
Process Management
Kernel Level Synchronization

Table of contents

• Kernel threads
• Kernel level synchronization
• Spinlocks and their implementation
• Mutexes and system semaphores
• Real time Linux
• Read-Copy Update
• Process states
• Wait queues
• Putting processes to sleep and waking them up
• Lists in Linux
• Family of processes

2

Kernel threads

3

Kernel threads are standard processes that exist only in the kernel space and are used by the kernel
to perform certain operations in the background (e.g. writing cache blocks to disk, sweeping
unused pages to disk).

They are implemented as ordinary processes that share certain resources with other processes (such
as the address space).

The difference between kernel threads and normal processes lies in the fact that for kernel threads
the pointer to memory descriptor (mm) is NULL.

They work only in the kernel space and never switch context to the user space.

They are subject to scheduling and can be preempted – just like ordinary processes.

They are created, for example, at the initial startup of the system, when loading some modules,
mounting some devices, mounting some filesystems.

Usually, they perform their functions in an infinite loop. They exist until the system is closed.

4

The ancestor of all processes is process 0, also called idle or swapper. This
is the kernel thread created manually during the initialization of Linux
data structures.

At the end of the system boot the next kernel thread is created, called init
or process 1. The init process has PID=1 and shares all the needed data
structures with process 0.

After being selected by the scheduler, it finishes kernel initialization and
tries to load the executable file in the order: /sbin/init, /etc/init,
/bin/init and /bin/sh. The try_to_run_init_process() function called by
it is the wrapper for the system function sys_execve().

A regular process (no longer a kernel thread) with its own data structures
is created, and will run in user mode.

The kernel_thread()
function creates a new
kernel thread.

pid_t kernel_thread(int (*fn)(void *), void *arg, const char *name, unsigned long flags)
{
 struct kernel_clone_args args = {
 .flags = ((lower_32_bits(flags) | CLONE_VM | CLONE_UNTRACED) & ~CSIGNAL),
 …
 }
 return kernel_clone(args);
}

Kernel threads

Simplified version

static int kernel_init(void * unused)
{
 ...
 /* We try each of these until one succeeds. */
 if (!try_to_run_init_process("/sbin/init") ||
 !try_to_run_init_process("/etc/init") ||
 !try_to_run_init_process("/bin/init") ||
 !try_to_run_init_process("/bin/sh"))
 return 0;
 panic(“…");
} Simplified version

Kernel threads

5

The init process works until the kernel
stops, monitoring the activity of all
processes.

Other kernel threads: kswapd, kworker,
ksoftirqd.

They can be easily recognized on the list
generated by ps, because their names
are printed in square brackets.

The shown command was run on
‘students’.

jmd@students:~$ ps fax | more
 PID TTY STAT TIME COMMAND
 2 ? S 0:02 [kthreadd]
 3 ? I< 0:00 _ [rcu_gp]
 4 ? I< 0:00 _ [rcu_par_gp]
 6 ? I< 0:00 _ [kworker/0:0H-events_highpri]
 9 ? I< 0:00 _ [mm_percpu_wq]
 10 ? S 0:00 _ [rcu_tasks_rude_]
 11 ? S 0:00 _ [rcu_tasks_trace]
 12 ? S 0:10 _ [ksoftirqd/0]
 13 ? I 12:48 _ [rcu_sched]
 14 ? S 0:01 _ [migration/0]
 15 ? S 0:00 _ [cpuhp/0]
 16 ? S 0:00 _ [cpuhp/1]
 17 ? S 0:01 _ [migration/1]
 18 ? S 0:05 _ [ksoftirqd/1]
 20 ? I< 0:00 _ [kworker/1:0H-kblockd]
 21 ? S 0:00 _ [cpuhp/2]
 22 ? S 0:01 _ [migration/2]
 23 ? S 0:04 _ [ksoftirqd/2]
 25 ? I< 0:00 _ [kworker/2:0H-events_highpri]
 26 ? S 0:00 _ [cpuhp/3]
 27 ? S 0:01 _ [migration/3]
 28 ? S 0:04 _ [ksoftirqd/3]
 30 ? I< 0:00 _ [kworker/3:0H-events_highpri]
 31 ? S 0:00 _ [cpuhp/4]
...

jmd@students:~$ ps fax | grep kswapd
 610 ? S 6:29 _ [kswapd0]
 522775 pts/1 S+ 0:00 | _ grep kswapd
jmd@students:~$

Kernel level synchronization

Because the kernel is reentrant, at any time there may be a couple of active processes in the kernel.

They all share the same copy of the kernel data structures.

Synchronization is therefore necessary when accessing these structures.

Quote of the week (posted June 12, 2019 by Jonathan Corbet)

Implementing a correct synchronization primitive is like committing the perfect crime. There
are at least 50 things that can go wrong, and if you are a highly experienced genius, you -
might- be able to anticipate and handle 25 of them.

--- Paul McKenney

The key task when writing kernel code is to recognize WHICH parts of the code are vulnerable to
race condition and require protection.

One should also pay attention to the granularity of the locks in the context of system scalability.

Reading: Chapter 5: Concurrency and Race Conditions, Linux Device Drivers, Jonathan Corbet, Greg
Kroah-Hartman, Alessandro Rubini, 2005.

6

https://lwn.net/Articles/790980/
https://lwn.net/Articles/790980/
https://lwn.net/Articles/790980/
https://lwn.net/Articles/790980/
https://lwn.net/Articles/790980/
https://lwn.net/Articles/790980/
https://static.lwn.net/images/pdf/LDD3/ch05.pdf

Kernel level synchronization

How can concurrent execution of the same kernel code happen:

– As a result of interrupt – an interrupt may appear asynchronously, at any time (interrupt
priorities, masking interrupts).

– As a result of kernel preemption (from version 2.6 the Linux kernel is preemptable). The
scheduler can at any time preempt the process executed in kernel mode and start executing
another one. Kernel preemption can occur:

• When returning to kernel-space from an interrupt handler.

• When kernel code becomes preemptible again.

• If a task in the kernel explicitly calls schedule().

• If a task in the kernel blocks (which results in invocation of schedule()).

– In multiprocessor systems (SMP) as a result of executing the same kernel code on different
processors.

7

Kernel level synchronization

1. Atomic operations. These are operations that can be performed using one assembler instruction in
an indivisible manner, i.e. without the possibility of interruption during execution. On x86
processors:

– atomic are the assembler instructions that read the memory contents,

– assembler instructions such as inc or dec are atomic if no other processor takes over the
memory bus after read, and before saving the argument value,

– assembler instructions preceded by the byte lock are atomic even in a multiprocessor system,

– assembler instructions preceded by the byte rep forcing the CPU to repeat the same instruction
several times are not atomic: the CPU checks before each repetition of the iteration if there is an
interrupt waiting.

See: How are atomic operations implemented at a hardware level?

(Short answer: extra transistors in the chip to implement special cache and memory coherency and
bus synchronization protocols. To access cache line the other core has to obtain access rights
first, and the protocol to obtain those rights involves the current owner.)

8

https://stackoverflow.com/questions/14758088/how-are-atomic-operations-implemented-at-a-hardware-level
https://stackoverflow.com/questions/14758088/how-are-atomic-operations-implemented-at-a-hardware-level

Kernel level synchronization

Atomic operations in C on arguments of type int use a special data types:.

Types atomic_t and atomic64_t are effectively 32-bit and 64-bit numbers, respectively, that can only
be operated on using the various atomic_*() interfaces. Examples:

Examples of the atomic operations on a bitmap:

In some systems, atomic operations may be much slower than their non-atomic counterparts.

9

atomic_read(v)
atomic_set(v, i)
atomic_add(i, v)
atomic_inc(v)
atomic_dec_and_test(v)

typedef struct { int counter; } atomic_t;
typedef struct {s64 counter; } atomic64_t;

set_bit(nr, addr)
clear_bit(nr, addr)
test_and_set_bit(nr, addr)
test_and_clear_bit(nr, addr)

Kernel level synchronization

2. Disabling interrupts. The kernel can not perform blocking operations with interrupts disabled,
because it may cause the system to crash.

 Macros enabling and disabling interrupts in a uniprocessor system:

 Do not disable interrupts for a long time, because during this time any communication between
the processor and controllers of input-output devices is blocked.

3. Locking. Linux offers a number of lock types. They could be roughly divided, until recently, into
two categories: spinning and sleeping locks:

– spinlocks (used in multiprocessor systems),

– mutexes and system semaphores (used in uniprocessor and multiprocessor systems).

10

spin_lock_irq(lock)
spin_unlock_irq(lock)
spin_lock_irqsave(lock, flags)
spin_unlock_irqrestore(lock, flags)

Kernel level synchronization

4. RCU synchronization mechanism (Read-Copy Update). Readings can be made in parallel with
writings.

5. Barriers that prevent code optimization (its reorganization) by the compiler and processor. Described
in detail in Documentation/memory-barriers.txt.

6. Big kernel lock, i.e. BKL – a mechanism that allows to block the entire kernel. It guarantees that at
most one processor is running in kernel mode at a time.

 Functions to support this mechanism are lock_kernel and unlock_kernel.
 It affects performance very badly.
 It was finally eliminated in 2011 (version 2.6.39 kernel) by Arnd Bergmann.

When selecting the synchronization mechanism for a specific problem, one must remember about the
correctness of the solution and the efficiency of the solution.

11

https://elixir.bootlin.com/linux/latest/source/Documentation/memory-barriers.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/memory-barriers.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/memory-barriers.txt

Spinlocks

The name comes from the fact that waiting for a lock to be released is active.

This may seem ineffective, but in reality it can be much cheaper than putting the thread to sleep,
switching the context, waking it up later when the condition is met.

Spinlocks depend on architecture and are implemented in assembler. They are used in
multiprocessor systems.

They should only be used if the expected time to acquire the resource is short.

There are two types of spinlocks:

– Regular – of type spinlock_t:

 They ensure that a piece of code surrounded by them will be executed at the same time on
only one processor.

– For readers-writers – of type rw_lock_t:

 They allow to create a critical section of type read-write.

12

Spinlocks

13

#define DEFINE_SPINLOCK(x) spinlock_t x = __SPIN_LOCK_UNLOCKED(x)

static DEFINE_SPINLOCK(lock);

spin_lock(&lock);

 /* critical section */

spin_unlock(&lock);

The way of using spinlocks:

Macros that support spinlocks in a multiprocessor system (some of them):

spin_lock_init(lock) Initializes the object of type spinlock_t

spin_lock(lock) Acquires the spinlock

spin_unlock(lock) Releases the spinlock

spin_lock_irq(lock) Disables interrupts on the local CPU and acquires the spinlock

spin_unlock_irq(lock) Enables interrupts on the local CPU and releases the spinlock

spin_lock_irqsave(lock, flags)
Stores the previous interrupt state, disables interrupts on the local CPU and
acquires the spinlock

spin_unlock_irqrestore(lock, flags)
Restores the previous interrupt state, enables interrupts on the local CPU and
releases the spinlock

spin_trylock(lock) Tries to obtain a lock, but will not block if it cannot be immediately acquired

Spinlocks

14

Macros that support read-write spinlocks in a multiprocessor system (some of them) :

The read-write spinlocks favor readers over writers so can starve pending writers.

In uniprocessor systems:

• When the kernel is compiled with the kernel preemption option disabled, spinlocks are defined as
empty operations.

• When kernel preemption is enabled, spin_lock is equivalent to preempt_disable, and spin_unlock is
equivalent to preempt_enable (kernel preemption is disabled inside the critical section protected by a
spinlock). (See also Kernel preemption)

Recommended way of using spinlocks: Documentation/locking/spinlocks.rst.

read_lock_irq(lock) Disables interrupts on the local CPU and acquires the spinlock for reading

read_unlock_irq(lock) Enables interrupts on the local CPU and releases the spinlock of type read

write_lock_irq(lock) Disables interrupts on the local CPU and acquires the spinlock for writing

write_unlock_irq(lock) Enables interrupts on the local CPU and releases the spinlock of type write

http://students.mimuw.edu.pl/ZSO/Wyklady/07_synchronization/7_uzupelnienie.html
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/spinlocks.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/spinlocks.rst

Spinlocks – implementation

– In the 2.6.24 kernel, a spinlock was represented by an integer value. A value of one indicated that the lock is
available, the more negative the value of the lock gets, the more processors are trying to acquire it.

– Ticket spinlocks (2008) added fairness to the mechanism by using 16-bit quantity, split into two bytes. You
can think of the "next" field as being the number on the next ticket in the dispenser, while "owner" is the
number appearing in the "now serving" display over the counter.

– MCS locks (Mellor-Crummey & Scott, 2014) expand a spinlock into a per-CPU structure, eliminating much of
the cache-line bouncing.

15

struct mcs_spinlock {
 struct mcs_spinlock *next;
 int locked; /* 1 if lock acquired */
};

https://lwn.net/Articles/267968/
https://lwn.net/Articles/267968/
https://lwn.net/Articles/267968/
https://lwn.net/Articles/267968/
https://lwn.net/Articles/590243/
https://lwn.net/Articles/590243/

16

Ticket spinlock vs MCS lock

Compact NUMA-aware locks

• NUMA-aware qspinlocks, Jonathan Corbet, April 2021.

• Compact NUMA-aware Locks, Dave Dice, Alex Kogan, 2019.

17

A running example for CNA lock handovers on a 2-socket machine.
Empty cells represent NULL pointers

https://lwn.net/Articles/852138/
https://lwn.net/Articles/852138/
https://lwn.net/Articles/852138/
https://lwn.net/Articles/852138/
https://lwn.net/Articles/852138/
https://arxiv.org/pdf/1810.05600.pdf
https://arxiv.org/pdf/1810.05600.pdf
https://arxiv.org/pdf/1810.05600.pdf
https://arxiv.org/pdf/1810.05600.pdf
https://arxiv.org/pdf/1810.05600.pdf
https://arxiv.org/pdf/1810.05600.pdf

Mutexes and system semaphores

18

Additional reading:

– Documentation/locking/mutex-design.rst.

– Documentation/locking/rt-mutex-design.rst.

– Documentation/percpu-rw-semaphore.txt.

– Generic Mutex Subsystem, Ingo Molnar , December 2005.

– An Overview of Kernel Lock Improvements, Davidlohr Bueso, Scott Norton, August 2014.

– Reimplementing mutexes with a coupled lock, Jonathan Corbet, September 2016.

Oscar Wilde once famously observed that fashion "is usually a form of
ugliness so intolerable that we have to alter it every six months."
Perhaps the same holds true of locking primitives in the kernel.

https://elixir.bootlin.com/linux/latest/source/Documentation/locking/mutex-design.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/mutex-design.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/mutex-design.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/mutex-design.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/mutex-design.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/mutex-design.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/mutex-design.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/rt-mutex-design.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/rt-mutex-design.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/rt-mutex-design.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/rt-mutex-design.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/rt-mutex-design.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/rt-mutex-design.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/rt-mutex-design.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/rt-mutex-design.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/locking/rt-mutex-design.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/percpu-rw-semaphore.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/percpu-rw-semaphore.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/percpu-rw-semaphore.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/percpu-rw-semaphore.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/percpu-rw-semaphore.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/percpu-rw-semaphore.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/percpu-rw-semaphore.txt
https://lwn.net/Articles/164802/
https://lwn.net/Articles/164802/
https://lwn.net/Articles/164802/
https://lwn.net/Articles/164802/
https://lwn.net/Articles/164802/
http://events17.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
http://events17.linuxfoundation.org/sites/events/files/slides/linuxcon-2014-locking-final.pdf
https://lwn.net/Articles/699784/
https://lwn.net/Articles/699784/
https://lwn.net/Articles/699784/
https://lwn.net/Articles/699784/
https://lwn.net/Articles/699784/
https://lwn.net/Articles/699784/
https://lwn.net/Articles/699784/
https://lwn.net/Articles/699784/
https://lwn.net/Articles/699784/
https://lwn.net/Articles/699784/

Mutexes and system semaphores

19

Mutexes (i.e. binary semaphores) are a synchronization mechanism often used in both uniprocessor and
multiprocessor systems.

Mutexes use atomic operations, only one thread can be in the possession of a mutex and only it can release it.

Mutexes are objects of type struct mutex:

struct mutex {
 atomic_long_t owner;
 raw_spinlock_t wait_lock;
#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
 struct optimistic_spin_queue osq; /* Spinner MCS lock */
#endif
 struct list_head wait_list;
 ...
};

The value of the field owner is 64 bits wide, large enough to hold a pointer value.

If the mutex is available, there is no owner, so the owner field contains zero.

When the mutex is taken, the acquiring thread's task_struct pointer is placed there, simultaneously indicating
that the mutex is unavailable and which thread owns it.

Drawback:
Among the largest locks in the
kernel, which means more CPU
cache and memory footprint.

Simplified version

Mutexes and system semaphores

20

In its most basic form it also includes a wait-queue and a spinlock that serializes access to it. When
acquiring a mutex, there are three possible paths that can be taken, depending on the state of the lock:

– fastpath: tries to atomically acquire the lock by cmpxchg()ing the owner with the current task.
This only works in the uncontended case (cmpxchg() checks against 0UL, so all 3 state bits have to
be 0). If the lock is contended it goes to the next possible path.

– midpath: aka optimistic spinning, tries to spin for acquisition while the lock owner is running and
there are no other tasks ready to run that have higher priority (need_resched). The rationale is
that if the lock owner is running, it is likely to release the lock soon. The mutex spinners are
queued up using MCS lock so that only one spinner can compete for the mutex.

– slowpath: last resort, if the lock is still unable to be acquired, the task is added to the wait-queue
and sleeps until woken up by the unlock path. Under normal circumstances it blocks as
TASK_UNINTERRUPTIBLE.

CMPXCHG — Compare and Exchange

https://www.kernel.org/doc/html/latest/locking/mutex-design.html

Mutexes and system semaphores

21

While formally kernel mutexes are
sleepable locks, it is midpath that
makes them more practically a hybrid
type.

By simply not interrupting a task and
busy-waiting for a few cycles instead
of immediately sleeping, the
performance of this lock has been
seen to significantly improve a
number of workloads.

This technique is also used for rw-
semaphores.

/* Statically define the mutex */
 DEFINE_MUTEX(name);

/* Dynamically initialize the mutex */
 mutex_init(mutex);

/* Acquire the mutex, uninterruptible */
 void mutex_lock(struct mutex *lock);
 int mutex_trylock(struct mutex *lock);

/* Acquire the mutex, interruptible */
 int mutex_lock_interruptible(struct mutex *lock);

/* Acquire the mutex, interruptible, if dec to 0 */
 int atomic_dec_and_mutex_lock(atomic_t *cnt, struct mutex *lock);

/* Unlock the mutex */
 void mutex_unlock(struct mutex *lock);

/* Test if the mutex is taken */
 int mutex_is_locked(struct mutex *lock);

Mutex API

Mutexes and system semaphores

22

In addition to mutexes there are also
general semaphores, which can take any
value n.

Unlike mutexes, binary semaphores do
not have an owner, so up() can be called
in a different thread from the one which
called down(). It is also safe to call
down_trylock() and up() from interrupt
context.

There are also read-write semaphores.
They are implemented as struct
rw_semaphore. These are operations:
down_read(), up_read(), down_write(),
up_write() (only versions uninterruptible).

/*
 * The ->count variable represents how many more tasks can acquire this
 * semaphore. If it's zero, there may be tasks waiting on the wait_list.
*/

struct semaphore {
 raw_spinlock_t lock;
 unsigned int count;
 struct list_head wait_list;
};

static inline void sema_init(struct semaphore *sem, int val)

#define init_MUTEX(sem) sema_init(sem, 1)
#define init_MUTEX_LOCKED(sem) sema_init(sem, 0)

Mutexes and system semaphores

23

The basic semaphore operations are up and down. void up(struct semaphore *sem)
{
 unsigned long flags;
 raw_spin_lock_irqsave(&sem->lock, flags);
 if (list_empty(&sem->wait_list))
 sem->count++;
 else
 __up(sem);
 raw_spin_unlock_irqrestore(&sem->lock, flags);
} void down(struct semaphore *sem)

{
 unsigned long flags;
 raw_spin_lock_irqsave(&sem->lock, flags);
 if (sem->count > 0)
 sem->count--;
 else
 __down(sem);
 raw_spin_unlock_irqrestore(&sem->lock, flags);
}

Simplified version

Simplified version

Unlike mutexes, up() may be called from any
context and even by tasks which have never
called down().

Acquires the semaphore. If no more tasks are
allowed to acquire the semaphore, calling this
function will put the task to sleep until the
semaphore is released.
Use of this function is deprecated, use
down_interruptible() or down_killable() instead.

24

Int down_interruptible(struct semaphore *sem)
{
 unsigned long flags;
 int result = 0;
 raw_spin_lock_irqsave(&sem->lock, flags);
 if (sem->count > 0)
 sem->count--;
 else
 result = __down_interruptible(sem);
 raw_spin_unlock_irqrestore(&sem->lock, flags);
 return result;
}

int down_trylock(struct semaphore *sem)
{
 unsigned long flags;
 int count;
 raw_spin_lock_irqsave(&sem->lock, flags);
 count = sem->count - 1;
 if (count >= 0)
 sem->count = count;
 raw_spin_unlock_irqrestore(&sem->lock, flags);
 return (count < 0);
}

This synchronization mechanism does
not involve busy waiting, because the
process is suspended and the processor
is passed to another process.

Operations from the __down() family
eventually call schedule(), which
selects the new process to be
executed.

Simplified version

Simplified version

Mutexes and system semaphores

Real time mutexes

25

There are also real time mutexes, which implement priority inheritence, and solve the problem
of priority inversion, which affects real-time systems.

Priority inversion is when a lower priority process executes while a higher priority process wants to
run. The example of unbounded priority inversion is where you have three processes, A, B, and C,
where A is the highest priority process, C is the lowest, and B is in between. A tries to grab a lock
that C owns and must wait and lets C run to release the lock. In the meantime, B executes, and
since B is of a higher priority than C, it preempts C, but by doing so, it is in fact preempting A which
is a higher priority process.

The problem is solved by priority inheritance – process inherits the priority of another process if the
other process blocks on a lock owned by the current process. Let's use the previous example. This
time, when A blocks on the lock owned by C, C would inherit the priority of A. So now if B becomes
runnable, it would not preempt C, since C now has the high priority of A. As soon as C releases the
lock, it loses its inherited priority, and A then can continue with the resource that C had.

Priority inversion and priority inheritance

26
Solutions for Priority Inversion in Real-time Scheduling

https://durant35.github.io/2017/10/24/TACouses_ES2017_PriorityInversionbyResourceSharing/
https://durant35.github.io/2017/10/24/TACouses_ES2017_PriorityInversionbyResourceSharing/
https://durant35.github.io/2017/10/24/TACouses_ES2017_PriorityInversionbyResourceSharing/

Real time mutexes and local locks

27

Real time mutexes are implemented as a structure rt_mutex.

There are functions available:

 rt_mutex_init(), rt_mutex_lock(), rt_mutex_unlock(), rt_mutex_trylock().

Local locks in the kernel (from v5.8), Marta Rybczyńska, August 2020.

On non-realtime systems, the acquisition of a local lock simply maps to disabling preemption (and possibly
interrupts).

On real time systems, instead, local locks are actually sleeping spinlocks; they do not disable either preemption or
interrupts. They are sufficient to serialize access to the resource being protected without increasing latencies in
the system as a whole.

Interface: local_lock(), local_unlock(), local_lock_irq(), local_unlock_irq() etc.

struct rt_mutex {
 raw_spinlock_t wait_lock;
 struct rb_root_cached waiters; /*rbtree root to enqueue waiters in priority order; */
 struct task_struct *owner;
 ...
};

Simplified version

SKIP

https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/

Read-Copy Update (RCU)

The mechanism was added to the Linux kernel in October 2002.

It is described in detail in Documentation/RCU.

Interesting works on the RCU can be found on the website http://www.rdrop.com/users/paulmck/RCU/
maintained by Paul McKenney, who devoted his Ph.D. to this topic (now employed in Meta).

What is RCU?, P. McKenney, November 2018 (good presentation!)

RCU Usage In the Linux Kernel: One Decade Later, P. McKenney, S. Boyd-Wickizer, J. Walpole, 2019.

A series of articles on lwn.net:

– The RCU API, 2019 edition, Paul McKenney, January 2019.

– Requirements for RCU part 1: the fundamentals, Paul McKenney, July 2015.

– RCU requirements part 2 – parallelism and software engineering, Paul McKenney, August 2015.

– RCU requirements part 3, Paul McKenney, August 2015.

– What is RCU, Fundamentally?, Paul McKenney, December 2007.

Wikipedia (compact description with pictures).

28

https://elixir.bootlin.com/linux/latest/source/Documentation/RCU
http://www.rdrop.com/users/paulmck/RCU/
http://www2.rdrop.com/users/paulmck/RCU/RCU.2018.11.21c.PSU-full.pdf
http://www2.rdrop.com/users/paulmck/RCU/RCU.2018.11.21c.PSU-full.pdf
http://www2.rdrop.com/users/paulmck/RCU/RCU.2018.11.21c.PSU-full.pdf
http://www2.rdrop.com/users/paulmck/RCU/RCU.2018.11.21c.PSU-full.pdf
http://www2.rdrop.com/users/paulmck/RCU/RCU.2018.11.21c.PSU-full.pdf
https://pdos.csail.mit.edu/6.828/2019/readings/rcu-decade-later.pdf
https://pdos.csail.mit.edu/6.828/2019/readings/rcu-decade-later.pdf
https://lwn.net/Kernel/Index/
https://lwn.net/Articles/777036/
https://lwn.net/Articles/652156/
https://lwn.net/Articles/652677/
https://lwn.net/Articles/652677/
https://lwn.net/Articles/652677/
https://lwn.net/Articles/652677/
https://lwn.net/Articles/653326/
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
https://lwn.net/Articles/262464/
https://en.wikipedia.org/wiki/Read-copy-update

Read-Copy Update (RCU)

Information about all users of the pointer to the shared data structure is stored. When the structure
is to change, a copy is created and the change is made on it.

When all readers finish reading the old copy, the pointer changes to start pointing to the new one.
Readings can be made in parallel with writings. It saves time at the expense of slightly higher
memory consumption.

Suppose that the pointer ptr is to be protected by the RCU. You must first call rcu_dereference() for it
and continue to work on the obtained result.

In addition, the code being executed must be protected by rcu_read_lock() and rcu_read_unlock().

29

rcu_read_lock();
p = rcu_dereference(ptr); // subscribe
if (p != NULL) {
 some_function(p);
}
rcu_read_unlock();

The value returned by rcu_dereference is valid only
within the enclosing RCU read-side critical section.

As with rcu_assign_pointer, an important function of
rcu_dereference is to document which pointers are
protected by RCU.

Modification of the pointer must be done using rcu_assign_pointer(). Subsequent read operations will see a new
structure instead of the old one.

The rcu_assign_pointer and rcu_dereference primitives contain the architecture-specific memory barrier
instructions and compiler directives necessary to ensure that the data is initialized before the new pointer
becomes visible, and that any dereferencing of the new pointer occurs after the data is initialized.

The old structure is available to readers until the last one finishes reading. Only then can the kernel removes it.

The function synchronize_rcu() blocks until all readers finish reading. Instead of blocking, synchronize_rcu may
register a callback (called call_rcu()) to be invoked after all ongoing RCU read-side critical sections have
completed.

It is worth using the RCU when there is much more reading than writing.

 30

struct something *new_ptr = kmalloc(...);

new_ptr->field1 = xyz;
new_ptr->field2 = 12;
new_ptr->field3 = 13;

rcu_assign_pointer(ptr, new_ptr); // publish

RCU protects readers from writers, but
does not protect writers from writers.
This must be provided by using other
mechanisms, e.g. spinlocks.

Read-Copy Update (RCU)

31 Paul McKenney

Read-Copy Update (RCU)

Grace period – time period
when every thread was in
at least one quiescent
state.

Quiescent state – any
point in the thread
execution where the
thread does not hold a
reference to shared
memory.

32 Paul McKenney

Read-Copy Update (RCU)

33 h
tt

p
:/

/w
w

w
.r

d
ro

p
.c

o
m

/u
se

rs
/p

au
lm

ck
/R

C
U

/l
in

u
xu

sa
ge

.h
tm

l

RCU is a very specialized
primitive, and it is
exceedingly important to
use the right tool for the
job.

For a great many jobs,
normal locking remains
the best tool.

Almost all RCU uses in the
Linux kernel use locking to
protect updates, which
does place a hard upper
limit on RCU's fraction of
synchronization
primitives.

Read-Copy Update
(RCU)

http://www.rdrop.com/users/paulmck/RCU/linuxusage.html

Process states

34

/*
 * We have two separate sets of flags:
 * task->state is about runnability,
 * while task->exit_state are about the task exiting.
 * Confusing, but this way modifying one set can't modify
 * the other one by mistake.
 */
 /* in tsk->state */
 #define TASK_RUNNING 0
 #define TASK_INTERRUPTIBLE 1
 #define TASK_UNINTERRUPTIBLE 2
 #define __TASK_STOPPED 4
 #define __TASK_TRACED 8

 /* in tsk->exit_state */
 #define EXIT_ZOMBIE 16
 #define EXIT_DEAD 32

 /* in tsk->state again */
 #define TASK_DEAD 64
 #define TASK_WAKEKILL 12

The task_struct process descriptor has a volatile long state field that specifies the current state of the process.
Possible states are defined as constants:

TASK_RUNNING – process is in execution or ready for
execution.

TASK_INTERRUPTIBLE – process is or may be sleeping in an
interruptible state, i.e. it will resume execution after the
signal arrives or after the wake time has elapsed. The last
means that the process can be put to sleep for a certain
time (the possibility often used by the device handlers).

TASK_UNINTERRUPTIBLE – process is or will be put to sleep in
an uninterrupted state (e.g. waiting for an inode). This
process can only be resumed by calling the wake_up()
function – its status will be changed to TASK_RUNNING.

TASK_STOPPED – process has been stopped, it is neither
finished nor ready to be executed. The process will go into
this state, e.g. due to receiving a SIGSTOP signal. It can
only be resumed by receiving the SIGCONT signal.

EXIT_ZOMBIE – process invoked the exit() function, but its
parent process has not yet performed wait() for it (to
retrieve the execution code). The process will remain in
the system until wait() is done by the parent process.

Many more

Wait queues

All processes in the state TASK_RUNNING are in the
queue of processes ready for execution.

Processes in the state TASK_STOPPED, EXIT_ZOMBIE
and EXIT_DEAD do not have to be in any queue,
because they are only referenced via PID or
through the process family connections.

Pending processes in the state TASK_INTERRUPTIBLE
and TASK_UNINTERRUPTIBLE stand in different
queues, depending on the event.

35

These are so-called wait queues. The process that is to begin to wait for the event is set in the associated
queue and gives control. He will be awakened by the kernel when the event occurs.

Reading:

– Simple wait queues, Jonathan Corbet, December 2013.

– The return of simple wait queues, Jonathan Corbet, October 2015.

Process states in Linux (source:
http://www.cosc.brocku.ca/Offerings/

4P13/slides.html)

https://lwn.net/Articles/577370/
https://lwn.net/Articles/661424/
http://www.cosc.brocku.ca/Offerings/4P13/slides.html
http://www.cosc.brocku.ca/Offerings/4P13/slides.html

36

The element of the wait queue is of the type wait_queue_entry.

#define WQ_FLAG_EXCLUSIVE 0x01

struct wait_queue_entry {
 unsigned int flags;
 void *private;
 wait_queue_func_t func;
 struct list_head entry;
}

struct wait_queue_head {
 spinlock_t lock;
 struct list_head head;
}

The private field indicates the descriptor of the
waiting process. Field entry links all processes
waiting for the same event. The func function
is called to wake up the process.

The flag WQ_FLAG_EXCLUSIVE causes that the
process will be awakened by itself, not all
processes from the queue at once.

The beginning of the list, wait_queue_head, is a
distinguished element with a different structure. It
is not related to any process, but has a spinlock
used to ensure the atomicity of operations on the
queue.

Wait queues

37
Wait queue, R. Lee, 2011. try_to_wake_up()

Wait queues

https://www.slideshare.net/roylee17/wait-queue
https://www.slideshare.net/roylee17/wait-queue
https://www.slideshare.net/roylee17/wait-queue

Operations on wait queues

38

Queues of pending processes are handled both by kernel functions and by interrupts, so operations
on them (inserting and deleting) must be executed with interrupts disabled.

Functions to perform the operations of adding and removing elements from the queue:

1. Inserts an element at the beginning of the queue without setting the flag WQ_FLAG_EXCLUSIVE.

void add_wait_queue(struct wait_queue_head *wq_head,
 struct wait_queue_entry *wq_entry)
{
 unsigned long flags;

 wq_entry->flags &= ~WQ_FLAG_EXCLUSIVE;
 spin_lock_irqsave(&wq_head->lock, flags);
 list_add(&wq_entry->entry, &wq_head->head);
 spin_unlock_irqrestore(&wq_head->lock, flags);
} Simplified version

39

2. Inserts an element at
the end of the queue
setting the flag
WQ_FLAG_EXCLUSIVE.

void add_wait_queue_exclusive(struct wait_queue_head *wq_head,
 struct wait_queue_entry *wq_entry)
{
 unsigned long flags;

 wq_entry->flags |= WQ_FLAG_EXCLUSIVE;
 spin_lock_irqsave(&wq_head->lock, flags);
 list_add_tail(&wq_entry->entry, &wq_head->head);
 spin_unlock_irqrestore(&wq_head->lock, flags);
}

3. Deletes an element
from the queue.

void remove_wait_queue(struct wait_queue_head *wq_head,
 struct wait_queue_entry *wq_entry)
{
 unsigned long flags;

 spin_lock_irqsave(&wq_head->lock, flags);
 list_del(&wq_entry->entry);
 spin_unlock_irqrestore(&wq_head->lock, flags);
} Simplified version

Simplified version

Operations on wait queues

40

Using add_wait_queue() and add_wait_queue_exclusive() guarantees a specific layout of
processes in the queue:

Processes of type exclusive, with a flag value of 1, are awakened by the kernel selectively, and
nonexclusive, with a flag of 0, are awakened always.

The process waiting for the resource to be allocated exclusively is usually an exclusive process. If the
event can affect many processes and everyone should be awakened, these are nonexclusive
processes.

Operations on wait queues

41

Functions used to put the process to sleep work on the current process.
In other words, the process puts itself to sleep.

Mainly the wait_event() macro is used for putting the process to sleep.

The function prepare_to_wait_event() does what add_wait_queue(),
only that it additionally sets the state of the process (to
TASK_UNINTERRUPTIBLE).

The function finish_wait() does what remove_wait_queue(), only that it
also sets the process state to TASK_RUNNING.

The macro wait_event() first makes sure that the condition passed as
parameter is not actually met yet. Then it puts the process to sleep.

Each time the process is woken up, it checks again whether the
condition is met and if so, it leaves the loop.

Otherwise, the control is transferred back to the scheduler and the
process is put to sleep.

The process goes to the state TASK_UNINTERRUPTIBLE and is inserted in
the waiting queue.

Procedure schedule() chooses another process for execution.

Finishing the execution of the code, i.e. removing the process from the
queue, takes place after the process is resumed by calling
schedule() somewhere else in the code.

define wait_event(wq_head, condition) \
do { \
 ... \
 if (condition) \
 break; \
 do { \
 struct wait_queue_entry __wq_entry; \
 ... \
 for (;;) { \
 prepare_to_wait_event(&wq_head, \
 &__wq_entry, TASK_UNINTERRUPTIBLE); \
 if (condition) \
 break; \
 ... \

 schedule(); \
 } \
 finish_wait(&wq_head, &__wq_entry); \
 } while (0) \
} while (0) Simplified version

Putting processes to sleep

Waking processes up

42

Many macros are available in the kernel to wake up processes waiting in queues.

They all are based on the same function:

#define TASK_NORMAL (TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE)

#define wake_up(x) __wake_up(x, TASK_NORMAL, 1, NULL)
#define wake_up_nr(x, nr) __wake_up(x, TASK_NORMAL, nr, NULL)
#define wake_up_all(x) __wake_up(x, TASK_NORMAL, 0, NULL)
#define wake_up_locked(x) __wake_up_locked((x), TASK_NORMAL)
#define wake_up_interruptible(x) __wake_up(x, TASK_INTERRUPTIBLE, 1, NULL)
#define wake_up_interruptible_nr(x, nr) __wake_up(x, TASK_INTERRUPTIBLE, nr, NULL)
#define wake_up_interruptible_all(x) __wake_up(x, TASK_INTERRUPTIBLE, 0, NULL)

The wake_up_process function wakes up one process asynchronously.

int wake_up_process(struct task_struct *p)
{
 return try_to_wake_up(p, TASK_NORMAL, 0);
}

43

The function __wake_up() wakes up threads blocked on a waitqueue. It enters critical section and
delegates the work to __wake_up_common().

static void __wake_up_common(struct wait_queue_head *wq_head,
 unsigned int mode, int nr_exclusive, int wake_flags, void *key)
{
 wait_queue_entry_t *curr, *next;

 list_for_each_entry_safe(curr, next, &wq_head->head, entry) {
 unsigned flags = curr->flags;
 int ret;
 ...
 ret = curr->func(curr, mode, wake_flags, key);
 if (ret < 0)
 break;
 if (ret && (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
 break;
 }
 return nr_exclusive;
} Simplified version

The kernel then browses
the list of sleeping
processes and invokes
for them the
appropriate function. It
avoids unnecessary
wake-up of processes.

try_to_wake_up()

Waking processes up

Lists in Linux

44

The Linux kernel uses standard doubly linked lists to implement process queues. All basic operations on the
lists are carried out in O(1) time.

struct list_head {
 struct list_head *next, *prev;
};

An empty list consists of a single
element (dummy, pointer to the
list) for which the successor (and
also the predecessor) point to
himself.

Doubly linked list
(source: Bovet, Cesati, Understanding the Linux Kernel)

The node in the list contains pointers
to the next and previous list element:

45

The macro LIST_HEAD_INIT creates a list_head structure with
the given name and initializes it to create an empty list.

#define LIST_HEAD_INIT(name) = { &(name), &(name) }

If there is a separate list structure, how can we get to the
object, which is stored in the list? While wandering through
the list, we encounter only elements of the type list_head,
which in themselves mean nothing.

Since list_head is a field in some structure, we can easily
track where the structure is in the memory, if only we have
information about it.

#define list_entry(ptr, type, member) \

 container_of(ptr, type, member)

It passes an object of the type type, whose member with
the given name is of type list_head, and contains the list
element indicated by ptr.

Lists in Linux

46

Basic functions to operate on such a list:

– list_add(new, head) – inserts a new element right after the head element;

– list_add_tail(new, head) – inserts a new element right before head, that is at the end of the list;

– list_del(entry) – removes an element from the list;

– list_empty(head) – checks if the list is empty;

– list_splice(list, head) – merges two lists by inserting the list list after the head element.

The macro – iterator on all elements of the list:

#define list_for_each(pos, head) \
 for (pos = (head)->next; pos != (head); pos = pos->next)

Lists in Linux

47

An example of using a list structure: task_struct (process
descriptor) contains a couple of them:

struct task_struct {
 struct list_head tasks;
 struct list_head children;
 struct list_head sibling;
 ...
 }

In hash tables, where memory usage is important,
and not a fixed access time to the last element,
doubly non-circular linked lists are used.

The list head is stored in the hlist_head structure
and is the pointer to the first element.

Each element is represented by a structure of the
type hlist_node.

What is lost is the ability to access the tail in O(1).

struct hlist_head {
 struct hlist_node *first;
 ;

 struct hlist_node {
 struct hlist_node *next, **pprev;
 };

Lists in Linux

Family of processes

48

Each process in the system has exactly one parent and can have one or more children. The corresponding links are
kept in the process descriptor in the fields parent and children.

The link to the parent of the current process:
struct task_struct *task = current->parent;

Walking through the list of children:

 struct task_struct *task;
 struct list_head *list;

 list_for_each(list, ¤t->children) {
 task = list_entry(list, struct task_struct, sibling);
 /* now the task indicates the next child of the current process */
 }

This code will always lead us to the init_task process:

struct task_struct *task;

for (task = current; task != &init_task; task = task->parent)
 ;
/* now task points to init_task */

The pstree command shows running
processes as a tree.

The tree is rooted at either pid or init
(systemd) if pid is omitted (init has pid=1
and is a child of process 0).

