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Latency numbers every programmer should know 
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Mapping file to memory and page cache 
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In Linux read() and write() operations are implemented via mapping files to memory. 

The content of the mapped file is loaded to memory on-demand when handling page faults and cached in so-
called page cache. 

The kernel maps the process virtual address space pages directly to the page cache after loading the file 
contents into the page frame. 

The pages are cached even after the program has finished. As long as there is enough free memory, the cache 
size will increase. 

When writing with write(), the bytes are cached and the page is marked as dirty. The actual write to disk 
takes place later. 

The program does not have to wait 
for the write() to finish (fsync() 
forces immediate write). 

Reading is blocking, which is why the 
kernel tries to read ahead 



Page cache – private or shared 

A file mapping may be private (the updates are not committed to disk or made visible to other 
processes) or shared (the updates are visible to other processes).  

The read-only page table entries mean, that a kernel tries to ensure file sharing as long as possible. 

A virtual page that maps a file privately sees changes done to the file by other programs as long as 
the page has only been read from.  

Once copy-on-write is done, changes by others are no longer seen.  

A shared mapping is simply mapped onto the page cache. Updates are visible to other processes and 
end up in the disk.  

If the mapping  were read-only, page faults would trigger a segmentation fault instead of copy on 
write.  

Dynamically loaded libraries are brought into your program's address space via file private mapping.  
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7 Copy on write (źródło: Duarte, Software Illustrated) 

In the example both render and another program render3d map the file privately . Render then writes to 
its virtual memory area that maps the file. 

http://duartes.org/gustavo/blog/category/software-illustrated
http://duartes.org/gustavo/blog/category/software-illustrated
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Page cache 

8 Mapping a file in two instances of the same program (source: Duarte, Software Illustrated) 
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Page cache 

The kernel's code and data structures are never swapped, so they do not need to be read from 
or written to disk. 

The following types of pages are stored in the page cache: 

– pages containing regular file data; 

– pages containing  directories; 

– pages containing data read directly from block devices (bypassing the VFS layer); 

– pages belonging to files from special file systems (e.g. SHM used to support shared 
memory segments – IPC mechanism). 

In any case, this data comes from a file. This file, or more precisely its descriptor (i.e. inode) is 
called the page owner.  

Anonymous memory is not handled by the page cache. 

If a system provides swap and if anonymous memory is swapped – it enters the swap cache, not 
the page cache. 
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Page cache 

Almost all read() and write() operations go through the page cache (except for files open with the 
O_DIRECT flag – in this case buffers in the process address space are used; this mechanism is used 
by database applications that want to implement their own caching algorithms). 

Page cache is designed in such a way that: 

1. you can quickly find in the cache pages coming from a specific file, 

2. to take into account the need to perform different read and write operations, depending on 
the location of the file. 

The unit of information stored in the page cache is a page that does not need to include physically 
adjacent disk blocks, so it cannot be identified by providing the logical number of the device and 
the block number. 

The page identifier will be: the page owner and the index within the owner's data (usually just the 
inode of the file and offset within the file). 
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Structure address_space 

The basic data structure of the page cache is address_space, contained in the inode of the file. The page 
cache can contain multiple pages from the same file that point to the same inode, all of them will be 
handled by the same set of methods. 
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struct  address_space { 
     struct inode              *host;            /* owner: inode or block_device */ 
     struct xarray              i_pages;        /* cached pages */ 
      //   struct radix_tree_root  page_tree;       /* radix tree of all pages */ 
        //   spinlock_t           tree_lock;      /* and lock protecting it */ 
     atomic_t                    i_mmap_writable;       /* number of VM_SHARED mappings */ 
     struct rb_root_cached   i_mmap;          /* tree of private and shared mappings */ 
     struct rw_semaphore   i_mmap_rwsem;   /* protect tree, count, list */ 
     unsigned long           nrpages;                       /* number of page entries */ 
     struct address_space_operations *a_ops; /* methods */ 
     struct list_head        private_list;     /* for use by the owner of the address_space */ 
     void                           *private_data;  /* for use by the owner of the address_space */ 
}; 

Simplified version 

Commment in the code (Matthew Wilcox, March 13, 2018) 
Remove the address_space ->tree_lock and use the xa_lock newly added to the radix_tree_root.  

 Rename the address_space ->page_tree to ->i_pages, since we don't really care that it's a tree. 

https://patchwork.kernel.org/patch/10279007/
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Linux radix tree 
and XArray 

Each node has 64 slots 

Slots are indexed by a 6-bit (26=64) portion of the key. 

At leaves, a slot points to an address of data. 

At non-leaf nodes, a slot points to another node in a lower layer. 

Xarray is a nicer API for radix tree.  

An automatically resizing array of pointers. Indexed by an unsigned long. Embeds a spinlock.  Loads 
are store-free using RCU. 

 

 

 

Radix trees (Jonathan Corbet, March 2006) 

The XArray data structure, J. Corbet, January 2018 

4.20 Merge window part 2 (November 5, 2018) 
The XArray data structure, a reworking of the radix tree structure, has been merged at last and the page cache 
has been converted to use it. 
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XArray 

Additional reading: 

• XArray (in /Documentation/core-api/xarray.rst, Matthew Wilcox, 2018). 

 The XArray is an abstract data type which behaves like a very large array of pointers. It meets many 
of the same needs as a hash or a conventional resizable array. Unlike a hash, it allows you to sensibly 
go to the next or previous entry in a cache-efficient manner. In contrast to a resizable array, there is no 
need to copy data or change MMU mappings in order to grow the array. It is more memory-efficient, 
parallelisable and cache friendly than a doubly-linked list. It takes advantage of RCU to perform 
lookups without locking. 

• The XArray data structure, Jonathan Corbet, January 2018. 

• Willy's memory-management to-do list, Jonathan Corbet, April 2018. 

• XArray and the mainline, Jake Edge, June 2018. 

• The design and implementation of the Xarray, Matthew Wilcox, LCA, January 2018. 

• Xarray: one data structure to rule them all, Matthew Wilcox, LCA, January 2019. 
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Xarray – referenced in 124 files (v6.3.2) 
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Structure address_space 

The private_list  field is the head of a generic list that can be freely used by the filesystem for its 
specific purposes. For example, the Ext2 filesystem makes use of this list to collect the dirty 
buffers of indirect blocks associated with the inode. When a flush operation forces the inode 
to be written to disk, the kernel flushes also all the buffers in this list. 

Each page descriptor contains  mapping and index fields that link the page with the page cache. 
The first points to the  address_space object, and the second to the offset (page index) within 
the address space of the page owner. 

The page cache may contain multiple copies of the same disk data. For example, the same 4 KB 
block of data of a regular file can be accessed as follows: 

– by reading the file – the data is included in a page owned by the regular file’s inode; 

– by reading the block from the device file (disk partition) that hosts the file – the data is 
included in a page owned by the master inode of the blok device file. 

Thus, the same data appears in two different pages referenced by two different address_space 
objects.  
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Inode of a file, inode of a block device file, and the 
address_space object 

Inode of the block device in the pseudo file system  bdev 
(source: JMD) 

In the latest kernel version the block_device structure 
has no bd_inodes  field (last occurence in 4.7.10) – 
what has replaced it? 

SKIP 



Data structures for file memory mapping 

16 

Source:  
Bovet, Cesati, Understanding the 

Linux Kernel) 

Radix priority search tree has 
been replaced (2012) by 
the interval tree , built on top of 
the augmented rbtree API.  

It contains memory areas that 
refer to the same frame in 
memory – that is, it allows you 
to quickly locate shared pages, 
those from files.  

Partly obsolete 

https://lwn.net/Articles/509994/
https://lwn.net/Articles/509994/
https://lwn.net/Articles/509994/


17 (source: Adrian Huang, Memory Mapping Implementation (mmap), 2022) 

Radix tree (or Xarray) – how to find a page  
i_mmap for recording all memory mappings (vma) of the memory-mapped file 
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Additional reading 

• Lockless Page Cache, Kornilios Kourtis, 2013. 

• A multi-order radix tree, Ross Zwisler, May 2016. 

• Two transparent huge page cache implementations, Jonathan Corbet, April 2016. 

• The future of the page cache, Jonathan Corbet, January 2017. 

• The future of the Linux page cache, Matthew Wilcox, LCA January 2017. 

• Direct Access for files. DAX is the mechanism that enables direct access to files stored in 
persistent memory arrays without the need to copy the data through the page cache. 

• The future of DAX, Jonathan Corbet, March 2017. 

• Defending against page-cache attacks, Jonathan Corbet, January, 2019. 

• Large Pages in Linux, Matthew Wilcox, LCA 2020. 
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Storing blocks in the page cache 

Starting from version 2.4.10, Linux does not support a separate buffer cache. Block buffers are no longer 
allocated individually; they are stored in dedicated pages called “buffer pages,” which are kept in the 
page cache. 

A buffer page is a page of data associated with additional descriptors called “buffer heads,” whose main 
purpose is to quickly locate the disk address of each individual block in the page.  

The chunks of data stored in a page belonging to the page cache are not necessarily adjacent on disk. 

Each block buffer has a buffer head descriptor of type buffer_head. 

From the code: Historically, a buffer_head was used to map a single block within a page, and of course as 
the unit of I/O through the filesystem and block layers. Nowadays the basic I/O unit is the bio, 
and buffer_heads are used for extracting block mappings, for tracking state within a page and for 
wrapping bio submission for backward compatibility reasons. 
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A kernel without buffer heads (J. Corbet, May 2023) – Christoph Hellwig has posted a 
patch series that enables the building of a kernel without buffer heads — but the cost of 
doing so at this point will be more than most want to pay.   

https://lwn.net/Articles/930173/
https://lwn.net/Articles/930173/
https://lwn.net/Articles/930173/
https://lwn.net/Articles/930173/
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https://lwn.net/ml/linux-kernel/20230424054926.26927-1-hch@lst.de/
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20 (source: Adrian Huang, Page cache, 2022) 

Page cache & buffer cache 

Page cache: iteraction with VFS. Buffer cache: interaction with the disk. 

https://www.slideshare.net/AdrianHuang/page-cache-in-linux-kernel
https://www.slideshare.net/AdrianHuang/page-cache-in-linux-kernel


21 (source: Adrian Huang, Page cache, 2022) 

Page cache & buffer cache – relationship  

Block size = file system-based unit. Page cache might *NOT* include buffer_head struct.  

https://www.slideshare.net/AdrianHuang/page-cache-in-linux-kernel
https://www.slideshare.net/AdrianHuang/page-cache-in-linux-kernel


22 (source: Adrian Huang, Page cache, 2022) 

Interaction with generic block layer: bio based on buffer_head  

https://www.slideshare.net/AdrianHuang/page-cache-in-linux-kernel
https://www.slideshare.net/AdrianHuang/page-cache-in-linux-kernel


Storing blocks in the page cache 

The disk address of the block is encoded in two fields:  b_bdev (which identifies the block device) 
and b_blocknr, which stores the logical block number (index of the block inside the disk).  

The b_data field specifies the position of the block buffer inside the buffer page.  

The kernel creates buffer pages in two common cases: 

1. When reading or writing pages of a file that are not stored in contiguous disk blocks. 

 The buffer page’s descriptor is inserted in the radix tree of a regular file. The buffer heads are 
preserved because they store information that specify the position of the data in the disk. 

 If the blocks in the file are written in adjacent disk blocks, then a buffer page is not needed (the 
PG_private flag of the page frame descriptor indicates what situation we are dealing with).  
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Storing blocks in the page cache 

2. When accessing a single disk block (for instance, when reading a superblock or an inode 
block). 

 The buffer page’s descriptor is inserted in the radix tree rooted at the   address_space object of 
the inode in the bdev special filesystem associated with the block device.  

 This kind of buffer pages must satisfy a constraint that all the block buffers must refer to 
adjacent blocks of the underlying block device. 

 An instance of where this is useful is when the VFS wants to read the 1 KB inode block 
containing the inode of a given file. Instead of allocating a single buffer, the kernel must 
allocate a whole page storing four buffers; these buffers will contain the data of a group of 
four adjacent blocks on the block device, including the requested inode block  (in ext2fs inode 
has a size of 128 bytes, one 1 KB  block contains 8 inodes, one 4 KB page contains 32 inodes).  

 Such buffer pages are called block device buffer pages or blockdev pages.  

 All buffers within one page must be the same size; in 80x86 architecture, the buffer page can 
contain from 1 to 8 buffers, depending on the block size.  
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Writing dirty pages to disk 

The kernel keeps filling the page cache with pages containing data of block devices. Whenever a 
process modifies some data, the corresponding page is marked as dirty – its PG_dirty flag is set.   

Linux allows the deferred writes of dirty pages into block devices. Dirty pages are flushed to disk 
under the following conditions: 

– The page cache gets too full and more pages are needed, or the number of dirty pages 
becomes too large. 

– Too much time has elapsed since a page has stayed dirty. 

– A process requests all pending changes of a block device or of a particular file to be flushed 
by invoking a sync(), fsync() or fdatasync(). 

The PG_dirty flag of the buffer page should be set if at least one of the associated buffer heads has 
the BH_Dirty flag set. When the kernel selects a dirty buffer page for flushing, it scans the 
associated buffer heads and effectively writes to disk only the contents of the dirty blocks. As 
soon as the kernel flushes all dirty blocks in a buffer page to disk, it clears the PG_dirty flag of 
the page.  
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Writing dirty pages to disk – per-BDI flusher  

Historically different kernel threads have been responsible for flushing dirty pages to disk: 
bdflush, kupdate, pdflush.  

In the 2.6.32 kernel version, the pdflush thread has been replaced by the per-BDI writeback (Backing 
Device Info) mechanism. 

Writeback can be defined as the process of writing dirty memory from the page cache to the disk. 
The amount of data that needs to be written can be huge – hundreds of MB, or even GB, and the 
work is done by the pdflush kernel threads when the amount of dirty memory surpasses the limits 
set in /proc/sys/vm.  

The current pdflush system has disadvantages, specially in systems with multiple storage devices that 
need to write large chunks of data to the disk. This design has some deficiencies that cause poor 
performance and seekiness in some situations. 

Jens Axboe in his patch set proposes a new idea of using flusher threads per backing device 
info (BDI), as a replacement for pdflush threads. Unlike pdflush threads, per-BDI flusher threads 
focus on a single disk spindle. With per-BDI flushing, when the request_queue is congested, 
blocking happens on request allocation, avoiding request starvation and providing better fairness. 

26 
(We may come back to this topic later) 



Additional reading 

• Linux Page Cache Basics, Thomas Krenn, 2009. 

• Per backing device writeback, Jens Axboe, 2009. 

• Flushing out pdflush, Goldwyn Rodrigues, April 2009. 

• Toward less-annoying background writeback, Jonathan Corbet, April 2016. 

• Background writeback, Jake Edge, May 2016. 

How to get info: 

• The number of megabytes of main memory currently used for the page cache is indicated in the Cached 
column of the report produced by the free -m command. 

 

 

 

• The amount of dirty memory is listed in /proc/meminfo. 

• Documentation for /proc/sys/vm/*.  

 The sysctl file in /proc/sys/vm can be used to tune the operation of the virtual memory subsystem and the 
writeout of dirty data to disk. 
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Page frame reclaiming 

Linux does not impose a limit on the total amount of RAM assigned to the processes created by a 
single user.  

Similarly, no limit is placed on the size of the many disk caches and memory caches used by the 
kernel.  

When the system load is low, the RAM is filled mostly by the disk caches and the few running 
processes can benefit from the information stored in them. When the system load increases, 
the RAM is filled mostly by pages of processes and the caches are shrunken to make room for 
additional processes. 

When there is not enough free memory in the system, the kernel tries to find a page frame 
containing unnecessary data (page frame reclaiming), then removes its content from memory. 

The recovered page frames go to the buddy system. The kernel should not wait with recovery 
until the last possible moment, so it tries to maintain a minimum level of free page frames in 
the system. 
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Page frame reclaiming – types of pages 

The page frame reclaiming algorithm (PFRA) distinguishes the following types of pages: 

• Unreclaimable  – no reclaiming allowed or needed: 

– Free pages included in the buddy system lists, 

– Reserved pages (with PG_reserved flag set), 

– Pages dynamically allocated by the kernel, 

– Pages in the kernel mode stacks of the processes, 

– Temporarily locked pages (with PG_locked flag set), 

– Memory locked pages (with VM_LOCKED flag set); 

• Swappable  – Save the page contents in a swap area: 

– Anonymous pages in user mode address spaces (e.g. stack or heap pages), 

– Mapped pages of tmpfs  filesystem (e.g. pages of IPC shared memory); 
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Page frame reclaiming – types of pages cont. 

• Syncable  – Synchronize the page with its image on disk, if necessary: 

– Mapped pages in user mode address spaces, 

– Pages included in the page cache and containing data of disk files, 

– Block device buffer pages, 

– Pages of some disk caches (e.g. the inode cache); 

• Discardable  – nothing to be done: 

– Unused pages included in memory caches (e.g. slab allocator caches), 

– Unused pages of the dentry cache. 

 

When reclaiming page frames, the kernel must also consider whether the pages are shared or are 
used by only one process (because COW or processes are mapping the same file). The kernel 
maintains special data structures for quickly identifying shared pages. 
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Page frame reclaiming – heuristics  

Heuristics used to free frames: 

• Pages included in disk and memory caches not referenced by any process should be reclaimed before 
pages belonging to the user mode address spaces of the processes; 

• With the exception of locked pages, the PFRA  must be able to steal any page of a user mode 
process, including the anonymous pages. Processes that have been sleeping for a long period of time 
will progressively lose all their page frames. 

• Reclaim a shared page frame by unmapping all page table entries that reference it. 

• PFRA uses an approximation of the LRU replacement algoritm to classify pages as in-use and unused. 
If a page has not been accessed for a long time, it can be considered unused, otherwise as used. The 
PFRA reclaims only unused pages.  

• Each page in RAM has a counter storing the age of the page. The 80x86 architecture do not offer such 
a hardware feature, thus Linux uses the Accessed bit included in each page table entry. The bit is 
automatically set by the hardware when the page is accessed. Moreover, the age of a page is 
represented by the position of the page descriptor in LRU lists. 
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LRU lists of active and inactive pages – overview 

32 
Moving pages across the LRU lists 

(source: Bovet, Cesati, Understanding the Linux Kernel) 

The PG_referenced flag in the page descriptor is used to double the number of accesses required to move a 
page from the inactive list to the active list; it is also used to double the number of “missing accesses” 
required to move a page from the active list to the inactive list.  

If a page in the inactive list has the PG_referenced flag set to 0, the first page access sets the value of the flag 
to 1, but the page remains in the inactive list. The second page access finds the flag set and causes the page 
to be moved to the active list. Similarly when moving the page in the oposite direction. 

grep -i active /proc/meminfo 
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Overview of Memory Reclaim 
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The page_referenced() function is invoked once for every page 
scanned by the PFRA, returns 1 if either the PG_referenced flag or 
some of the Accessed bits in the page table entries was set; it returns 
0 otherwise. 

https://www.youtube.com/watch?v=0bnWQF7WQP0&list=PLVsQ_xZBEyN3wA8Ej4BUjudXFbXuxhnfc&index=67
https://www.youtube.com/watch?v=0bnWQF7WQP0&list=PLVsQ_xZBEyN3wA8Ej4BUjudXFbXuxhnfc&index=67
https://www.youtube.com/watch?v=0bnWQF7WQP0&list=PLVsQ_xZBEyN3wA8Ej4BUjudXFbXuxhnfc&index=67
https://www.youtube.com/watch?v=0bnWQF7WQP0&list=PLVsQ_xZBEyN3wA8Ej4BUjudXFbXuxhnfc&index=67
https://www.youtube.com/watch?v=0bnWQF7WQP0&list=PLVsQ_xZBEyN3wA8Ej4BUjudXFbXuxhnfc&index=67
https://www.youtube.com/watch?v=0bnWQF7WQP0&list=PLVsQ_xZBEyN3wA8Ej4BUjudXFbXuxhnfc&index=67
https://www.youtube.com/watch?v=0bnWQF7WQP0&list=PLVsQ_xZBEyN3wA8Ej4BUjudXFbXuxhnfc&index=67
https://www.youtube.com/watch?v=0bnWQF7WQP0&list=PLVsQ_xZBEyN3wA8Ej4BUjudXFbXuxhnfc&index=67
https://www.youtube.com/watch?v=0bnWQF7WQP0&list=PLVsQ_xZBEyN3wA8Ej4BUjudXFbXuxhnfc&index=67
https://www.youtube.com/watch?v=0bnWQF7WQP0&list=PLVsQ_xZBEyN3wA8Ej4BUjudXFbXuxhnfc&index=67
https://www.youtube.com/watch?v=0bnWQF7WQP0&list=PLVsQ_xZBEyN3wA8Ej4BUjudXFbXuxhnfc&index=67
https://www.youtube.com/watch?v=0bnWQF7WQP0&list=PLVsQ_xZBEyN3wA8Ej4BUjudXFbXuxhnfc&index=67
https://www.youtube.com/watch?v=0bnWQF7WQP0&list=PLVsQ_xZBEyN3wA8Ej4BUjudXFbXuxhnfc&index=67
https://www.youtube.com/watch?v=0bnWQF7WQP0&list=PLVsQ_xZBEyN3wA8Ej4BUjudXFbXuxhnfc&index=67
https://www.youtube.com/watch?v=0bnWQF7WQP0&list=PLVsQ_xZBEyN3wA8Ej4BUjudXFbXuxhnfc&index=67
https://www.youtube.com/watch?v=0bnWQF7WQP0&list=PLVsQ_xZBEyN3wA8Ej4BUjudXFbXuxhnfc&index=67


LRU-list manipulation with DAMON (2022) 

• DAMON (Data Access MONitor) is a data access monitoring framework subsystem for the Linux 
kernel. 

•  Uses various heuristics to determine which pages of memory are in active use.  

• Tries to create a clearer picture of actual memory usage while, at the same time, limiting its 
own CPU usage.  

• It is designed to be efficient enough to use on production systems while being accurate enough 
to improve memory-management decisions. 

• Merged into kernel 6.0 – DAMON can actively reorder pages on the LRU lists. 

• SeongJae Park (author, AWS) calls this mechanism „proactive LRU-list sorting”. 

• DAMON and DAMOS: Writing a fine-grained access pattern oriented lightweight kernel module 
using DAMON/DAMOS in 10 minutes, SeongJae Park,  Linux Plumbers Conference, 2021. 
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Multi-generational LRU (2021) 

• The multi-generational LRU, Jonathan Corbet, April 2021. 

• Problems with the current solution: 

– The active/inactive sorting is too coarse for accurate decision making. 

– The use of independent lists in control groups makes it hard for the kernel to compare the relative age of pages 
across groups. 

– The kernel has a longstanding bias toward evicting file-backed pages, which can cause useful file-backed pages to 
be tossed while idle anonymous pages remain in memory. This problem has gotten worse in cloud-computing 
environments, where clients have relatively little local storage and, thus, relatively few file-backed pages in the first 
place.  

– The scanning of anonymous pages is expensive, partly because it uses a complex reverse-mapping mechanism that 
does not perform well when a lot of scanning must be done. 

• Solution (by Yu Zhao, read Ju Dżao, Google) 

– Add more LRU lists to cover a range of page ages between the current active and inactive lists; these lists are called 
"generations". 

– Change the way page scanning is done to reduce its overhead. 

• Reaction of the kernel developers 

– Google is working on a new and possibly better LRU memory management framework  for the Linux kernel, April 
2021. 
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Multi-generational LRU (2022) 

Multi-generational LRU, Yu Zhao (from Google), Linux Storage, Filesystem, MMU & BPF Summit, May 
2022. 

• MG LRU goals 

• Simplicity 

• Flexibility 

• Performance 

https://www.youtube.com/watch?v=9HvJfN21H9Y
https://www.youtube.com/watch?v=9HvJfN21H9Y
https://www.youtube.com/watch?v=9HvJfN21H9Y
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https://www.youtube.com/watch?v=9HvJfN21H9Y
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Multi-generational LRU (2022) 

• Merged into 6.1, December 2022. 

• Does not replace the current memory management scheme, can be configured at compilation time.  

 

 

Multi-generational LRU, Yu 
Zhao, Linux Storage, 
Filesystem, MMU & BPF 
Summit, May 2022. 

 

• Generations 

• Page table walks 

• Feedback loops 

• Bloom filters 

• PID controller 

https://lwn.net/Articles/717707/
https://www.youtube.com/watch?v=9HvJfN21H9Y
https://www.youtube.com/watch?v=9HvJfN21H9Y
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Page frame reclaiming – Summary  

The PFRA works cyclically using two mechanisms: kswapd kernel threads that recover pages from 
LRU lists and a function that tries to recover unused slabs from the slab allocator. 

The kswapd() function executes as a kernel thread. Its task is to reclaim pages when the number of 
free pages in the zone falls below a certain level. 

The system first attempts to free memory by reclaiming it from the slab allocator. 

If the memory cannot be reclaimed in this way, the system tries to reclaim it from the page cache. 
First, the PFRA browses pages in the active list, moving those less used to the inactive list. It then 
browses the inactive list, synchronizing pages with buffers and trying to free pages that nobody 
uses. If it finds such pages and they are dirty, it initiates their writing. 

If multiple mapped pages are found in the inactive list, the function is called to remove the 
mapping. 

If the system cannot free pages from the cache, it tries to shrink the file system cache: inode cache, 
dentry cache and quota cache. 

If the system is still unable to recover memory, it selects one active process and attempts to kill it to 
regain its memory. 
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SKIP 



Swapping 

Disk caches enhance system performance at the expense of free RAM, while swapping extends the 
amount of addressable memory at the expense of access speed. 

Swapping applies only to the following kinds of pages : 

– Pages belonging to an anonymous memory region of a process (e.g. a user mode stack or heap), 

– Modified pages belonging to a private memory mapping of a process (mapping with the 
MAP_PRIVATE flag) – modifications will not go to the file and will not be seen by other processes, 

– Pages belonging to an IPC shared memory region. 

Reclaiming anonymous pages (swapping) is seen as being considerably more expensive than reclaiming 
file-backed pages. One of the key reasons is that file-backed pages can be read from (and written to) 
persistent storage in large, contiguous chunks, while anonymous pages tend to be scattered 
randomly on the swap device. 

The pages swapped out from memory are stored in a swap area, which may be implemented either as a 
disk partition of its own or as a file included in a larger partition. 

Each swap area consists of a sequence of page slots. The first page slot of a swap area is used to store 
information about the swap area.  
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Swapping 

The swap_map field points to an array of counters, one for each swap area page slot. If the counter 
is equal to 0, the page slot is free; if it is positive, the page slot is filled with a swapped-out page (and 
indicates the number of processes sharing this page). If the counter has the  value 
SWAP_MAP_BAD (equal to 32,768) the page slot is considered defective (unusable). 
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The lowest_bit and highest_bit
 specify the first and the last 
page slots that could be free – 
there are no free slots below or 
above these indexes. 

The swap cache (source: Bovet, Cesati, Understanding the Linux Kernel) 



Swapping 

The swapped-out page identifier is stored in the page table entry. All zeros mean that the page does 
not belong to the process address space or that the appropriate frame has not yet been allocated 
to the process. 

If the last bit (the Present flag) is zero and the remaining 31 are not all zero, then the page is in the 
swap area. Otherwise it is in RAM. The swapped page is uniquely identified by the swap area 
index  in the swap_info table and the page slot index in the swap area. 
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The maximum size of the swap area is determined by the number of bits allocated for the page slot 
number. In 80x86 architecture, these are 24 bits, i.e. the area can have 224 slots for 4 KB pages, i.e. 
64 GB. 

Swapped-out page identifier (source: Bovet, Cesati, Understanding the Linux Kernel) 



Swapping 

Since a page may belong to the address spaces of several processes, it may be swapped out from 
the address space of one process and still remain in main memory. A page is physically 
swapped out and stored just once, but each subsequent attempt to swap it out increments 
the swap_map counter. 

Each swap area consists of one or more swap extents. Each extent corresponds to a group of page 
slots that are physically adjacent on disk. An ordered list of the extents that compose a swap 
area is created when activating the swap area itself. 

When swapping out, the kernel tries to store pages in contiguous page slots to minimize disk seek 
time when accessing the swap area.  

Swap areas are linked in a priority list. When looking for a free slot, the search starts in the swap 
area that has the highest priority. 

Information about swap areas is available in the /proc/swaps file: 
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[jmd@duch ~]$ cat /proc/swaps 
Filename                                 Type              Size             Used         Priority 
/dev/vda5                               partition       5380092    534868    -1 



Swap cache – synchronization  

The swap cache does not exist as a data structure on its own, but the pages in the regular page cache 
are considered to be in the swap cache if certain fields are set. 

The swap cache has been introduced to solve synchronization problems  (multiple swap-ins, concurrent 
swap-ins and swap-outs ) when transferring pages to and from a swap area.  

The key assumption is that nobody can start a swap-in or swap-out without checking whether the swap 
cache already includes the affected page. 

Thanks to the page cache, concurrent swap operations affecting the same page always act on the same 
page frame; therefore, the kernel may safely rely on the PG_locked flag of the page descriptor to 
avoid any race condition. 

Consider two processes that share the same swapped-out page. When the first process tries to access 
the page, the kernel starts swap-in operation. It checks whether the page frame is already included in 
the swap cache. If it isn’t,the kernel allocates a new page frame and inserts it into the swap cache; 
next, it starts the I/O operation. Menwhile, the second process accesses the shared anonymous page. 
The kernel starts a swap-in operation but now it finds the page frame in the swap cache. It puts the 
current process to sleep until the PG_locked flag is cleared. 
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Consider a page P shared among two processes, A and B. Initially, the page tables of both processes point to the 
same page frame, so the page has two owners (see (a)).  

When the PFRA select the page for reclaiming, it inserts the page frame in the swap cache – now the page frame 
has three owners,  while the page slot in the swap area is referenced only by the swap cache (see (b)).  

Next the PFRA removes the references to the page frame from the page tables of the processes; once finished 
the page frame is referenced  only by the swap  cache, while the page slot is referenced by the two 
processes and the swap cache (see (c)).  

Swap cache – synchronization  

The swap cache (source: Bovet, Cesati, Understanding the Linux Kernel) 



Swap cache – synchronization  

Let’s suppose that while the page’s contents are being written to disk, process B accesses the page. The 
page fault handler finds the page frame in the swap cache and puts back its physical address in the 
page table entry of process B (see (d)).  

Conversely, if the swap-out operation terminates without concurrent swap-in operations,  the PFRA 
removes the page frame from the swap cache and releases the page frame to the buddy system 
(see (e)). 

46 The swap cache (source: Bovet, Cesati, Understanding the Linux Kernel) 



Swap cache – implementation  

The swap cache is used during swap-ins and swap-outs, but it’s mainly useful while swapping-in 
pages shared by a number of processes. 

 This asymmetry comes from the fact that  when swapping-out the page, you can reach all 
processes sharing the page using rmap (ang. reverse mapping) structure, which connects 
the vm_area_struct structures including the shared page. 

However when swapping-in a page, we only know how many users there are, but we do not know 
them. 

 The swap cache is implemented by the page cache data structures and procedures. Pages in the 
swap cache are stored as every other page in the page cache, with the following special 
treatment: 

– The mapping field of the page descriptor is set to NULL. 

– The PG_swapcache flag of the page descriptor is set. 

– The private field stores the swapped-out page identifier associated with the page. 
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Swap cache – implementation  

(see /include/linux/swap.h and /mm/swap_state.c) 

A single swapper_space  address space object is used for all pages in the swap cache  (this is the 
entry in the swapper_spaces  table).  The Xarray structure pointed to from this address space 
object contains all pages in the swap cache.  

This structure is used by the lookup_swap_cache() function which searches for the page in the 
swap cache. 
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struct address_space *swapper_spaces[MAX_SWAPFILES]; 



Swapping to solid-state devices 

Some of the swap code is quite old. In the early days, the kernel would attempt to concentrate 
swap-file usage toward the beginning of the device – the left end of the swap_map array.  

When one is swapping to rotating storage, this approach makes sense; keeping data in the swap 
device together should minimize the amount of seeking required to access it. It works less well 
on solid-state devices, for a couple of reasons: 

– there is no seek delay on such devices, 

– the wear-leveling requirements of SSDs are better met by spreading the traffic across the 
device. 

In an attempt to perform better on SSDs, the swap code was changed in 2013. When the swap 
subsystem knows that it is working with an SSD, it divides the device into clusters. 
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Swap cluster (source: Making swapping scalable, Jonathan Corbet, 2016) 

https://lwn.net/Articles/704478/


Swapping to solid-state devices 

The percpu_cluster pointer points to a different cluster for each CPU on the system. With this 
arrangement, each CPU can allocate pages from the swap device from within its own cluster, 
with the result that those allocations are spread across the device.  

Locking is done on a cluster level. 
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Swap cluster (source: Making swapping scalable, Jonathan Corbet, 2016) 

https://lwn.net/Articles/704478/


Additional reading 

• The zswap compressed swap cache, Seth Jennings, February 2013. 

• Compressed swap, Jonathan Corbet, March 2014. 
There are a number of projects oriented around improving memory utilization through the 
compression of memory contents. Two of these, zswap and zram, have found their way into the 
mainline kernel; they both aim to replace swapping with compressed, in-memory storage of 
data. 

• Reconsidering swapping, Jonathan Corbet, June 2016. 
 Johannes Weiner changes the mechanism that decides whether to reclaim pages from the 

anonymous LRU list or the file-backed LRU. For each list, he introduces the concept of the "cost" 
of reclaiming a page from that list; the reclaim code then directs its efforts toward the list that 
costs the least to reclaim pages from.  

• The next steps for swap, Jonathan Corbet, March 2017. 
 Swapping in and out huge pages. 
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