 
... 

jmd@students:~$ ps fax | grep kswapd 
    610 ?        S      6:29  \_ [kswapd0] 
 522775 pts/1    S+     0:00  |           \_ grep kswapd 
jmd@students:~$ 



Kernel level synchronization 

Because the kernel is reentrant, at any time there may be a couple of active processes in the kernel.  

They all share the same copy of the kernel data structures.  

Synchronization is therefore necessary when accessing these structures.  

Quote of the week (posted June 12, 2019 by Jonathan Corbet) 

Implementing a correct synchronization primitive is like committing the perfect crime. There 
are at least 50 things that can go wrong, and if you are a highly experienced genius, you -
might- be able to anticipate and handle 25 of them. 

--- Paul McKenney 

The key task when writing kernel code is to recognize WHICH parts of the code are vulnerable to 
race condition and require protection.  

One should also pay attention to the granularity of the locks in the context of system scalability.  

Reading: Chapter 5: Concurrency and Race Conditions, Linux Device Drivers, Jonathan Corbet, Greg 
Kroah-Hartman, Alessandro Rubini, 2005. 
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Kernel level synchronization 

How can concurrent execution of the same kernel code happen:  

– As a result of interrupt – an interrupt may appear asynchronously, at any time (interrupt 
priorities, masking interrupts).  

– As a result of kernel preemption (from version 2.6 the Linux kernel is preemptable). The 
scheduler can at any time preempt the process executed in kernel mode and start executing 
another one. Kernel preemption can occur:  

• When returning to kernel-space from an interrupt handler.  

• When kernel code becomes preemptible again.  

• If a task in the kernel explicitly calls schedule().  

• If a task in the kernel blocks (which results in invocation of schedule()).  

– In multiprocessor systems (SMP) as a result of executing the same kernel code on different 
processors.  
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Kernel level synchronization 

1. Atomic operations. These are operations that can be performed using one assembler instruction in 
an indivisible manner, i.e. without the possibility of interruption during execution. On x86 
processors:  

– atomic are the assembler instructions that read the memory contents, 

– assembler instructions such as inc or dec are atomic if no other processor takes over the 
memory bus after read, and before saving the argument value,  

– assembler instructions preceded by the byte lock are atomic even in a multiprocessor system,  

– assembler instructions preceded by the byte rep forcing the CPU to repeat the same instruction 
several times are not atomic: the CPU checks before each repetition of the iteration if there is an 
interrupt waiting.  

See: How are atomic operations implemented at a hardware level? 

(Short answer: extra transistors in the chip to implement special cache and memory coherency and 
bus synchronization protocols. To access cache line the other core has to obtain access rights 
first, and the protocol to obtain those rights involves the current owner. ) 
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https://stackoverflow.com/questions/14758088/how-are-atomic-operations-implemented-at-a-hardware-level
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Kernel level synchronization 

Atomic operations in C on arguments of type int use a special data types:.  

   

 

Types  atomic_t  and  atomic64_t  are effectively 32-bit and 64-bit numbers, respectively, that can only 
be operated on using the various atomic_*() interfaces. Examples:  

 

 

 

 

 

Examples of the atomic operations on a bitmap:  

 

 

 

 

In some systems, atomic operations may be much slower than their non-atomic counterparts.  
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atomic_read(v)  
atomic_set(v, i)  
atomic_add(i, v)  
atomic_inc(v)  
atomic_dec_and_test(v) 

typedef struct { int  counter; } atomic_t; 
typedef struct  {s64 counter; } atomic64_t; 

set_bit(nr, addr)  
clear_bit(nr, addr)  
test_and_set_bit(nr, addr) 
test_and_clear_bit(nr, addr) 



Kernel level synchronization 

2. Disabling interrupts. The kernel can not perform blocking operations with interrupts disabled, 
because it may cause the system to crash.  

 Macros enabling and disabling interrupts in a uniprocessor system: 

 

 

 

 

 Do not disable interrupts for a long time, because during this time any communication between 
the processor and controllers of input-output devices is blocked.  

3. Locking. Linux offers a number of lock types. They could be roughly divided, until recently, into 
two categories: spinning and sleeping locks:  

– spinlocks (used in multiprocessor systems),  

– mutexes and system semaphores (used in uniprocessor and multiprocessor systems). 
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spin_lock_irq(lock)  
spin_unlock_irq(lock)  
spin_lock_irqsave(lock, flags) 
spin_unlock_irqrestore(lock, flags) 



Kernel level synchronization 

4. RCU synchronization mechanism (Read-Copy Update). Readings can be made in parallel with 
writings. 

5. Barriers that prevent code optimization (its reorganization) by the compiler and processor. Described 
in detail in Documentation/memory-barriers.txt.  

6. Big kernel lock, i.e. BKL – a mechanism that allows to block the entire kernel. It guarantees that at 
most one processor is running in kernel mode at a time. 

 Functions to support this mechanism are lock_kernel and unlock_kernel. 
 It affects performance very badly.  
 It was finally eliminated in 2011 (version 2.6.39 kernel) by Arnd Bergmann.  

When selecting the synchronization mechanism for a specific problem, one must remember about the 
correctness of the solution and the efficiency of the solution. 
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Spinlocks 

The name comes from the fact that waiting for a lock to be released is active. 

This may seem ineffective, but in reality it can be much cheaper than putting the thread to sleep, 
switching the context, waking it up later when the condition is met.  

Spinlocks depend on architecture and are implemented in assembler. They are used in 
multiprocessor systems.  

They should only be used if the expected time to acquire the resource is short.  

There are two types of spinlocks: 

– Regular – of type spinlock_t:  

 They ensure that a piece of code surrounded by them will be executed at the same time on 
only one processor.  

– For readers-writers – of type rw_lock_t:  

 They allow to create a critical section of type read-write.  
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Spinlocks 
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#define DEFINE_SPINLOCK(x) spinlock_t x = __SPIN_LOCK_UNLOCKED(x) 

static DEFINE_SPINLOCK(lock);  

spin_lock(&lock);  

      /* critical section */  

spin_unlock(&lock); 

The way of using spinlocks: 

Macros that support spinlocks in a multiprocessor system (some of them):  

spin_lock_init(lock) Initializes the object of type spinlock_t 

spin_lock(lock) Acquires the spinlock 

spin_unlock(lock) Releases the spinlock 

spin_lock_irq(lock) Disables interrupts on the local CPU and acquires the spinlock 

spin_unlock_irq(lock) Enables interrupts on the local CPU and releases the spinlock 

spin_lock_irqsave(lock, flags) 
Stores the previous interrupt state, disables interrupts on the local CPU and 
acquires the spinlock 

spin_unlock_irqrestore(lock, flags) 
Restores the previous interrupt state, enables interrupts on the local CPU and 
releases the spinlock 

spin_trylock(lock) Tries to obtain a lock, but will not block if it cannot be immediately acquired 



Spinlocks 
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Macros that support read-write spinlocks in a multiprocessor system (some of them) :  

The read-write spinlocks favor readers over writers so can starve pending writers. 

In uniprocessor systems: 

• When the kernel is compiled with the kernel preemption option disabled, spinlocks are defined as 
empty operations.  

• When kernel preemption is enabled, spin_lock is equivalent to preempt_disable, and spin_unlock is 
equivalent to preempt_enable (kernel preemption is disabled inside the critical section protected by a 
spinlock). (See also Kernel preemption) 

Recommended way of using spinlocks: Documentation/locking/spinlocks.rst.  

read_lock_irq(lock) Disables interrupts on the local CPU and acquires the spinlock for reading 

read_unlock_irq(lock) Enables interrupts on the local CPU and releases the spinlock of type read 

write_lock_irq(lock) Disables interrupts on the local CPU and acquires the spinlock for writing 

write_unlock_irq(lock) Enables interrupts on the local CPU and releases the spinlock of type write 

http://students.mimuw.edu.pl/ZSO/Wyklady/07_synchronization/7_uzupelnienie.html
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/spinlocks.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/spinlocks.rst


Spinlocks – implementation  

– In the 2.6.24 kernel, a spinlock was represented by an integer value. A value of one indicated that the lock is 
available, the more negative the value of the lock gets, the more processors are trying to acquire it. 

– Ticket spinlocks (2008) added fairness to the mechanism by using 16-bit quantity, split into two bytes. You 
can think of the "next" field as being the number on the next ticket in the dispenser, while "owner" is the 
number appearing in the "now serving" display over the counter.  

 

– MCS locks (Mellor-Crummey & Scott, 2014) expand a spinlock into a per-CPU structure, eliminating much of 
the cache-line bouncing. 
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struct mcs_spinlock {  
     struct mcs_spinlock *next;  
     int locked; /* 1 if lock acquired */  
}; 
 

https://lwn.net/Articles/267968/
https://lwn.net/Articles/267968/
https://lwn.net/Articles/267968/
https://lwn.net/Articles/267968/
https://lwn.net/Articles/590243/
https://lwn.net/Articles/590243/
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Ticket spinlock vs MCS lock 



Compact NUMA-aware locks 

• NUMA-aware qspinlocks, Jonathan Corbet, April 2021. 

• Compact NUMA-aware Locks, Dave Dice, Alex Kogan, 2019. 
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A running example for CNA lock handovers on a 2-socket machine. 
Empty cells represent NULL pointers 

https://lwn.net/Articles/852138/
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https://arxiv.org/pdf/1810.05600.pdf
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Mutexes and system semaphores 
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Additional reading:  

– Documentation/locking/mutex-design.rst.  

– Documentation/locking/rt-mutex-design.rst.  

– Documentation/percpu-rw-semaphore.txt.  

– Generic Mutex Subsystem, Ingo Molnar , December 2005.  

– An Overview of Kernel Lock Improvements, Davidlohr Bueso, Scott Norton, August 2014. 

– Reimplementing mutexes with a coupled lock, Jonathan Corbet, September 2016.  

Oscar Wilde once famously observed that fashion "is usually a form of 
ugliness so intolerable that we have to alter it every six months." 
Perhaps the same holds true of locking primitives in the kernel. 
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Mutexes and system semaphores 
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Mutexes (i.e. binary semaphores) are a synchronization mechanism often used in both uniprocessor and 
multiprocessor systems.  

Mutexes use atomic operations, only one thread can be in the possession of a mutex and only it can release it.  

Mutexes are objects of type struct mutex:  

struct mutex {     
       atomic_long_t    owner;     
       raw_spinlock_t   wait_lock; 
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER     
        struct  optimistic_spin_queue    osq; /* Spinner MCS lock */ 
#endif     
        struct  list_head   wait_list;         
        ... 
}; 

The value of the field owner is 64 bits wide, large enough to hold a pointer value.  

If the mutex is available, there is no owner, so the owner field contains zero.  

When the mutex is taken, the acquiring thread's  task_struct pointer  is placed there, simultaneously indicating 
that the mutex is  unavailable  and which thread owns it. 

Drawback: 
Among the largest locks in the 
kernel, which means more CPU 
cache and memory footprint. 

Simplified version 



Mutexes and system semaphores 
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In its most basic form it also includes a wait-queue and a spinlock that serializes access to it. When 
acquiring a mutex, there are  three possible paths  that can be taken, depending on the state of the lock:  

– fastpath: tries to atomically acquire the lock by cmpxchg()ing the owner with the current task. 
This only works in the uncontended case (cmpxchg() checks against 0UL, so all 3 state bits have to 
be 0). If the lock is contended it goes to the next possible path.  

– midpath: aka optimistic spinning, tries to spin for acquisition while the lock owner is running and 
there are no other tasks ready to run that have higher priority (need_resched). The rationale is 
that if the lock owner is running, it is likely to release the lock soon. The mutex spinners are 
queued up using MCS lock so that only one spinner can compete for the mutex. 

– slowpath: last resort, if the lock is still unable to be acquired, the task is added to the wait-queue 
and sleeps until woken up by the unlock path. Under normal circumstances it blocks as 
TASK_UNINTERRUPTIBLE.  

CMPXCHG — Compare and Exchange 

https://www.kernel.org/doc/html/latest/locking/mutex-design.html


Mutexes and system semaphores 
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While formally kernel mutexes are 
sleepable locks, it is midpath that 
makes them more practically a hybrid 
type.  

By simply not interrupting a task and 
busy-waiting for a few cycles instead 
of immediately sleeping, the 
performance of this lock has been 
seen to significantly improve a 
number of workloads.  

This technique is also used for rw-
semaphores.  

/* Statically define the mutex */    
     DEFINE_MUTEX(name);    

/* Dynamically initialize the mutex */    
     mutex_init(mutex); 

/* Acquire the mutex, uninterruptible */    
     void mutex_lock(struct mutex *lock);    
     int  mutex_trylock(struct mutex *lock); 

/* Acquire the mutex, interruptible */    
     int mutex_lock_interruptible(struct mutex *lock); 

/* Acquire the mutex, interruptible, if dec to 0 */     
     int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock); 

/* Unlock the mutex */    
     void mutex_unlock(struct mutex *lock); 

/* Test if the mutex is taken */    
     int mutex_is_locked(struct mutex *lock); 

Mutex API 



Mutexes and system semaphores 
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In addition to mutexes there are also 
general semaphores, which can take any 
value n. 
 
Unlike mutexes, binary semaphores do 
not have an owner, so up() can be called 
in a different thread from the one which 
called down(). It is also safe to call 
down_trylock() and up() from interrupt 
context.  
 
There are also read-write semaphores. 
They are implemented as struct  
rw_semaphore. These are operations: 
down_read(), up_read(), down_write(), 
up_write() (only versions uninterruptible). 

/*  
  * The ->count variable represents how many more tasks can acquire this  
  * semaphore. If it's zero, there may be tasks waiting on the wait_list.  
*/  

struct semaphore {  
      raw_spinlock_t   lock;  
      unsigned int        count;  
      struct list_head  wait_list;  
};  

static inline void sema_init(struct semaphore *sem, int val)  

#define init_MUTEX(sem)                  sema_init(sem, 1)  
#define init_MUTEX_LOCKED(sem)  sema_init(sem, 0) 



Mutexes and system semaphores 
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The basic semaphore operations are up and down.  void up(struct semaphore *sem)  
{  
      unsigned long flags;  
      raw_spin_lock_irqsave(&sem->lock, flags);  
      if (list_empty(&sem->wait_list))  
              sem->count++;  
      else  
              __up(sem);  
      raw_spin_unlock_irqrestore(&sem->lock, flags);  
} void down(struct semaphore *sem)  

{  
      unsigned long  flags;  
      raw_spin_lock_irqsave(&sem->lock, flags);  
      if (sem->count > 0)  
             sem->count--;  
      else  
             __down(sem);  
      raw_spin_unlock_irqrestore(&sem->lock, flags);  
}  

Simplified version 

Simplified version 

Unlike mutexes, up() may be called from any 
context and even by tasks which have never 
called down().  

Acquires the semaphore.  If no more tasks are 
allowed to acquire the semaphore, calling this 
function will put the task to sleep until the 
semaphore is released. 
Use of this function is deprecated, use 
down_interruptible() or down_killable() instead. 
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Int down_interruptible(struct semaphore *sem) 
{         
       unsigned long flags;         
       int result = 0;         
       raw_spin_lock_irqsave(&sem->lock, flags);         
       if (sem->count > 0)                 
               sem->count--;         
       else                 
               result = __down_interruptible(sem); 
        raw_spin_unlock_irqrestore(&sem->lock, flags); 
        return result; 
} 

int down_trylock(struct semaphore *sem) 
{         
         unsigned long flags;         
         int count;         
         raw_spin_lock_irqsave(&sem->lock, flags);         
         count = sem->count - 1;         
         if (count >= 0)                 
                  sem->count = count;         
         raw_spin_unlock_irqrestore(&sem->lock, flags);         
         return (count < 0); 
} 

This synchronization mechanism does 
not involve busy waiting, because the 
process is suspended and the processor 
is passed to another process.  

Operations from the __down() family 
eventually call schedule(), which 
selects the new process to be 
executed.  

Simplified version 

Simplified version 

Mutexes and system semaphores 



Real time mutexes 
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There are also real time mutexes, which implement priority inheritence, and solve the problem 
of priority inversion, which affects real-time systems. 

Priority inversion is when a lower priority process executes while a higher priority process wants to 
run. The example of unbounded priority inversion is where you have three processes, A, B, and C, 
where A is the highest priority process, C is the lowest, and B is in between. A tries to grab a lock 
that C owns and must wait and lets C run to release the lock. In the meantime, B executes, and 
since B is of a higher priority than C, it preempts C, but by doing so, it is in fact preempting A which 
is a higher priority process. 

The problem is solved by priority inheritance – process inherits the priority of another process if the 
other process blocks on a lock owned by the current process. Let's use the previous example. This 
time, when A blocks on the lock owned by C, C would inherit the priority of A. So now if B becomes 
runnable, it would not preempt C, since C now has the high priority of A. As soon as C releases the 
lock, it loses its inherited priority, and A then can continue with the resource that C had. 

 



Priority inversion and priority inheritance 
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Solutions for Priority Inversion in Real-time Scheduling 

https://durant35.github.io/2017/10/24/TACouses_ES2017_PriorityInversionbyResourceSharing/
https://durant35.github.io/2017/10/24/TACouses_ES2017_PriorityInversionbyResourceSharing/
https://durant35.github.io/2017/10/24/TACouses_ES2017_PriorityInversionbyResourceSharing/


Real time mutexes and local locks 
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Real time mutexes are implemented as a structure rt_mutex.  

 

 

 

 

 

 

There are functions available:  

 rt_mutex_init(), rt_mutex_lock(), rt_mutex_unlock(), rt_mutex_trylock().  

 

Local locks in the kernel (from v5.8), Marta Rybczyńska, August 2020. 

On non-realtime systems, the acquisition of a local lock simply maps to disabling preemption (and possibly 
interrupts).  

On real time systems, instead, local locks are actually sleeping spinlocks; they do not disable either preemption or 
interrupts. They are sufficient to serialize access to the resource being protected without increasing latencies in 
the system as a whole.  

Interface: local_lock(), local_unlock(), local_lock_irq(), local_unlock_irq() etc. 

struct rt_mutex {  
       raw_spinlock_t               wait_lock;  
       struct rb_root_cached   waiters;   /*rbtree root to enqueue waiters in priority order; */  
       struct task_struct           *owner;  
       ...  
}; 

Simplified version 

SKIP 

https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/


Read-Copy Update (RCU) 

The mechanism was added to the Linux kernel in October 2002.  

It is described in detail in Documentation/RCU.  

Interesting works on the RCU can be found on the website http://www.rdrop.com/users/paulmck/RCU/ 
maintained by Paul McKenney, who devoted his Ph.D. to this topic (now employed in Meta).  

What is RCU?, P. McKenney, November 2018 (good presentation!) 

RCU Usage In the Linux Kernel: One Decade Later, P. McKenney, S. Boyd-Wickizer, J. Walpole, 2019. 

A series of articles on lwn.net:  

– The RCU API, 2019 edition, Paul McKenney, January 2019. 

– Requirements for RCU part 1: the fundamentals, Paul McKenney, July 2015.  

– RCU requirements part 2 – parallelism and software engineering, Paul McKenney, August 2015.  

– RCU requirements part 3, Paul McKenney, August 2015.  

– What is RCU, Fundamentally?, Paul McKenney, December 2007. 

Wikipedia (compact description with pictures). 
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https://elixir.bootlin.com/linux/latest/source/Documentation/RCU
http://www.rdrop.com/users/paulmck/RCU/
http://www2.rdrop.com/users/paulmck/RCU/RCU.2018.11.21c.PSU-full.pdf
http://www2.rdrop.com/users/paulmck/RCU/RCU.2018.11.21c.PSU-full.pdf
http://www2.rdrop.com/users/paulmck/RCU/RCU.2018.11.21c.PSU-full.pdf
http://www2.rdrop.com/users/paulmck/RCU/RCU.2018.11.21c.PSU-full.pdf
http://www2.rdrop.com/users/paulmck/RCU/RCU.2018.11.21c.PSU-full.pdf
https://pdos.csail.mit.edu/6.828/2019/readings/rcu-decade-later.pdf
https://pdos.csail.mit.edu/6.828/2019/readings/rcu-decade-later.pdf
https://lwn.net/Kernel/Index/
https://lwn.net/Articles/777036/
https://lwn.net/Articles/652156/
https://lwn.net/Articles/652677/
https://lwn.net/Articles/652677/
https://lwn.net/Articles/652677/
https://lwn.net/Articles/652677/
https://lwn.net/Articles/653326/
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
https://en.wikipedia.org/wiki/Read-copy-update


Read-Copy Update (RCU) 

Information about all users of the pointer to the shared data structure is stored. When the structure 
is to change, a copy is created and the change is made on it.  

When all readers finish reading the old copy, the pointer changes to start pointing to the new one. 
Readings can be made in parallel with writings. It saves time at the expense of slightly higher 
memory consumption.  

Suppose that the pointer ptr is to be protected by the RCU. You must first call rcu_dereference() for it 
and continue to work on the obtained result.  

In addition, the code being executed must be protected by rcu_read_lock() and rcu_read_unlock().  
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rcu_read_lock();  
p = rcu_dereference(ptr);  // subscribe  
if (p != NULL) {  
      some_function(p);  
}  
rcu_read_unlock(); 

The value returned by rcu_dereference is valid only 
within the enclosing RCU read-side critical section.  

As with rcu_assign_pointer, an important function of 
rcu_dereference is to document which pointers are 
protected by RCU. 



Modification of the pointer must be done using rcu_assign_pointer(). Subsequent read operations will see a new 
structure instead of the old one.   

 

 

 

 

 

 

The rcu_assign_pointer and rcu_dereference primitives contain the architecture-specific memory barrier 
instructions and compiler directives necessary to ensure that the data is initialized before the new pointer 
becomes visible, and that any dereferencing of the new pointer occurs after the data is initialized. 

The old structure is available to readers until the last one finishes reading. Only then can the kernel removes it.  

The function synchronize_rcu() blocks until all readers finish reading. Instead of blocking, synchronize_rcu may 
register a callback  (called call_rcu()) to be invoked after all ongoing RCU read-side critical sections have 
completed.  

It is worth using the RCU when there is much more reading than writing.  
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struct something *new_ptr = kmalloc(...);  

new_ptr->field1 = xyz;  
new_ptr->field2 = 12;  
new_ptr->field3 = 13;  

rcu_assign_pointer(ptr, new_ptr);  // publish 

RCU protects readers from writers, but 
does not protect writers from writers. 
This must be provided by using other 
mechanisms, e.g. spinlocks.  

Read-Copy Update (RCU) 
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Read-Copy Update (RCU) 

Grace period – time period 
when every thread was in 
at least one quiescent 
state. 
 
Quiescent state – any 
point in the thread 
execution where the 
thread does not hold a 
reference to shared 
memory. 
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Read-Copy Update (RCU) 
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RCU is a very specialized 
primitive, and it is 
exceedingly important to 
use the right tool for the 
job.  
 
For a great many jobs, 
normal locking remains 
the best tool.  
 
Almost all RCU uses in the 
Linux kernel use locking to 
protect updates, which 
does place a hard upper 
limit on RCU's fraction of 
synchronization 
primitives. 

Read-Copy Update 
(RCU) 

http://www.rdrop.com/users/paulmck/RCU/linuxusage.html


Process states 
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/* 
 * We have two separate sets of flags:  
 * task->state is about runnability,  
 * while task->exit_state are about the task exiting.  
 * Confusing, but this way modifying one set can't modify 
 * the other one by mistake. 
 */ 
    /* in tsk->state */ 
    #define TASK_RUNNING                   0 
    #define TASK_INTERRUPTIBLE         1 
    #define TASK_UNINTERRUPTIBLE   2 
    #define __TASK_STOPPED                4 
    #define __TASK_TRACED                  8 

    /* in tsk->exit_state */ 
    #define EXIT_ZOMBIE                     16 
    #define EXIT_DEAD                         32 

    /* in tsk->state again */ 
    #define TASK_DEAD                        64 
    #define TASK_WAKEKILL                12 

The task_struct process descriptor has a volatile long state field that specifies the current state of the process. 
Possible states are defined as constants: 

TASK_RUNNING – process is in execution or ready for 
execution.  

TASK_INTERRUPTIBLE – process is or may be sleeping in an 
interruptible state, i.e. it will resume execution after the 
signal arrives or after the wake time has elapsed. The last 
means that the process can be put to sleep for a certain 
time (the possibility often used by the device handlers).  

TASK_UNINTERRUPTIBLE – process is or will be put to sleep in 
an uninterrupted state (e.g. waiting for an inode). This 
process can only be resumed by calling the wake_up() 
function – its status will be changed to TASK_RUNNING.  

TASK_STOPPED – process has been stopped, it is neither 
finished nor ready to be executed. The process will go into 
this state, e.g. due to receiving a SIGSTOP signal. It can 
only be resumed by receiving the SIGCONT signal.  

EXIT_ZOMBIE – process invoked the exit() function, but its 
parent process has not yet performed wait() for it (to 
retrieve the execution code). The process will remain in 
the system until wait() is done by the parent process.  

Many more 



Wait queues 

All processes in the state TASK_RUNNING are in the 
queue of processes ready for execution.  

Processes in the state TASK_STOPPED, EXIT_ZOMBIE 
and EXIT_DEAD do not have to be in any queue, 
because they are only referenced via PID or 
through the process family connections.  

Pending processes in the state TASK_INTERRUPTIBLE 
and TASK_UNINTERRUPTIBLE stand in different 
queues, depending on the event.  
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These are so-called wait queues. The process that is to begin to wait for the event is set in the associated 
queue and gives control. He will be awakened by the kernel when the event occurs.  

Reading:  

– Simple wait queues, Jonathan Corbet, December 2013. 

– The return of simple wait queues, Jonathan Corbet, October 2015.  

 

Process states in Linux (source: 
http://www.cosc.brocku.ca/Offerings/

4P13/slides.html) 

https://lwn.net/Articles/577370/
https://lwn.net/Articles/661424/
http://www.cosc.brocku.ca/Offerings/4P13/slides.html
http://www.cosc.brocku.ca/Offerings/4P13/slides.html
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The element of the wait queue is of the type wait_queue_entry. 

#define WQ_FLAG_EXCLUSIVE       0x01 
 
struct wait_queue_entry { 
       unsigned int               flags; 
       void                             *private; 
       wait_queue_func_t  func; 
       struct list_head         entry; 
} 

struct wait_queue_head { 
       spinlock_t            lock; 
       struct list_head  head; 
} 

The private field indicates the descriptor of the 
waiting process. Field entry links all processes 
waiting for the same event. The func function 
is called to wake up the process.  

The flag WQ_FLAG_EXCLUSIVE causes that the 
process will be awakened by itself, not all 
processes from the queue at once.  

The beginning of the list, wait_queue_head, is a 
distinguished element with a different structure. It 
is not related to any process, but has a spinlock 
used to ensure the atomicity of operations on the 
queue. 

Wait queues 
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Wait queue, R. Lee, 2011. try_to_wake_up() 

Wait queues 

https://www.slideshare.net/roylee17/wait-queue
https://www.slideshare.net/roylee17/wait-queue
https://www.slideshare.net/roylee17/wait-queue


Operations on wait queues 
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Queues of pending processes are handled both by kernel functions and by interrupts, so operations 
on them (inserting and deleting) must be executed with interrupts disabled. 

Functions to perform the operations of adding and removing elements from the queue: 

1. Inserts an element at the beginning of the queue without setting the flag WQ_FLAG_EXCLUSIVE.  

void add_wait_queue(struct wait_queue_head *wq_head,  
   struct wait_queue_entry *wq_entry) 
{ 
        unsigned long flags; 
 
        wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE; 
        spin_lock_irqsave(&wq_head->lock, flags); 
        list_add(&wq_entry->entry, &wq_head->head); 
        spin_unlock_irqrestore(&wq_head->lock, flags); 
} Simplified version 



39 

2. Inserts an element at 
the end of the queue 
setting the flag 
WQ_FLAG_EXCLUSIVE.  

void add_wait_queue_exclusive(struct wait_queue_head *wq_head,  
   struct wait_queue_entry *wq_entry) 
{ 
        unsigned long flags; 
 
        wq_entry->flags |= WQ_FLAG_EXCLUSIVE; 
        spin_lock_irqsave(&wq_head->lock, flags); 
        list_add_tail(&wq_entry->entry, &wq_head->head); 
        spin_unlock_irqrestore(&wq_head->lock, flags); 
} 

3. Deletes an element 
from the queue.  

void remove_wait_queue(struct wait_queue_head *wq_head,  
   struct wait_queue_entry *wq_entry) 
{ 
        unsigned long flags; 
 
        spin_lock_irqsave(&wq_head->lock, flags); 
        list_del(&wq_entry->entry); 
        spin_unlock_irqrestore(&wq_head->lock, flags); 
} Simplified version 

Simplified version 

Operations on wait queues 
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Using  add_wait_queue()  and  add_wait_queue_exclusive()  guarantees a specific layout of 
processes in the queue:  

Processes of type exclusive, with a flag value of 1, are awakened by the kernel selectively, and 
nonexclusive, with a flag of 0, are awakened always.  

The process waiting for the resource to be allocated exclusively is usually an exclusive process. If the 
event can affect many processes and everyone should be awakened, these are nonexclusive 
processes. 

Operations on wait queues 
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Functions used to put the process to sleep work on the current process. 
In other words, the process puts itself to sleep.  

Mainly the wait_event() macro is used for putting the process to sleep.  

The function prepare_to_wait_event() does what add_wait_queue(), 
only that it additionally sets the state of the process (to 
TASK_UNINTERRUPTIBLE).  

The function finish_wait() does what remove_wait_queue(), only that it 
also sets the process state to TASK_RUNNING. 

The macro wait_event() first makes sure that the condition passed as 
parameter is not actually met yet. Then it puts the process to sleep.  

Each time the process is woken up, it checks again whether the 
condition is met and if so, it leaves the loop.  

Otherwise, the control is transferred back to the scheduler and the 
process is put to sleep. 

The process goes to the state TASK_UNINTERRUPTIBLE and is inserted in 
the waiting queue.  

Procedure schedule() chooses another process for execution.  

Finishing the execution of the code, i.e. removing the process from the 
queue, takes place after the process is resumed by calling 
schedule() somewhere else in the code. 

define wait_event(wq_head, condition)    \ 
do {                                                                   \ 
    ...                                                                   \ 
    if (condition)                                                 \ 
        break;                                                        \ 
        do {                                                            \ 
           struct wait_queue_entry __wq_entry;   \ 
           ...                                                             \ 
           for (;;) {                                                   \ 
                prepare_to_wait_event(&wq_head,  \ 
               &__wq_entry, TASK_UNINTERRUPTIBLE); \ 
                if (condition)                                     \ 
                        break;                                        \ 
                ...                                                        \ 

                schedule();                                        \ 
           }                                                               \ 
           finish_wait(&wq_head, &__wq_entry);   \ 
    } while (0)                                                      \ 
} while (0)   Simplified version 

Putting processes to sleep 



Waking processes up 
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Many macros are available in the kernel to wake up processes waiting in queues.  

They all are based on the same function:  

#define TASK_NORMAL                          (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE) 
 
#define wake_up(x)                                     __wake_up(x, TASK_NORMAL, 1, NULL) 
#define wake_up_nr(x, nr)                         __wake_up(x, TASK_NORMAL, nr, NULL) 
#define wake_up_all(x)                               __wake_up(x, TASK_NORMAL, 0, NULL) 
#define wake_up_locked(x)                        __wake_up_locked((x), TASK_NORMAL) 
#define wake_up_interruptible(x)             __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL) 
#define wake_up_interruptible_nr(x, nr) __wake_up(x, TASK_INTERRUPTIBLE, nr, NULL) 
#define wake_up_interruptible_all(x)       __wake_up(x, TASK_INTERRUPTIBLE, 0, NULL) 

The wake_up_process function wakes up one process asynchronously. 

int wake_up_process(struct task_struct *p) 
{ 
        return try_to_wake_up(p, TASK_NORMAL, 0); 
} 
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The function __wake_up() wakes up threads blocked on a waitqueue.  It enters critical section and 
delegates the work to __wake_up_common().  

static void __wake_up_common(struct wait_queue_head *wq_head,  
 unsigned int mode,  int nr_exclusive, int wake_flags, void *key) 
{ 
        wait_queue_entry_t *curr, *next; 
 
        list_for_each_entry_safe(curr, next, &wq_head->head, entry) { 
                unsigned flags = curr->flags; 
                int ret; 
                ... 
                ret = curr->func(curr, mode, wake_flags, key); 
                if (ret < 0)  
                    break; 
                if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive) 
                    break; 
        } 
        return nr_exclusive; 
} Simplified version 

The kernel then browses 
the list of sleeping  
processes and invokes 
for them the 
appropriate function.  It 
avoids unnecessary 
wake-up of processes.  

try_to_wake_up() 

Waking processes up 



Lists in Linux 
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The Linux kernel uses standard doubly linked lists to implement process queues. All basic operations on the 
lists are carried out in O(1) time.  

struct list_head {  
      struct list_head *next, *prev;  
}; 

An empty list consists of a single 
element (dummy, pointer to the 
list) for which the successor (and 
also the predecessor) point to 
himself. 

Doubly linked list 
(source: Bovet, Cesati, Understanding the Linux Kernel) 

The node in the list contains pointers 
to the next and previous list element: 
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The macro LIST_HEAD_INIT creates a list_head structure with 
the given name and initializes it to create an empty list.  

#define LIST_HEAD_INIT(name) = { &(name), &(name) } 

If there is a separate list structure, how can we get to the 
object, which is stored in the list? While wandering through 
the list, we encounter only elements of the type list_head, 
which in themselves mean nothing. 

Since list_head is a field in some structure, we can easily 
track where the structure is in the memory, if only we have 
information about it.  

#define list_entry(ptr, type, member)  \  

          container_of(ptr, type, member) 

It passes an object of the type type, whose member with 
the given name is of type list_head, and contains the list 
element indicated by ptr. 

Lists in Linux 
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Basic functions to operate on such a list:  

– list_add(new, head) – inserts a new element right after the head element;  

– list_add_tail(new, head) – inserts a new element right before head, that is at the end of the list;  

– list_del(entry) – removes an element from the list;  

– list_empty(head) – checks if the list is empty;  

– list_splice(list, head) – merges two lists by inserting the list list after the head element.  

The macro – iterator on all elements of the list: 

#define list_for_each(pos, head) \  
 for (pos = (head)->next; pos != (head); pos = pos->next) 

Lists in Linux 
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An example of using a list structure: task_struct (process 
descriptor) contains a couple of them: 

struct task_struct { 
      struct list_head tasks; 
      struct list_head children; 
      struct list_head sibling; 
      ... 
   } 

In hash tables, where memory usage is important, 
and not a fixed access time to the last element, 
doubly non-circular linked lists are used.  

The list head is stored in the hlist_head structure 
and is the pointer to the first element.  

Each element is represented by a structure of the 
type hlist_node.  

What is lost is the ability to access the tail in O(1). 

struct hlist_head { 
      struct hlist_node *first; 
   ; 
 
   struct hlist_node { 
      struct hlist_node *next, **pprev; 
   }; 

Lists in Linux 



Family of processes 
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Each process in the system has exactly one parent and can have one or more children. The corresponding links are 
kept in the process descriptor in the fields parent and children.  

The link to the parent of the current process:  
struct task_struct *task = current->parent; 

Walking through the list of children: 

 struct task_struct *task; 
 struct list_head *list; 
 
 list_for_each(list, &current->children) { 
        task = list_entry(list, struct task_struct, sibling); 
        /* now the task indicates the next child of the current process */ 
   } 

This code will always lead us to the init_task process: 

struct task_struct *task; 
 
for (task = current; task != &init_task; task = task->parent)  
   ;  
/* now task points to init_task */ 

The pstree command shows running 
processes as a tree.  

The tree is rooted at either pid or init 
(systemd) if pid is omitted (init has pid=1 
and is a child of process 0).  


