
File management
Virtual file system: interface,

data structures

Table of contents
• Virtual File System (VFS)
• File system interface

– Creating and opening a file
– Reading from a file
– Writing to a file
– Closing a file

• VFS data structures
– Process data structures with file information
– Structure fs_struct

– Structure files_struct

– Structure file

– Inode
– Superblock

• Pipe vs FIFO

2

Motto
Everything is a file

Virtual File System (VFS)

3 VFS (source: Tizen Wiki)

https://wiki.tizen.org/Porting_Guide/Kernel_Fundamentals
https://wiki.tizen.org/Porting_Guide/Kernel_Fundamentals
https://wiki.tizen.org/Porting_Guide/Kernel_Fundamentals

Maintenance of filesystems

Trust in and maintenance of filesystems, Jonathan Corbet, November 2023

The Linux kernel supports a wide variety of filesystems, many of which are no longer in heavy use — or,
perhaps, any use at all. The kernel code implementing the less-popular filesystems tends to be relatively
unpopular as well, receiving little in the way of maintenance. Keeping old filesystems alive does place a burden
on kernel developers, so it is not surprising that there is pressure to remove the least popular ones.

 At the 2023 Kernel Maintainers Summit, the developers talked about these filesystems and what can be done
about them.

User space (in the form of desktop environments in particular) has a strong urge to automatically mount
filesystems, even those that are unmaintained, insecure, and untrustworthy. This automounting exposes the
system to security threats and is always a bad idea; maybe there needs to be a way for the kernel to indicate to
user space that some filesystems are not suitable for mounting in this way.

That, Kroah-Hartman said, requires coming up with a list of good and bad filesystems. Hellwig said that there
would need to be at least three levels: "no trust", "generally maintained but don't mount untrusted images",
and "well maintained". Torvalds said that this information could be given to the kernel when a filesystem is
registered, and a warning printed if an untrusted filesystem is mounted.

Torvalds repeated that it is possible to deprecate old code when there is a good reason to do so.

4

https://lwn.net/Articles/951846/
https://lwn.net/Articles/951846/

Virtual File System (VFS)

Linux can support many different (formats of) file systems. (How many?)

The virtual file system uses a unified interface when accessing data in various formats, so that from the
user level adding support for the new data format is relatively simple.

This concept allows implementing support for data formats:

– saved on physical media (Ext2, Ext3, Ext4 from Linux, VFAT, NTFS from Microsoft),

– available via network (like NFS),

– dynamically created at the user's request (like /proc).

This unified interface is fully compatible with the Unix-specific file model, making it easier to implement
native Linux file systems.

5

File System Interface

In Linux, processes refer to files using a well-defined set of system functions:

– functions that support existing files: open(), read(), write(), lseek() and close(),

– functions for creating new files: creat(),

– functions used when implementing pipes: pipe() i dup().

The first step that the process must take to access the data of an existing file is to call the open() function.

If successful, it passes the file descriptor to the process, which it can use to perform other operations on the
file, such as reading (read()) and writing (write()).

The read() and write() functions provide sequential access to data.

When direct (non-sequential) access is needed, the process can use the lseek(), function, which allows
changing the current position in the file.

When a process stops using a file or a pipe, it can close it by calling the close() function with the
appropriate descriptor to free the position in the descriptor table.

6

Related processes (such as ancestor and descendant) can communicate with each other using
communication channels (pipes).

They are created using the pipe() function, which passes two file descriptors: for reading and for writing.

The child process (created using the fork() function) inherits these descriptors from the parent process, so
data can flow from one process to another.

The pipe() function, together with the dup() function, which copies a given descriptor to the first free
position in the descriptor table, enables implementation of pipelines, such as in the command
interpreter, that connect the standard output of one process to the standard input of another.

These system functions have their equivalents in the library of standard input/output functions, which create a
high-level interface between the process and the kernel, enabling the use of facilities such as buffering or
formatted output.

Each filesystem driver exports a table of supported operations to VFS and when a system call is issued,
VFS performs some preliminary actions, finds a file system specific function in that table and calls it.

7

File System Interface

8 (source: Adrian Huang, Virtual File System, 2022)

Kernel components affected by an IO request
Object relationship in VFS

https://www.slideshare.net/AdrianHuang/linux-kernel-virtual-file-system
https://www.slideshare.net/AdrianHuang/linux-kernel-virtual-file-system
https://www.slideshare.net/AdrianHuang/linux-kernel-virtual-file-system

9

SDC2020: Tracing and Visualizing File System Internals with eBPF Superpowers
Suchakrapani Sharma, Staff Scientist, ShiftLeft Inc Hani Nemati, Software Engineer, Microsoft

https://www.youtube.com/watch?v=2SqPdM-YUaw
https://www.youtube.com/watch?v=2SqPdM-YUaw
https://www.youtube.com/watch?v=2SqPdM-YUaw
https://www.youtube.com/watch?v=2SqPdM-YUaw

Creating and opening a file

The creat() function creates a file with a given name. It is only maintained for compatibility with previous versions of
Linux.

The open() system function opens the file. The result is a natural number called the file descriptor. It is used in the
process as a file identifier; two files opened by the process have different descriptors. One file can be opened
twice by a process and then has two different descriptors.

The macro definition from the /fs/open.c defines sys_open() as do_sys_open().

10

SYSCALL_DEFINE2 creat(creat, const char __user *pathname, umode_t mode)
{
 int flags = O_CREAT | O_WRONLY | O_TRUNC;
 return do_sys_open(pathname, flags, mode);
}

asmlinkage long sys_open(const char __user *filename, int flags, umode_t mode);

SYSCALL_DEFINE3(open, const char __user *, filename, int, flags, umode_t, mode)
{
 return do_sys_open(filename, flags, mode);
}

SKIP

Creating and opening a file

The file descriptor is an index in the file descriptor table (also called the open file descriptor table).

The first step is to load the pathname of the file from the process address space into the kernel space.

Then free space in the file descriptor table is located. The descriptor with the smallest free number is
selected, it will be released if the file opening operation fails.

The pathname of the file is examined step by step to reach the corresponding inode of the file to be
opened.

If a file is to be created, the kernel checks if the file already exists and sends an error if necessary. The
error also appears if the calling process does not have access rights.

If the rights are correct, a new free inode is taken.

When finding a new inode, a lock is placed on the inode of the home directory so that a new inode can
be attached to it.

A position is created and filled in the file table (also called the open file table) associated with the given
file system. From there, the inode of the file can be reached. It also sets the current position in the
file.

Now the part of the file opening function is invoked, which depends on the particular file system.

11

12

VFS – operacje (źródło: Y.
Zhang)

Each of the processes reaches
through the private file
descriptor to own file structure.
Two dentry structures are used,
one for each hard link. Both
dentry structures point to the
same inode that identifies the
same superblock and with it the
same physical file on the disk.

Three different processes
opened the same file, two of
them using the same hard
link.

A hard link is another file name (alias). They are
implemented as directory entries, available under different
names, but associated with the same inode number

13

SKIP

14 VFS – operations (source: Kyu Ho Park)

Creating and opening a file

http://slideplayer.com/slide/12424836/
http://slideplayer.com/slide/12424836/
http://slideplayer.com/slide/12424836/

Reading from a file

The read() system function is used to read data from an open file.

Call chain (shortened):

• The macro definition from the /fs/read_write.c file defines sys_read() as vfs_read().

• Inside vfs_read there is a file system specific function call:

• For Ext* file systems, the read() function is not defined, and the read_iter() function is defined as
ext2_file_read_iter() (ext4_file_read_iter())

• Both functions call a function from the VFS level, generic_file_read_iter(), which does most of the work.

15

SYSCALL_DEFINE3(read, unsigned int, fd, char __user *, buf, size_t, count)

if (file->f_op->read)
 return file->f_op->read(file, buf, count, pos);
else if (file->f_op->read_iter) /* three other calls along the way, that's
 why change of parameters */
 return file->f_op->read_iter(&kiocb, &iter);

asmlinkage long sys_read(unsigned int fd, char __user *buf, size_t count);

SKIP

Reading from a file

The kernel in the loop performs the following actions until the reading is complete.

• Searches in the page cache for the page that contains data from the file. It may happen that the
kernel does not find such a page in the main memory – even if the file was read-ahead, the
corresponding page may have been removed from memory. The kernel reserves the free page
frame in memory and instructs to fill the frame with data from the corresponding block on the disk.

• If the frame is filled with current data, or if its content is currently being updated, the kernel initiates
loading the appropriate number of pages in advance. It waits until all previously initiated I/O
operations on the given frame have been completed and will be blocked.

• If the unlocked frame contains outdated data, then the kernel synchronously fills it with data from
the corresponding block on the disk.

• Copies data from the appropriate frame fragment to the process address space.

16

17

8 MB in 2 seconds
• 1 read syscall
• 5 other syscalls
• 5550 function calls

SDC2020: Tracing and Visualizing File System Internals with eBPF Superpowers
Suchakrapani Sharma, Staff Scientist, ShiftLeft Inc Hani Nemati, Software Engineer, Microsoft

https://www.youtube.com/watch?v=2SqPdM-YUaw
https://www.youtube.com/watch?v=2SqPdM-YUaw
https://www.youtube.com/watch?v=2SqPdM-YUaw
https://www.youtube.com/watch?v=2SqPdM-YUaw

Writing to a file

The write() system call is used to write data to an open file.

The file system independent part (vfs_write()) checks if the process has the permission to write to
the file, or whether the process has the right to access the memory area, to which the address
was passed as call parameter.

Now the function appropriate to the specific file system is being called; in case of Ext* it
is generic_file_write_iter().

The inode is locked to exclude simultaneous writes to the file.

Writing to a file, like reading, is done through the page cache. When writing full pages, the task is
simpler. However, if only a part of the page is updated, first the entire page has to be loaded into
the page cache, modified, and then marked for writing.

18

asmlinkage long sys_write(unsigned int fd, const char __user *buf, size_t count)

SKIP

Closing a file

The close() system function is used to close an open file.

The sys_close() function (calls __close_fd()) releases the descriptor so that it can be reassigned.

If the reference count of entries in the file table associated with this descriptor is greater than 1,
then the count decreases and the operation ends.

If the reference count is 1, then the position in the file table is released and the function is called
for the corresponding inode from the inode table.

In case other processes refer to this inode, its reference count is reduced.

Otherwise, the function frees the inode from memory and, if necessary, updates its contents on the
disk.

19

asmlinkage long sys_close(unsigned int fd)

SKIP

Asynchronous I/O – io_uring

Io_uring: started with a simple motivation: as devices get extremely fast, interrupt-driven work is no longer as
efficient as polling for completions — a common theme that underlies the architecture of performance-
oriented I/O systems.

Fundamentally, ring based communication channel.

20

Built around a ring buffer in memory shared between
user space and the kernel; that allows the
submission of operations (and collecting the
results) without the need to call into the kernel
in many cases.

Instances of SQ and CQ live in a shared memory
single-producer-single-consumer ring buffer
between the kernel and the application.

Showed up in 5.1 release in May 2019. Author Jens
Axboe.

liburing to the rescue.

How io_uring and eBPF Will Revolutionize Programming in Linux

https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/
https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/
https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/
https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/
https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/
https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/
https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/

Io_uring is primarily a way of performing operations asynchronously. User space can queue
operations in a ring buffer; the kernel consumes that buffer, executes the operations
asynchronously, then puts the results into another ring buffer (the "completion ring") as each
operation completes.

Initially, only basic I/O operations were supported, but the list of operations has grown over the
years.

It works with any kind of I/O: cached files, direct-access files, blocking sockets.

It is flexible and extensible: new opcodes are added at high rate.

Some of the operations that io_uring supports: read, write, send, recv, accept, openat, stat, and
even way more specialized ones like fallocate.

Faster IO through io_uring, Kernel Recepies, 2019, Jens Axboe

Efficient IO with io_uring, October 2019 (definitive guide).

Ringing in a new asynchronous I/O API, Jonathan Corbet, January 2020

The rapid growth of io_uring, Jonathan Corbet, January 2020

How io_uring and eBPF Will Revolutionize Programming in Linux, G. Costa, May 2020.
21

Asynchronous I/O – io_uring

https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/
https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://kernel.dk/io_uring.pdf
https://lwn.net/Articles/776703/
https://lwn.net/Articles/776703/
https://lwn.net/Articles/776703/
https://lwn.net/Articles/776703/
https://lwn.net/Articles/776703/
https://lwn.net/Articles/776703/
https://lwn.net/Articles/776703/
https://lwn.net/Articles/776703/
https://lwn.net/Articles/776703/
https://lwn.net/Articles/776703/
https://lwn.net/Articles/810414/
https://lwn.net/Articles/810414/
https://lwn.net/Articles/810414/
https://lwn.net/Articles/810414/
https://lwn.net/Articles/810414/
https://lwn.net/Articles/810414/
https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/
https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/
https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/
https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/
https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/
https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/
https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/

22 Faster IO through io_uring, Kernel Recepies, 2019, Jen Axboe

Asynchronous I/O – io_uring

https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/

Process creation in io_uring, Jonathan Corbet, December 20, 2024

io_uring can be thought of as a sort of alternative system-call interface for Linux that is inherently
asynchronous.

An important io_uring feature, for the purposes of implementing something like posix_spawn(), is
the ability to create chains of linked operations. When the kernel encounters a chain, it will only
initiate the first operation; the next operation in the chain will only run after the first completes.

The failure of an operation in a chain will normally cause all remaining operations to be canceled,
but a "hard link" between two operations will cause execution to continue regardless of the
success of the first of the two.

Linking operations in this way essentially allows simple programs to be loaded into the kernel for
asynchronous execution; these programs can run in parallel with any other io_uring operations
that have been submitted.

23

Process creation in io_uring

https://lwn.net/Articles/1002371/
https://lwn.net/Articles/1002371/
https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/
https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.youtube.com/watch?v=-5T4Cjw46ys

• This was just waiting to happen, if it hasn’t already happened earlier. In June 2023, Google
reported on its Security blog:

– in the past year, there has been a clear trend: 60% of the submissions exploited the io_uring
component of the Linux kernel[…]. Furthermore, io_uring vulnerabilities were used in all the
submissions which bypassed our mitigations.

– To protect our users, we decided to limit the usage of io_uring in Google products.

• LWN waved a big red flag four years ago, so the only surprise here is that the rootkit is issued in
public this much later, and apparently still works.

 Auditing io_uring, Jonathan Corbet, June 3, 2021

24

But … security

New Linux Rootkit, Bruce Schneier, April 24, 2025

• The company has released a working rootkit called “Curing” that
uses io_uring, a feature built into the Linux kernel, to stealthily
perform malicious activities without being caught by many of the
detection solutions currently on the market.

https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-linux.html
https://lwn.net/Articles/858023/
https://lwn.net/Articles/858023/
https://lwn.net/Articles/858023/
https://www.schneier.com/blog/archives/2025/04/new-linux-rootkit.html
https://www.schneier.com/blog/archives/2025/04/new-linux-rootkit.html

VFS data structures

25

VFS presents an object-oriented approach to the file system and provides a uniform interface.

1. Structure files_struct: Stores process-local information about open file descriptors and file handling. The
object exists only in the main memory.

2. Structure fs_struct: Stores process-local filesystem information. The object exists only in the main
memory.

3. Structure file: Stores information about the relationship of the process to the open file. The object exists
only in the main memory.

4. Structure dentry: Stores information about the relationship between directory entry and file. Each disk
file system stores this information on the disk in its own way.

5. Inode: File descriptor containing all basic information about the file. For disk file systems, this object has
its equivalent in the form of a file control block stored on disk. Each inode has an inode number
associated with it that uniquely identifies the file in the file system.

6. Structure address_space: The main structure of the page cache. Maps all pages of one file (that is, the
image of the file's address space in memory) to disk blocks (that is, the image of the file's address space
on the disk).

7. Superblock: Stores mounted file system information. For disk file systems, the object has its equivalent in
the form of a file system control block stored on disk.

26
VFS – objects (source: Kaustubh Joshi)

VFS data structures

VFS data structures are described in
Documentation/filesystems/vfs.rst

For efficiency reasons, some of
the structures stored on the disk
are temporarily held in caches in
the main memory.
Linux maintains:

• dentry cache,

• inode cache,

• page cache

http://www.cs.columbia.edu/~krj/os/lectures/L21-LinuxVFS.pdf
http://www.cs.columbia.edu/~krj/os/lectures/L21-LinuxVFS.pdf
http://www.cs.columbia.edu/~krj/os/lectures/L21-LinuxVFS.pdf
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/vfs.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/vfs.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/vfs.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/vfs.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/vfs.rst

Process data structures with file information –
fs_struct

Fields in the process descriptor (task_struct) describing the relationship of the process with the files.

27

struct fs_struct *fs; /* file system information */
struct files_struct *files; /* information about open files */

struct path {
 struct vfsmount *mnt;
 struct dentry *dentry;
} __randomize_layout;

struct fs_struct {
 int users; /* user count */
 spinlock_t lock; /* per-structure lock */
 seqcount_t seq; /* Reader/writer consistent mechanism */
 /* without starving writers */
 int umask;
 int in_exec; /* currently executing a file */
 struct path root, pwd;
} __randomize_layout;

The main fields are a link to a
description of the current process
directory (pwd) and the root of the
file system (root), which create a
process’s context in the file system.

The mnt field is an object that
describes the mounted file system.

The users field specifies the number of processes sharing the same fs_struct structure (this number
increases when calling do_fork() with the CLONE_FS flag set).

28

static int copy_fs(unsigned long clone_flags, struct task_struct * tsk)
{
 struct fs_struct *fs = current->fs;
 if (clone_flags & CLONE_FS) {/* tsk->fs is already what we want */
 spin_lock(&fs->lock);
 if (fs->in_exec) {
 spin_unlock(&fs->lock);
 return -EAGAIN;
 }
 fs->users++;
 spin_unlock(&fs->lock);
 return 0;
 }
 tsk->fs = copy_fs_struct(fs);
 if (!tsk->fs)
 return -ENOMEM;
 return 0;
}

The copy_fs()
function called inside
do_fork() illustrates how this
field is handled.

In /kernel/fork.c

Process data structures with file information –
fs_struct

Contains an array indexed by natural numbers that match the descriptors of
open files. The entry value in this array is a link to the global (within the
file system) open file table.

The count field – the number of processes sharing the same files_struct
structure (increases when the function do_fork() is called with
the CLONE_FILES flag set).

The files_struct contains both an instance of the fdtable, and a pointer to this
structure, because synchronization is provided using the RCU mechanism,
so that reading does not require a lock.

– The max_fds field specifies the current maximum number of file objects
and file descriptors that the process can handle (up to rlimit).

– fd is an array of pointers to file structures. The file descriptor passed to the
user process is the index in this table. The current size of the array is
defined by max_fds.

– open_fds is a pointer to a bit array. The table contains one bit for each
descriptor; 1 means the descriptor is in use, 0 means it is free. The next_fd
field suggests where to start looking for the next free descriptor.

– close_on_exec is also a pointer to a bit array, it indicates these files that
should be closed on the exec() system call.

29

#define BITS_PER_LONG 32 // or 64
#define NR_OPEN_DEFAULT BITS_PER_LONG

struct fdtable {
 unsigned int max_fds;
 struct file __rcu **fd; /* current fd table*/
 unsigned long *close_on_exec;
 unsigned long *open_fds;
 struct rcu_head rcu;
};
struct files_struct {
 atomic_t count;
 struct fdtable __rcu *fdt;
 struct fdtable fdtab;
 spinlock_t file_lock; // slightly simplified
 int next_fd;
 unsigned long close_on_exec_init[1];
 unsigned long open_fds_init[1];
 struct file __rcu * fd_array[NR_OPEN_DEFAULT];
};

Process data structures with file information –
files_struct

30

files_struct and expand_fdtable()

 (source: JMD)

The fdtable i files_struct structures do not duplicate
information – elements of the files_struct
structures are real instances of certain data
structures, while the elements of the fdtable
structure are pointers to them.

The fd, open_fds and close_on_exec fields are
initialized to point to the appropriate structures
in files_struct.

Initially, fdtable is placed in files_struct.

After expanding fdtable, the files->fdt points to the
new structure.

When a process is created, fd_array
[NR_OPEN_DEFAULT] is preallocated for the first
32 (64) files to be open.

When the kernel wants to open a file and there is not
enough space in files_struct, it calls
the expand_files() function.

The function checks if an extension is possible and if
so, calls the expand_fdtable() function.

31

static int expand_fdtable
 (struct files_struct *files, int nr)
{
 struct fdtable *new_fdt, *cur_fdt;

 spin_unlock(&files->file_lock);
 new_fdt = alloc_fdtable(nr);
 spin_lock(&files->file_lock);
 ...
 cur_fdt = files_fdtable(files);
 copy_fdtable(new_fdt, cur_fdt);
 ...
 rcu_assign_pointer(files->fdt, new_fdt);
 if (cur_fdt != &files->fdtab)
 call_rcu(&cur_fdt->rcu, free_fdtable_rcu);
 ...
 return 1;
}

Simplified version

The alloc_fdtable() allocates an array of file descriptors
with the maximum number of possible entries and
reserves memory for enlarged bitmaps. It then copies
the previous contents of the file descriptor table into
the new enlarged table.

Switching the pointer files->fdt to the new instance is
supported by the RCU rcu_assign_pointer() function.
Next the memory occupied by the old file descriptor
table can be freed.

All elements of the file descriptor table have been
intentionally placed in a separate fdtable structure so
that they can be read atomically without locking,
using the RCU mechanism.

The fdtable structure is released using the RCU, and as a
result readers – without locking – can see either the
old fdtable or the new one.

The detailed description is included in Documentation/filesystems/files.rst.

Process data structures with file information –
files_struct

https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/files.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/files.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/files.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/files.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/files.rst

32

The process can have NR_OPEN (usually 1024) open files
(this limit can be increased at run time if the process has
superuser privileges).

Thanks to dup() and fork() system calls, different
descriptors can refer to the same open file.

VFS data structures (source:
Internet)

Process data structures with file information

Process data structures with file information – file

33

struct llist_node {
 struct llist_node *next;
};

struct file {
 file_ref_t f_ref;
 spinlock_t f_lock;
 fmode_t f_mode;
 const struct file_operations *f_op;
 struct address_space *f_mapping;
 struct inode *f_inode;
 unsigned int f_flags;
 struct path f_path;
 loff_t f_pos;
 union {
 struct llist_node fu_llist;
 …..
 } ;

struct path {
 struct vfsmount *mnt;
 struct dentry *dentry;
} __randomize_layout;

Simplified version

The file structure describes one element in the open file table.
Each call to open() assigns a new position in this table to the file being
opened.
Positions can be shared (f_ref greater than 1) – this is achieved by using
dup() or fork() .

The fu_llist links a structure to one (and only one) of the lists:

– list of all open files in a given file system (identified by its
superblock) or

– list of unused structures.

The dentry field contains a link to the dentry structure of this file, which is
created when the path name of the file is mapped to the inode
number.

The f_mode field stores information about the mode in which the file was
opened.

The f_pos field contains the current position in the file. In the current
version for i386, it is 64 bits long (correlated with the maximum file
size allowed). This field must be placed in this structure, because
many processes can have access to the same file at the same time.

The f_op field contains a link to an array of pointers to the methods that
can be used on this file. This field obtains the value from
inodei_fop.

In version 6.12 the size of struct file within the kernel has been reduced from 232 bytes to 184 (3 cachlines).

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3352633ce6b2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3352633ce6b2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3352633ce6b2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3352633ce6b2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3352633ce6b2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3352633ce6b2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3352633ce6b2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3352633ce6b2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3352633ce6b2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3352633ce6b2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3352633ce6b2
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=3352633ce6b2

34

Type iov_iter contains the address and the length of the user mode buffer that shall receive the data read from the
file. Type kiocb is used to keep track of the completion status of an ongoing synchronous or asynchronous I/O
operation.

struct file_operations {

 loff_t (*llseek) (struct file *, loff_t, int);

 ssize_t (*read) (struct file *, char *, size_t, loff_t *);

 ssize_t (*write) (struct file *, const char *, size_t, loff_t *);

 ssize_t (*read_iter) (struct kiocb *, struct iov_iter *);

 ssize_t (*write_iter) (struct kiocb *, struct iov_iter *);

 int (*readdir) (struct file *, void *, filldir_t);

 unsigned int (*poll) (struct file *, struct poll_table_struct *);

 int (*ioctl) (struct inode *, struct file *, unsigned int, unsigned long);

 int (*mmap) (struct file *, struct vm_area_struct *);

 int (*open) (struct inode *, struct file *);

 int (*flush) (struct file *, fl_owner_t id);

 int (*fsync) (struct file *, struct dentry *, int datasync);

 int (*lock) (struct file *, int, struct file_lock *);

} __randomize_layout;

SKIP

Process data structures with file information – file

35 VFS data structures (source: Qiang Zeng)

https://cis.temple.edu/~qzeng/cis5512-fall2017/project3.html
https://cis.temple.edu/~qzeng/cis5512-fall2017/project3.html
https://cis.temple.edu/~qzeng/cis5512-fall2017/project3.html

Process data structures with file information – inode

36

Inode, i.e. the file descriptor, is loaded to main memory when opening the file and extended with
additional fields (e.g. pointers and inode number). Size – 568 bytes.

Type Name Description

umode_t i_mode

File type: regular (IS_REG), directory (IS_DIR), named pipe

(IS_FIFO), special character, special block, symbolic link, socket, 0

when free; also file access rights for everyone, the user's group

and the user

kuid_t i_uid file owner ID

kgid_t i_gid file owner group ID

unsigned int i_flags
flags specifying how to use the inode as well as the file it

describes (e.g. S_WRITE – to write ...)

const struct

inode_operations
*i_op

set of operations on inodes closely related to the file system used

– e.g. EXT2, EXT4

struct super_block *i_sb
pointer to the superblock of the device to which the inode

belongs

struct

address_space
*i_mapping pointer to the address_space object associated with this file

37

struct inode_operations {

 struct dentry * (*lookup) (struct inode *,struct dentry *, unsigned int);

 int (*readlink) (struct dentry *, char __user *,int);

 int (*create) (struct inode *,struct dentry *, umode_t, bool);

 int (*link) (struct dentry *,struct inode *,struct dentry *);

 int (*unlink) (struct inode *,struct dentry *);

 int (*symlink) (struct inode *,struct dentry *,const char *);

 int (*mkdir) (struct inode *,struct dentry *,umode_t);

 int (*rmdir) (struct inode *,struct dentry *);

 int (*mknod) (struct inode *,struct dentry *,umode_t,dev_t);

 int (*rename) (struct inode *, struct dentry *,

 struct inode *, struct dentry *, unsigned int);

 int (*setattr) (struct dentry *, struct iattr *);

 int (*getattr) (const struct path *, struct kstat *, u32, unsigned int);

 ...

} ____cacheline_aligned; Simplified version

SKIP

Process data structures with file information – inode

38

Typ Nazwa Opis

unsigned long i_ino inode number in the disk inode table

dev_t i_rdev
indicates the actual device (for disk device, the index in the
struct block device array)

loff_t i_size file size in bytes (64 bits, i.e. 264)

struct timespec i_atime time of last access to the file

struct timespec i_mtime time the file was last modified

struct timespec i_ctime file creation time

unsigned short i_bytes number of bytes in the last block of the file

blkcnt_t i_blocks number of disk blocks occupied by the file

struct hlist_node i_hash
Pointers connecting the inode to a list with other located in
the hash table under the same number (1)

struct list_head i_lru inode LRU list (2)

struct list_head i_sb_list pointers maintaining a list of inodes of one superblock (3)

Process data structures with file information – inode

39

1. Each inode is in a hash table of bidirectional lists, inode_hashtable. It is identified by its number
and device number.

 A hash table allows quick access to an inode in memory.

 Each inode can be at one time only in a hash table, only in one file system (represented by a
superblock), and in one and only one of the lists of used inodes, unused inodes and dirty inodes.

/*
 * Add an inode to the inode hash for this superblock.
 */
void __insert_inode_hash(struct inode *inode, unsigned long hashval)
{
 struct hlist_head *b = inode_hashtable + hash(inode->i_sb, hashval);

 spin_lock(&inode_hash_lock);
 spin_lock(&inode->i_lock);
 hlist_add_head(&inode->i_hash, b);
 spin_unlock(&inode->i_lock);
 spin_unlock(&inode_hash_lock);
}

The memory can contain
at most one copy of a
given disk inode.

Process data structures with file information – inode

40

2. Every unused and clean inode is on the LRU list of its superblock
 list_lru_add_obj(&inode->i_sb->s_inode_lru, &inode->i_lru)

 (see inode_add_lru(struct inode *inode)

3. In addition, each inode is on a bidirectional list of all inodes of its superblock (originating from the
same file system). The list is indicated by the s_inodes field of the superblock, and the i_sb_list
field of the inode is used to create links.

 Used e.g. in the invalidate_inodes() function which attempts to free all inodes for a given
superblock.

/**
 * Add an inode to the superblock list of inodes
 */
void inode_sb_list_add(struct inode *inode)
{
 spin_lock(&inode->i_sb->s_inode_list_lock);
 list_add(&inode->i_sb_list, &inode->i_sb->s_inodes);
 spin_unlock(&inode->i_sb->s_inode_list_lock);
}

Process data structures with file information – inode

https://elixir.bootlin.com/linux/latest/C/ident/list_lru_add_obj
https://elixir.bootlin.com/linux/latest/C/ident/inode
https://elixir.bootlin.com/linux/latest/C/ident/i_sb
https://elixir.bootlin.com/linux/latest/C/ident/s_inode_lru
https://elixir.bootlin.com/linux/latest/C/ident/inode
https://elixir.bootlin.com/linux/latest/C/ident/i_lru

41

Typ Nazwa Opis

struct hlist_head i_dentry list of all dentry structures related to this inode

struct mutex i_mutex mutex for locking

const struct
file_operations

*i_fop set of file operations

struct address_space i_data the address_space object of this file

struct list_head i_devices
for a block and character device – a list of inodes that can be used
to access this device

struct
pipe_inode_info

i_pipe (union field) used when the inode describes pipe

struct block_device *i_bdev (union field) pointer to the block device handler

struct cdev *i_cdev (union field) pointer to the character device handler

unsigned long i_state

If I_DIRTY_SYNC, I_DIRTY_DATASYNC or I_DIRTY_PAGES, the inode
is dirty; if I_LOCK, then the inode is in the process of transferring, if
I_FREEING is in the process of releasing, I_NEW – newly allocated,
unfilled

void *i_private private file system or device pointer

Process data structures with file information – inode

Process data structures with file information

42 VFS – objects (source: Kaustubh Joshi)

http://www.cs.columbia.edu/~krj/os/lectures/L21-LinuxVFS.pdf
http://www.cs.columbia.edu/~krj/os/lectures/L21-LinuxVFS.pdf
http://www.cs.columbia.edu/~krj/os/lectures/L21-LinuxVFS.pdf

Process data structures with file information – superblock

43

Contains basic information about the mounted
file system and corresponds to the physical
disk superblock.

struct super_operations {

 struct inode *(*alloc_inode)

 (struct super_block *sb);

 void (*destroy_inode)(struct inode *);

 void (*free_inode)(struct inode *);

 void (*dirty_inode) (struct inode *, int flags);

 int (*write_inode) (struct inode *, struct writeback_control *wbc);

 int (*drop_inode) (struct inode *);

 void (*put_super) (struct super_block *);

 int (*sync_fs)(struct super_block *sb, int wait);

 int (*statfs) (struct dentry *, struct kstatfs *);

 void (*umount_begin) (struct super_block *);

 ...

Each modification of the superblock
sets the appropriate flag. Linux
periodically searches for superblocks
and updates disk information.

struct super_block {
 struct list_head s_list;
 dev_t s_dev;
 unsigned char s_blocksize_bits;
 unsigned long s_blocksize;
 loff_t s_maxbytes; /* Max file size */
 struct file_system_type *s_type;
 const struct super_operations *s_op;
 struct dentry *s_root;
 int s_count;
 struct list_lru s_dentry_lru;
 struct list_lru s_inode_lru;
 struct list_head s_inodes; /* all inodes */

Simplified version

Simplified version

Process data structures with file information

44 VFS – objects (source: Sergey Klyaus)

https://myaut.github.io/dtrace-stap-book/kernel/fs.html
https://myaut.github.io/dtrace-stap-book/kernel/fs.html
https://myaut.github.io/dtrace-stap-book/kernel/fs.html

Pipe vs FIFO

45

Inode of the pipe in field i_pipe has a pointer to the pipe_inode_info object.

struct pipe_inode_info {
 struct mutex mutex; // mutex protecting the whole thing
 wait_queue_head_t rd_wait, wr_wait; // wait point in case of empty/full pipe
 unsigned int head; // the point of buffer production
 unsigned int tail; // the point of buffer consumption
 unsigned int ringsize; // total number of buffers (should be a power of 2)
 unsigned int readers; // number of current readers of this pipe
 unsigned int writers; // number of current writers of this pipe
 unsigned int files; // number of struct file referring this pipe
 struct page *tmp_page; // cached released page
 struct pipe_buffer *bufs; // the circular array of pipe buffers
};

Simplified version

46

A pipe can have up to 16 buffers, each of them is of the pipe_buffer type, together they form a circular
buffer.

#define PIPE_DEF_BUFFERS 16

struct pipe_buffer {
 struct page *page; // the page containing the data for the pipe buffer
 unsigned int offset, len; // offset of data inside the page
 const struct pipe_buf_operations *ops; // operations associated with this buffer
 unsigned int flags; // among others 'is on the LRU list', 'atomically mapped'
 unsigned long private; // private data owned by the ops
};

Pipes are implemented as VFS objects and have no representation on disk file systems. Their inodes are part of
the special pipefs file system, which has no mount point in the system directory tree, so it is not visible to users.

The disadvantage of pipes is that an existing link cannot be opened, so it cannot be shared by any two processes
(but only by processes with a common ancestor).

Pipe vs FIFO

47 Pipe (source: Divye Kapoor)

FIFOs are similar to pipes in that they
are implemented as buffers in
memory.

The difference is that they FIFOs
have inodes in the disk file system
and are mounted in the system
directory tree (not pipefs).

FIFOs are also implemented using the
pipe_inode_info structure (and the
pipe_read() and pipe_write()
functions).

Pipe vs FIFO

https://www.slideshare.net/divyekapoor/linux-kernel-implementation-of-pipes-and-fifos
https://www.slideshare.net/divyekapoor/linux-kernel-implementation-of-pipes-and-fifos
https://www.slideshare.net/divyekapoor/linux-kernel-implementation-of-pipes-and-fifos

