
File management
Virtual file system: mounting,
dentry cache, pathname lookup,

inodes in memory

Table of contents

• Registering file systems

• Mounting file systems

• Dentry structure

• Dentry cache

• Pathname lookup

• Managing inodes in memory
– function ilookup

– function iput

• Relations between VFS data structures

2

Registering file systems

3

The file system is registered at system startup or when the kernel module supporting the file system is
being loaded.

Registered file systems are represented by file_system_type structures, combined into a linear list,
pointed to by the variable file_systems. New objects are placed at the end of the list.

Some fields of the file_system_type structure:

type field description

const char * name File system name

int fs_flags Mount flags

struct module * owner Pointer to the module implementing the file system

struct file_system_type * next Pointer to the next item in the list

hlist_head fs_supers List of superblocks of this file system

static struct file_system_type *file_systems;

Registering file
systems

File system registration is done by register_filesystem().

The unregister_filesystem() removes the given file system
from the list of registered systems.

You can see all registered filesystems in the file
/proc/filesystems.

The screen to the right shows the filesystems on ‘students’.
If a filesystem is marked with "nodev", this means that it
does not require a block device to be mounted (e.g.
virtual filesystem, network filesystem).

4

int register_filesystem(struct file_system_type * fs)
Int unregister_filesystem(struct file_system_type * fs)

Mounting file systems

5 Hierarchical directory structure (source: Silberschatz)

To mount the file system in an existing directory structure,
use the sys_mount() system call (calling do_mount).

The reverse action is performed by the sys_umount()
function (calling do_umount).

Since Linux 2.4 a single filesystem can be mounted at
multiple mount points, and multiple mounts can be
stacked on the same mount point (see man pages for
mount()).

asmlinkage long
sys_mount(char * dev_name, char * dir_name, char *
type, unsigned long flags, void * data)

asmlinkage long sys_umount(char * name, int flags)

http://man7.org/linux/man-pages/man2/mount.2.html
http://man7.org/linux/man-pages/man2/mount.2.html

Mounted filesystems and dentry cache

The example filesystem tree has two mounted
filesystems, with roots r1 and r2, respectively.
The filesystem r2 is mounted on directory b.
The file g has not been referenced recently
and therefore is not present in dcache.

6
(source: Scaling dcache with RCU, Paul E. McKenney, 2004)

Mounted filesystems

The vfs1 structure references the
root dentry r1 both as the
mnt_mountpoint and the
mnt_root, because this filesystem
is the ultimate root of the
filesystem tree.

The vfs2 structure references
dentry b as its mnt_mountpoint
and r2 as its mnt_root.

When the mount hash table
lookup returns a pointer to vfs2,
the mnt_root field quickly locates
the root of the mounted filesystem.

VFS Mount tree

http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124

The mounted file system is represented by struct
vfsmount.

Once struct mountpoint used to be a part of struct
dentry – the list of all mounts on given mountpoint.
Since it doesn't make sense to bloat every dentry for
the sake of a very small fraction that will ever be
anyone's mountpoints, that thing got separated.

7

struct vfsmount {
 struct dentry *mnt_root; /* root of the mounted tree */
 struct super_block *mnt_sb; /* pointer to superblock */
 int mnt_flags;
} __randomize_layout;

struct mountpoint {
 struct hlist_node m_hash;
 struct dentry *m_dentry;
 struct hlist_head m_list; /* mounts for the same mountpoint */

 int m_count;
};

struct mount {
 struct hlist_node mnt_hash; /* a node in the mount_hashtable */

 struct mount *mnt_parent; /* parent mount */
 struct dentry *mnt_mountpoint; /* mount point */
 struct vfsmount mnt; /* filesystem */
 struct list_head mnt_mounts; /* list of children, anchored here */
 struct list_head mnt_child; /* and going through their mnt_child */
 struct list_head mnt_list;
 struct mountpoint *mnt_mp; /* where is it mounted */
 struct hlist_node mnt_mp_list; /* list mounts with */
 ... /* the same mountpoint */
};

Simplified version

Why does mount structure
has two mountpoint
fields? (Al Viro, 2019)

Mounted filesystems

m->mnt_mp->m_dentry == m->mnt_mountpoint

https://lwn.net/Articles/793073/
https://lwn.net/Articles/793073/
https://lwn.net/Articles/793073/
https://lwn.net/Articles/793073/
https://lwn.net/Articles/793073/
https://lwn.net/Articles/793073/

Mounted filesystems

The mounts in Linux are in a tree structure. The parent
mount can have multiple children.

mnt_mounts – head of a list including all filesystem
descriptors mounted on directories of this filesystem.

8
(source: Linux Namespaces (Container Technology), Ryan Zeng, 2021)

At the same time, multiple different
file systems can be mounted to the
same mount point. The last file
system mounted is the effective one. • dentry which is a mountpoint is marked with DCACHE_MOUNTED flag

• each such dentry has a struct mountpoint instance (exactly one)
• struct mountpoint has a pointer to its dentry (->m_dentry)
• struct mountpoint instances are hashed, using ->m_dentry
 as search key
• struct mount has reference to struct mountpoint (->mnt_mp)
• when ->mnt_mp is non-NULL we are guaranteed that
 m->mnt_mp->m_dentry == m->mnt_mountpoint

static struct hlist_head *mount_hashtable;

static struct hlist_head *mountpoint_hashtable;

https://medium.com/geekculture/linux-namespaces-container-technology-a09da0813247
https://medium.com/geekculture/linux-namespaces-container-technology-a09da0813247
https://medium.com/geekculture/linux-namespaces-container-technology-a09da0813247
https://medium.com/geekculture/linux-namespaces-container-technology-a09da0813247
https://medium.com/geekculture/linux-namespaces-container-technology-a09da0813247
https://medium.com/geekculture/linux-namespaces-container-technology-a09da0813247
https://medium.com/geekculture/linux-namespaces-container-technology-a09da0813247

All mounted file systems are placed in a hash table pointed to by
the variable mount_hashtable defined in /fs/namespace.c.

The mount_hashtable data structure is used to map the
mountpoint dentry to the struct vfsmount of the mounted
filesystem.

This mapping hashes the pointer to the mountpoint dentry and
the pointer to the struct vfsmount for the filesystem containing
the mountpoint.

9

Instead of struct dentry having a list pointer, all the mountpoints are stored in a hash table. The
m_dentry field is used to distinguish different mountpoints that fall into the same hash bucket.

Struct mount holds a reference to struct mountpoint mostly for cleanup.

(source: Scaling dcache with RCU, Paul E. McKenney, 2004)

Mounted filesystems and dentry cache

http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124

10 (source: Adrian Huang, Virtual File System, 2022)

Mount before mounting a new ext4 file system

Information about mounted file systems: cat /proc/mounts
List all the mounted filesystems in the system: findmnt

https://www.slideshare.net/AdrianHuang/linux-kernel-virtual-file-system
https://www.slideshare.net/AdrianHuang/linux-kernel-virtual-file-system
https://www.slideshare.net/AdrianHuang/linux-kernel-virtual-file-system

11 (source: Adrian Huang, Virtual File System, 2022)

Mount after mounting a new ext4 file system

mount(”/dev/loop0”, ”/adrian/mnt/”, ”ext4”, MS_SILENT, NULL)

https://www.slideshare.net/AdrianHuang/linux-kernel-virtual-file-system
https://www.slideshare.net/AdrianHuang/linux-kernel-virtual-file-system
https://www.slideshare.net/AdrianHuang/linux-kernel-virtual-file-system

Dentry structure

Users identify files by path names (one file can have multiple names), the system identifies files
by inode numbers.

The path name components (relative names) and their corresponding inode numbers are stored
in directories.

A directory is treated as a file whose contents are a list of directory entries.

The operation on the file requires translating the human-readable name to the system-readable
inode number.

This, in turn, requires reading the appropriate directory file.

To speed up access to directory entries, some of them are stored in memory as dentry objects.

Dentry objects are created for each component of the path searched by the process, e.g. if we
use the /etc/passwd file, the kernel will create three objects, for /, etc, passwd, respectively.

The directory entry is represented by the dentry structure.

12

13

struct qstr { /* quick string - slightly simplified */
 u32 hash;
 u32 len; /* name length*/
 const unsigned char * name; /* name*/
struct dentry { /* slightly simplified*/
 unsigned int d_flags;
 seqcount_t d_seq; /* per dentry seqlock */
 struct hlist_bl_node d_hash; /* hash table */
 struct dentry * d_parent; /* parent directory dentry object */
 struct qstr d_name; /* name */
 struct inode * d_inode; /* inode */
 unsigned char d_iname[DNAME_INLINE_LEN]; /* short name*/

 struct lockref d_lockref; /* per-dentry lock and refcount */
 const struct dentry_operations *d_op; /* dentry operations */
 struct super_block * d_sb; / * dentry tree root */
 struct list_head d_lru; /* LRU list of currently unused items */
 struct list_head d_child; /* list of children from the parent directory (our siblings) */
 struct list_head d_subdirs; /* list of our children (files and subdirectories) */
 union {
 struct list_head d_alias; /* list of inode aliases */
 struct rcu_head d_rcu;
 } d_u; Simplified version

struct lockref { /* eight bytes */
 union {
#if USE_CMPXCHG_LOCKREF
 aligned_u64 lock_count;
#endif
 struct {
 spinlock_t lock;
 int count;
 };
 };
};

From 3.12

SKIP
Lockref allows mostly-lockless manipulation of a reference count while still
respecting an associated lock.
u64 cmpxchg(u64 *location, u64 old, u64 new)

lockref, by combining the
spinlock and the reference
count into a single eight-
byte quantity, is able to
considerably reduce that
cost of cache-line
bouncing when tracking
the lifecycle of the
reference count.

cmpxchg(location, old, new);

Dentry structure

The dentry object has no equivalent on disk, it doesn't need any field to indicate that the object has been
modified.

Each object can be in one of four states:

– free – it does not contain any important information, it is not used by VFS (memory is managed
by a slab allocator).

– unused – unused by the kernel, d_lockref.count pointer is zero, but the d_inode field still points
to the inode.

– used – used by the kernel, the d_lockref.count pointer is positive, and the d_inode field points to
the inode.

– empty (negative) – no inode exists for this dentry entry because either the inode on the disk was
deleted or a dentry entry was created for the nonexistent file. The d_inode field is NULL, but the
dentry object still exists, accelerating future lookup operations.

14

Dentry objects are linked into a directory tree using fields:
d_parent, d_child, d_subdirs
Each directory entry is associated with a certain inode
(d_inode field).

Dentry structure

From Pathname lookup in Linux about dentry->d_lockref.

The association between a dentry and its inode is fairly permanent. For example, when a file is
renamed, the dentry and inode move together to the new location. When a file is created the
dentry will initially be negative (i.e. d_inode is NULL), and will be assigned to the new inode as
part of the act of creation.

When a file is deleted, this can be reflected in the cache either by setting d_inode to NULL, or by
removing it from the hash table used to look up the name in the parent directory. If the dentry
is still in use, the second option is used, as it is perfectly legal to keep using an open file after it
has been deleted; having the dentry around helps. If the dentry is not otherwise in use (i.e. if
the refcount in d_lockref is one), only then will d_inode be set to NULL. Doing it this way is
more efficient for a very common case.

So as long as a counted reference is held to a dentry, a non-NULL d_inode value will never be
changed.

15

SKIP

https://lwn.net/Articles/649115/

Dentry operations

The methods associated with the directory entry object are described by the dentry_operations structure
whose address is stored in the d_op field. Some dentry operations:

d_revalidate – validates the directory entry object before using it when translating the file path; for most
local file systems the function is not provided (the pointer is NULL), but for network file systems it is
needed because the file may change on the server and the client will not know about it;

d_delete – called when deleting the last reference to a dentry object;

d_release – called when the dentry object is to be passed to the slab allocator;

d_iput – called when the dentry object becomes empty, meaning it loses its inode;

d_hash – hash function (called when adding a dentry to the hash table);

d_compare – compares the name of dentry with the name provided by qstr.

Most filesystems treat names as uninterpreted strings of bytes so the default compare and hash functions are
the common case. A few filesystems define these to handle case-insensitive names but that is not the
norm.

16

SKIP

Dentry cache

The mountpoint (dentry b) does not reference the mounted
filesystem directly. Instead, the mountpoint's DCACHE_MOUNTED
flag is set, which influences dcache look up.

17

Dcache representation of the
example filesystem

(source: Scaling dcache with RCU,
Paul E. McKenney, 2004)

#define DCACHE_MOUNTED 0x00010000 /* is a mountpoint */

static inline bool d_mountpoint(const struct dentry *dentry)
{
 return dentry->d_flags & DCACHE_MOUNTED;
}

http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124

Dentry cache

18

Dentry hash table
(source: Scaling dcache with RCU, Paul E.

McKenney, 2004)

The dentry objects are placed in the dentry_hashtable (defined in
/fs/dcache.c), whose elements are doubly-linked cyclic lists (d_hash
field). This mechanism works for all file systems used in Linux.

__d_lookup() hashes the parent directory's dentry pointer and the
child's name, searching the dentry hash table for the corresponding
dentry.

All unused dentries are included in the doubly-linked LRU list, (d_lru
field) the last released object is placed at the head of the list, the
least recently used objects are placed near the end. When the list is
to be shortened, the objects are removed from the end.

Each used object is inserted into the doubly-linked list (d_alias field)
indicated by the i_dentry field of the inode (a list is needed, because
the inode can be associated with several hard links).

Any dentry in the LRU list usually is in the hash table as well.

http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124

Dentry cache – main functions

• d_add – add a dentry to its parents hash list and then calls d_instantiate().

• d_instantiate – add a dentry to the alias hash list for the inode and update the d_inode member. The
i_count member in the inode structure should be set/incremented.

• d_delete – delete a dentry. If there are no other open references to the dentry then the dentry is turned
into a negative dentry (the d_iput() method is called). If there are other references, then d_drop() is called
instead.

• d_drop – unhash a dentry from its parents hash list. A subsequent call to dput() will deallocate the dentry if
its usage count drops to 0.

• d_lookup – look up a dentry given its parent and path name component. It looks up the child of that given
name from the dcache hash table. If it is found, the reference count is incremented and the dentry is
returned. The caller must use dput() to free the dentry when it finishes using it.

• dget – open a new handle for an existing dentry (this just increments the usage count).

• dput – close a handle for a dentry (decrements the usage count). If the usage count drops to 0, and the
dentry is still in its parent's hash, the d_delete method is called to check whether it should be cached. If it
should not be cached, or if the dentry is not hashed, it is deleted. Otherwise cached dentries are put into
an LRU list to be reclaimed on memory shortage.

19

SKIP

To convert the path name of a file to an inode
number, the system must navigate to all
intermediate directories.

The link_path_walk() function does it (from the
file fs/namei.c). It is used by open(), stat() ,
mkdir().

The input parameters :

– name – path name,

– nameidata object.

Starting point:

– currentfspwd or

– currentfsroot

The result of the function:

– 0 for success or a number different from 0
for error,

– completed dentry field in the
structure nd.

20

struct path {
 struct vfsmount *mnt;
 struct dentry *dentry;
 };

 struct nameidata {
 struct path path;
 struct qstr last;
 struct path root;
 struct inode *inode; /* path.dentry.d_inode */
 unsigned int flags;
 unsigned depth;
 int total_link_count;
 struct saved {
 struct path link;
 const char *name;
 unsigned seq;
 ...
 } *stack, internal[EMBEDDED_LEVELS];
 ...
 };
static int link_path_walk(const char *name,
 struct nameidata *nd)

Simplified version

Pathname lookup

Pathname lookup

The function uses the nameidata data structure passed as a parameter according to the following
scheme:

– (START) get the inode address corresponding to the last considered element of the path name;

– check if the process has the permission to execute;

– get the next element from the path name;

– consider specific cases of names . and ..;

– search the cache directory entries for the dentry object corresponding to the last one (if it is
not in the cache, the directory has to be loaded from the disk and a new dentry object
created);

– consider specific cases of mount points and symbolic links;

– if it's not over then go back to (START).

If the current inode is the point where a file system was mounted, the current inode changes to the
root inode of the mounted file system.

Symbolic links (files containing path names of other files) require special treatment. To prevent a
function from looping, symbolic links are counted when searching names and signals an error
when their upper limit is exceeded.

 21

Path walking synchronisation

While one process is looking up a pathname, another might be making changes that affect that lookup.
E.g. if "a/b" were renamed to "a/c/b" while another process were looking up "a/b/..", that process
might successfully resolve on "a/c". Most races are much more subtle, and a big part of the task of
pathname lookup is to prevent them from having damaging effects.

Prior to 2.5.10, dcache_lock was acquired in d_lookup (dcache hash lookup) and thus in every component
during path look-up.

Since 2.5.10 onwards, fast-walk algorithm changed this by holding the dcache_lock at the beginning and
walking as many cached path component dentries as possible. This significantly decreases the number
of acquisition of dcache_lock. However it also increases the lock hold time significantly and affects
performance in large SMP systems.

Since 2.5.62 , dcache has been using a new locking model that uses RCU to make dcache look-up lock-
free.

All the above algorithms required taking a lock and reference count on the dentry that was looked up, so
that may be used as the basis for walking the next path element. This is inefficient and unscalable.

Since 2.6.38, RCU is used to make a significant part of the entire path walk (including dcache look-up)
completely "store-free" (no locks, atomics, or even stores into cachelines of common dentries). This is
known as RCU-walk path walking (in opposite to REF-walk).

22

Additional reading

• Dentry negativity, Jonathan Corbet, March2020.

• Documentation/filesystems/path-lookup.rst – Pathname lookup in Linux, Neil Brown
with help from Al Viro and Jon Corbet. Based on:

– Pathname lookup in Linux, Neil Brown, June 2015.

– RCU-walk: faster pathname lookup in Linux, Neil Brown, July 2015.

– A walk among the symlinks, Neil Brown, July 2015.

• Documentation/filesystems/path-lookup.txt – Path walking and name lookup locking.

• Case-insensitive filesystem lookups, Jake Edge, May 2018.

• Dcache scalability and RCU-walk, Jonathan Corbet, December 2010.

• Scaling dcache with RCU, Paul E. McKenney, 2004.

23

https://lwn.net/Articles/814535/
https://lwn.net/Articles/814535/
https://lwn.net/Articles/814535/
http://www.linuxjournal.com/article/7124
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/path-lookup.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/path-lookup.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/path-lookup.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/path-lookup.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/path-lookup.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/path-lookup.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/path-lookup.rst
https://lwn.net/Articles/649115/
https://lwn.net/Articles/649115/
https://lwn.net/Articles/649115/
https://lwn.net/Articles/649115/
https://lwn.net/Articles/649115/
https://lwn.net/Articles/649115/
https://lwn.net/Articles/649115/
https://lwn.net/Articles/649729/
https://lwn.net/Articles/649729/
https://lwn.net/Articles/649729/
https://lwn.net/Articles/649729/
https://lwn.net/Articles/649729/
https://lwn.net/Articles/649729/
https://lwn.net/Articles/649729/
https://lwn.net/Articles/649729/
https://lwn.net/Articles/649729/
https://lwn.net/Articles/649729/
https://lwn.net/Articles/649729/
https://lwn.net/Articles/649729/
https://lwn.net/Articles/649729/
https://lwn.net/Articles/650786/
https://lwn.net/Articles/650786/
https://lwn.net/Articles/650786/
https://lwn.net/Articles/650786/
https://lwn.net/Articles/650786/
https://lwn.net/Articles/650786/
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/path-lookup.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/path-lookup.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/path-lookup.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/path-lookup.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/path-lookup.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/path-lookup.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/path-lookup.txt
https://lwn.net/Articles/754508/
https://lwn.net/Articles/754508/
https://lwn.net/Articles/754508/
https://lwn.net/Articles/754508/
https://lwn.net/Articles/754508/
https://lwn.net/Articles/754508/
https://lwn.net/Articles/754508/
https://lwn.net/Articles/419811/
https://lwn.net/Articles/419811/
https://lwn.net/Articles/419811/
https://lwn.net/Articles/419811/
https://lwn.net/Articles/419811/
https://lwn.net/Articles/419811/
https://lwn.net/Articles/419811/
https://lwn.net/Articles/419811/
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124
http://www.linuxjournal.com/article/7124

Inodes in memory – ilookup() function

The ilookup() function is responsible for providing the process with an inode in memory. It searches
for the inode ino in the inode cache, and if the inode is in the cache, the inode is returned with
an incremented reference count. The inode comes from the file system represented by the super
block sb.

24

struct inode *ilookup(struct super_block *sb, unsigned long ino)
{
 struct hlist_head *head = inode_hashtable + hash(sb, ino);
 struct inode *inode;

 spin_lock(&inode_hash_lock);
 inode = find_inode_fast(sb, head, ino);
 spin_unlock(&inode_hash_lock);

 if (inode)
 wait_on_inode(inode);
 ...
 return inode;
}

Simplified version

SKIP

Inodes in memory – iput() function

The iput() function is used to free an inode in memory. The file open count (i_count) decreases,
and if it is still greater than zero, the function ends.

25

void iput(struct inode *inode) {
 if (!inode)
 return;
 BUG_ON(inode->i_state & I_CLEAR);
retry:
 if (atomic_dec_and_lock(&inode->i_count, &inode->i_lock)) {
 if (inode->i_nlink && (inode->i_state & I_DIRTY_TIME)) {
 atomic_inc(&inode->i_count);
 spin_unlock(&inode->i_lock);
 trace_writeback_lazytime_iput(inode);
 mark_inode_dirty_sync(inode);
 goto retry;
 }
 iput_final(inode);
 }
}

Otherwise:

– release processes waiting for a
free inode,

– if the inode represents a pipe –
release the associated memory
pages,

– if the inode had the dirty
attribute set – save it to disk,

– increase the free inode count.

Simplified version

SKIP

26

Additional reading

• Documentation/filesystems/vfs.rst – VFS data structures.

• Introducing lockrefs, Jonathan Corbet, September 2013.

• Linux VFS, Kaustubh R. Joshi, 2013.

• Anatomy of the Linux virtual file system switch, M. Tim Jones.

27

https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/vfs.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/vfs.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/vfs.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/vfs.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/vfs.rst
https://lwn.net/Articles/565734/
https://lwn.net/Articles/565734/
https://lwn.net/Articles/565734/
http://www.cs.columbia.edu/~krj/os/lectures/L21-LinuxVFS.pdf
https://www.ibm.com/developerworks/library/l-virtual-filesystem-switch/

