
File systems
ext2, ext3 and ext4

Table of contents

• Ext2 file system
– Directories
– Data structures on disk
– Disk space management

• Ext3 file system
– Journaling
– Storing directory entries in H-trees

• Ext4 file system
– Extents
– Large inodes
– Nanosecond timestamps
– Block allocation enhancements
– Journal

2

File systems of the ext* family

3

Linux supports many file systems, but ext* family systems are native to it.

Ext2 (second extended file system)

• Introduced in 1993. Main developer is Rémy Card.

• The maximum file size allowed is from 16 GB to 2 TB.

• The total file system size is between 2 TB and 32 TB.

• A directory can contain 32,000 subdirectories.

• Recommended on flash drives and USB, because it does not introduce overhead associated
with journaling.

• A journaling extension to the ext2 has been developed. It is possible to add a journal to an
existing ext2 filesystem without the need for data conversion.

https://www.thegeekstuff.com/2011/05/ext2-ext3-ext4/?utm_source=feedburner
https://www.thegeekstuff.com/2011/05/ext2-ext3-ext4/?utm_source=feedburner
https://www.thegeekstuff.com/2011/05/ext2-ext3-ext4/?utm_source=feedburner
https://www.thegeekstuff.com/2011/05/ext2-ext3-ext4/?utm_source=feedburner
https://www.thegeekstuff.com/2011/05/ext2-ext3-ext4/?utm_source=feedburner
https://www.thegeekstuff.com/2011/05/ext2-ext3-ext4/?utm_source=feedburner

General features of ext2

4

The main features of ext2 affecting its performance:

• When creating the system, the administrator can choose the optimal block size (in the range of
1 KB to 4 KB), depending on the expected average file size.

• When creating a system, the administrator can set the number of inodes for a particular
partition size, depending on the number of files expected.

• Disk blocks are divided into groups including adjacent tracks, thanks to which reading a file
located within a single group is associated with a short seek time.

• The file system preallocates disk blocks for regular files, so as the file grows, blocks are already
reserved for it in physically adjacent areas, which reduces file fragmentation.

• Thanks to the careful implementation, it is stable and flexible.

• Defined in /fs/ext2.

Directories in ext2

5

Directory – consists of blocks of type ext2_dir_entry_2.

The file name is limited to 255 characters (constant EXT2_NAME_LEN). Depending on the setting of
the NO_TRUNCATE, flag, longer names may be truncated or treated as incorrect.

The structure has variable length because the last field is an array of variable length. Each entry is
supplemented with \0 to multiples of 4. The name_len field stores the actual length of the file
name.

#define EXT2_NAME_LEN 255

struct ext2_dir_entry_2 {
 __le32 inode; /* Inode number */
 __le16 rec_len; /* Directory entry length */
 __u8 name_len; /* Name length */
 __u8 file_type;
 char name[]; /* File name, up to EXT2_NAME_LEN */
};

Directories in ext2

6

Example directory (source: Bovet,
Cesati, Understanding the Linux

Kernel)

The rec_len field can be interpreted as a pointer to the next correct directory entry.

To remove an entry, just reset the inode field and increase the rec_len value.

The file is added by means of a linear search to the first structure, in which the inode number is 0
and there is enough space. If one is not found, the new file will be appended at the end.

User processes can read the
directory as a file, but only the
kernel can write the directory,
which guarantees the
correctness of the data.

7

The basic physical unit of data on a disk is a block. The block size is constant throughout the entire file
system. These constants limit the block size:

 #define EXT2_MIN_BLOCK_SIZE 1024

 #define EXT2_MAX_BLOCK_SIZE 4096 /* in bytes*/

Ext2 on a disk consists of many groups of disk blocks (of the same size, located sequentially one after the
other). Block groups reduce file fragmentation.

Ext2 file system data structures on disk

Source: https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf

https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf

8

Superblock — Superblocks in all groups have the same content*.

Group descriptors — As with superblocks, their content is copied to all groups*.

 * Originally, the superblock and group descriptors were replicated in every block group with those
located in block group 0 designated as the primary copies. This is no longer common practice due to
the Sparse SuperBlock Option, which replicates the file system superblock and group descriptors in
only a fraction of the block groups.

 The kernel only uses the superblock and group descriptors from group 0. When e2fsck checks the
consistency of the file system, it reaches into the superblock and descriptors from group 0 and copies
them to other groups. If as a result of the failure the structure data stored in block 0 are unusable, the
administrator can order e2fsck to reach older copies in the other groups.

 During system initialization, blocks with group descriptors from group 0 are read into memory. Unless
there are exceptional situations, the system does not use blocks with descriptors and a superblock
from other groups

Ext2 file system data structures on disk

9

Some block numbers may be zero. This means that nothing has been saved to a certain space in
the file (this is possible thanks to the lseek () function).

Allocating an ext2 disk data block

10

The allocation of disk blocks is performed by the function ext2_new_blocks().

The inode parameter indicates the inode for which we allocate the block, count indicates the desired
number of blocks, goal gives the number of the block we would like to allocate (this is related to pre-
allocation).

If it is not possible to allocate a block with this number, the function will try to allocate any other free
block.

If the goal block is free, it will be allocated. If the request cannot be completed within the current group,
it tries in the others. If it still fails, preallocation is turned off.

Searching for a new block to be allocated first in the immediate vicinity of the given block makes sense
for the speed of the file system.

The ext2 file system owes it its extremely low file fragmentation rate.

The blocks of a given file are almost always close together and loading the file is fast.

ext2_fsblk_t ext2_new_blocks (struct inode *inode, ext2_fsblk_t goal, unsigned long *count, int *errp)

void ext2_free_blocks (struct inode * inode, unsigned long block, unsigned long count)

11

Ext3 (third extended file system)

• Introduced in 2001, withdrawn in 2015.

• The main developer is Stephen Tweedie.

• Available since kernel version 2.4.15.

• The main benefit of ext3 is that it allows journaling. Journaling has a dedicated area in the file
system, where all the changes are tracked. When the system crashes, the possibility of file
system corruption is lower because of journaling.

• Maximum individual file size can be from 16 GB to 2 TB.

• Overall ext3 file system size can be from 4 TB to 32 TB.

• A directory can contain 32,000 subdirectories

• You can convert ext2 file system to ext3 file system directly (without backup/restore).

File systems of the ext* family

https://www.thegeekstuff.com/2011/05/ext2-ext3-ext4/?utm_source=feedburner

Ext3 – journaling

12

The ext3 file system was first mentioned in Journaling the Linux ext2fs Filesystem (Stephen Tweedie,
1998).

If you shut down your computer without unmounting the ext2 file system, you must examine the
integrity of this partition before mounting it again. The larger this partition is, the longer it
takes, for large file systems it can take hours.

In the case of ext3 with the has_journal option enabled, the consistency test is replaced by playing
a journal, which is much faster, in the order of seconds. After incorrect unmounting, playing the
journal restores the correct state of the data or even the metadata.

Information about pending file system updates is written to the journal.

Regardless of the mode of operation, the journal ensures consistency only at the level of the system
function call.

There are six types of metadata in ext2 and ext3: superblocks, block group descriptors, inodes,
intermediate index blocks, data block bitmaps and inode bitmaps.

SKIP

http://e2fsprogs.sourceforge.net/journal-design.pdf
http://e2fsprogs.sourceforge.net/journal-design.pdf
http://e2fsprogs.sourceforge.net/journal-design.pdf
http://e2fsprogs.sourceforge.net/journal-design.pdf
http://e2fsprogs.sourceforge.net/journal-design.pdf
http://e2fsprogs.sourceforge.net/journal-design.pdf

Ext3 – journaling

13

Journal is logically a fixed-size, circular array.

• Implemented as a special file with a hard-coded inode number.

• Each journal transaction is composed of a begin marker, log, and end marker.

Source: https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf

https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf

Ext3 – journaling

14

Transactions

Instead of considering each file system update as a separate transaction, ext3 groups many
updates into a single compound transaction that is periodically committed to disk. Compound
transactions may have better performance than more fine-grained transactions when the same
structure is frequently updated in a short period of time (e.g., a free space bitmap or an inode of
a file that is constantly being extended).

Checkpointing

It is the process of writing journaled metadata and data to their fixed-locations. Checkpointing is
triggered when various thresholds are crossed, e.g., when file system buffer space is low, when
there is little free space left in the journal, or when a timer expires.

https://www.usenix.org/legacy/publications/library/proceedings/usenix05/tech/general/full_papers/prabhakaran
/prabhakaran_html/main.html

https://www.usenix.org/legacy/publications/library/proceedings/usenix05/tech/general/full_papers/prabhakaran/prabhakaran_html/main.html
https://www.usenix.org/legacy/publications/library/proceedings/usenix05/tech/general/full_papers/prabhakaran/prabhakaran_html/main.html

Ext3 – journaling

15

At some point we will wish to commit our outstanding filesystem updates to the journal as a new
compound transaction.

When we commit a transaction, the new updated filesystem blocks are sitting in the journal but have
not yet been synced back to their permanent home blocks on disk (we need to keep the old blocks
unsynced in case we crash before committing the journal).

Once the journal has been committed, the old version on the disk is no longer important and we can
write back the buffers to their home locations at our leisure. Until we have finished syncing those
buffers, we cannot delete the copy of the data in the journal.

The ext3 uses checkpoints at which a check is made to ascertain whether the changes in the journal have
been written to the filesystem. If they have, the data in the journal are no longer needed and can be
removed.

During recovery, the file system scans the log for committed complete transactions; incomplete
transactions are discarded. Each update in a completed transaction is simply replayed into the fixed-
place ext3 structures.

Ext3 – journaling modes

16

1. Writeback (highest risk)

Only metadata is journaled (as in XFS, JFS and
ReiserFS); file contents are not.

The contents might be written before or after the
journal is updated (the system does not wait for
associated changes to file data to be written
before updating metadata).

Files modified right before a crash can become
corrupted. For example, a file being appended to
may be marked in the journal as being larger than
it actually is, causing garbage at the end. Older
versions of files could also appear unexpectedly
after a journal recovery.

Usually causes the smallest overhead.

Source: https://en.wikipedia.org/wiki/Ext3
Source:
https://www.eecs.harvard.edu/~cs161/notes
/journaling.pdf

https://en.wikipedia.org/wiki/Ext3
https://www.eecs.harvard.edu/~cs161/notes/journaling.pdf
https://www.eecs.harvard.edu/~cs161/notes/journaling.pdf

Ext3 – journaling modes

17

2. Ordered (medium risk)

Only metadata is saved in the journal. Metadata are journaled only after
writing data to disk. This is the default on many Linux distributions.

If there is a power outage while a file is being written or appended to,
the journal will indicate that the new file or appended data has not been
committed, so it will be purged by the cleanup process.

Files being overwritten can be corrupted because the original version of
the file is not stored. It's possible to end up with a file in an intermediate
state between new and old, without enough information to restore
either one or the other (the new data never made it to disk completely,
and the old data is not stored anywhere). Even worse, the intermediate
state might intersperse old and new data, because the order of the write
is left up to the disk's hardware.

This mode is generally slightly slower than writeback and much faster
than journal.

Source: https://en.wikipedia.org/wiki/Ext3 Source:
https://www.eecs.harvard.edu/~cs161/notes
/journaling.pdf

https://en.wikipedia.org/wiki/Ext3
https://www.eecs.harvard.edu/~cs161/notes/journaling.pdf
https://www.eecs.harvard.edu/~cs161/notes/journaling.pdf

Ext3 – journaling modes

18

3. Journal (lowest risk)

Both metadata and file contents are written to the journal before
being committed to the main file system. Data consistency is
guaranteed: in case of failure, the file will contain old data or new
data.

Because the journal is relatively continuous on disk, this can improve
performance, if the journal has enough space. In other cases,
performance gets worse, because the data must be written twice—
once to the journal, and once to the main part of the filesystem.

In all modes, ext3 logs full blocks, as opposed to differences from old
versions; thus, even a single bit change in a bitmap results in the
entire bitmap block being logged.

Source: https://en.wikipedia.org/wiki/Ext3

Source:
https://www.eecs.harvard.edu/~cs161/notes
/journaling.pdf

https://en.wikipedia.org/wiki/Ext3
https://www.eecs.harvard.edu/~cs161/notes/journaling.pdf
https://www.eecs.harvard.edu/~cs161/notes/journaling.pdf

Ext3 – directories in H-trees

19

In ext2, the directory is a list of variable size directory entries. Searching for the inode number takes O (n), when
n is the number of entries in the directory. The ext3 partition with the dir_index option enabled can reduce
the search time of the inode several times.

H-trees (htree, hashed binary tree) used in ext3 directory indexes are trees of height 2 or 3 with equal depth of
all nodes. The root of an h-tree index is the first block of a directory file. The leaves are normal ext2
directory blocks, referenced by the root or indirectly through intermediate h-tree index blocks. References
within the directory file are by means of logical block offsets within the file.

The nodes other than leaves, as in B-trees, contain key values that separate the keys in the subtrees attached
to subsequent child nodes.

The keys are the hash function values for the file names.

Ext3 supports several hash functions.

A Directory Index for Ext2, Daniel Phillips, 2001

Add ext3 indexed directory (htree) support (October 2002, ver. 2.5.40)

This patch significantly increases the speed of using large directories in ext3, in a completely backwards and
forwards compatible fashion. Creating 100,000 files in a single directory took 38 minutes without directory
indexing... and 11 seconds with the directory indexing turned on.

http://www.usenix.org/publications/library/proceedings/als01/full_papers/phillips/phillips.ps
http://www.usenix.org/publications/library/proceedings/als01/full_papers/phillips/phillips.ps
http://www.usenix.org/publications/library/proceedings/als01/full_papers/phillips/phillips.ps
http://www.usenix.org/publications/library/proceedings/als01/full_papers/phillips/phillips.ps
http://www.usenix.org/publications/library/proceedings/als01/full_papers/phillips/phillips.ps
http://www.usenix.org/publications/library/proceedings/als01/full_papers/phillips/phillips.ps
https://lwn.net/Articles/11481/
https://lwn.net/Articles/11481/
https://lwn.net/Articles/11481/

20

21

Ext3 – directories in H-trees
SKIP

struct dx_root
{
 struct fake_dirent dot;
 char dot_name[4];
 struct fake_dirent dotdot;
 char dotdot_name[4];
 struct dx_root_info
 {
 __le32 reserved_zero;
 u8 hash_version;
 u8 info_length; /* 8 */
 u8 indirect_levels;
 u8 unused_flags;
 }
 info;
 struct dx_entry entries[0];
};
 struct dx_node
{
 struct fake_dirent fake;
 struct dx_entry entries[0];
};

struct dx_entry
{
 __le32 hash;
 __le32 block;
};

struct fake_dirent
{
 __le32 inode;
 __le16 rec_len;
 u8 name_len;
 u8 file_type;
};

Ext3 – directories in H-trees

22

The search for a file name in the H-tree begins with a binary search of the leaf in which the
directory entry for the name is found.

Directory entries within the leaf are not ordered, the leaf should be searched linearly.

There may be a collision of hash function values.

An important case is when of the two directory entries for conflicting names, one has the largest
hash value in its leaf and the other has the smallest in the successor of this node.

If we are looking for the second name, then we get to this first block and there we recognize, that
the searched name is missing.

At this point we need to search the successor node (and perhaps more nodes).

The youngest bit of the hash in the parent node indicates whether such a collision on the border
occurred; thanks to this information we can skip searching the successor.

SKIP

Ext3 – directories in H-trees

23

Adding an entry consists in adding a new directory entry to the appropriate leaf.

If the leaf is full and there is only one level of index nodes, we perform the split operation as in a B-tree.

If the leaf is full and there are two levels of index nodes, then there are several tens of millions of entries in
the directory, or because of the fragmentation too many other nodes are not full – in this case the inability
to create the file is reported.

The directory entry is deleted only in the leaf.

If the leaf becomes empty, we do nothing about it – which simplifies the implementation, but potentially
prevents the operation of splitting another node

SKIP

File systems of the ext* family

24

Ext4 (fourth extended file system)

• Introduced in 2008 (not entirely new filesystem, rather fork of ext3).

• Main maintainers: Theodore Ts’o, Andreas Dilger.

• Available since kernel version 2.6.19.

• Supports huge individual file size and overall file system size.

• Maximum individual file size can be from 16 GB to 16 TB.

• Overall file system size can be from 1 EB (exabyte).

 1 EB = 1024 PB (petabyte), 1 PB = 1024 TB (terabyte).

• A directory can contain 64,000 subdirectories.

• Several other new features are introduced in ext4: multiple block allocation, delayed allocation,
journal checksum, fast fsck, etc.

• There is an option of turning the journaling feature off.

• An existing ext3 can be mounted as ext4 (without having to upgrade it).

https://www.thegeekstuff.com/2011/05/ext2-ext3-ext4/?utm_source=feedburner

25 (source: Adrian Huang, Virtual File System, 2022)

EXT4 file system format

https://www.slideshare.net/AdrianHuang/linux-kernel-virtual-file-system
https://www.slideshare.net/AdrianHuang/linux-kernel-virtual-file-system
https://www.slideshare.net/AdrianHuang/linux-kernel-virtual-file-system

Extent

26

The most important feature that distinguishes ext4 from the ext2 and ext3 is the extents mechanism, which
replaces indirect block addressing.

Instead of addressing individual blocks, ext4 tries to map as much data as possible to a continuous block area
on the disk. To get this ext4 mapping needs 3 values:

– the initial mapping block in the file,

– the size of the mapped area (in blocks) and

– the initial block of data saved on the disk.

The structure that stores these values is called extent.

#define EXT4_MIN_BLOCK_SIZE 1024
#define EXT4_MAX_BLOCK_SIZE 65536 /* in bytes*/

struct ext4_extent {
 __le32 ee_block; /* first logical block extent covers */
 __le16 ee_len; /* number of blocks covered by extent */
 __le16 ee_start_hi; /* high 16 bits of physical block */
 __le32 ee_start_lo; /* low 32 bits of physical block */
};

27 Source: https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf

https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf

File, volume, extent size

28

File blocks in the ext4 system are numbered using 32 bits, which limits their number to 232 4 KB
blocks. This gives a maximum file size of 232*212=24*240=16 TiB. In standard ext3, the file can
have a maximum of 2 TiB.

The volume size, in turn, is limited by the 48-bit block identifier on the disk, which for a 4 KB block
size gives 248*212=260=1 EiB. For comparison, ext3 with a 32-bit number and a 4 KB block size
offered a maximum partition size of 16 TiB.

The size of the extent is limited by 215 blocks, i.e. for a 4 KB block it gives 215*212=217=128 MB. This
limitation results from the division into block groups, and a single block group can have a
maximum size of 128 MB. Due to this limitation, the last bit of the 16-bit extent size can be used
in the preallocation mechanism.

The extents mechanism reduces the size of metadata, which means that operations on large files
are much faster. The 500 MB file in ext4 uses four 12-byte extents, while the block addresses of
the same file need more than 0.5 MB metadata in ext2. The advantage of the new solution can
be seen especially in operations requiring many operations on metadata (e.g. file deletion).

SKIP

1 exbibyte = 260 bytes = 1152921504606846976 bytes = 1,024 pebibytes
1 EiB is approximately 1.15 EB, where exabyte (EB) to 1018 bytes.

Storing files up to 512 MB

29

Extent map (source: Ext4: The Next Generation of Ext2/3 Filesystem, Mingming Cao, Suparna Bhattacharya, Ted Tso)

The metadata for storing
information about extents is
saved in the inode in the 60-
bytes area used in ext2 for
storing block addresses.

There are 4 extents in this area
and 1 header describing them
(12 bytes for each structure).

struct ext4_extent_header

struct ext4_extent_idx

https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf

Storing files over 512 MB

30

Inode structure and extent tree in ext4
(source: M. Michałowski)

A tree is built for larger chunks of data. For this purpose, an additional structure is used – an index
containing the initial position of the extent in the file and the block number of the data on the disk. This
block always contains a header describing the data and may contain further indexes or extents with the
data.

http://students.mimuw.edu.pl/ZSO/Wyklady/00_stud/ext4/ext4.html

Block allocator changes

31

Needed to best suport extents:

• Extents work best if files are contiguous.

• Delayed allocation and allocating multiple blocks at a time makes this much more likely.

• Responsible for most of ext4’s performance improvements.

Multiple block allocation

32

In ext2, as well as ext3, each block of the file had to be allocated separately, which in the case of
large files resulted in a large number of calls to the allocation function. In addition to
performance issues, this made the file system more susceptible to fragmentation.

Ext4 has a multiple block allocation mechanism (mballoc) that is necessary to ensure a continuous
block area for extents.

Depending on the file size, the allocator uses different strategies

– for small files (<16 blocks) it tries to keep them close together, which will speed up their
reading;

– large files are allocated so that they are in the most continuous memory area possible.

This solves the performance and fragmentation issues that occur in ext2.

Regardless of which strategy the ext4 allocator uses – it first checks if there are free preallocated
blocks, only in the next step uses the buddy cache.

Description of the allocator:

 Mballoc.c @ LXR – 300 line comment on the operation of the multiblock allocator.

Using this mechanism does not affect the format of the data stored on the disk.

https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c
https://elixir.bootlin.com/linux/latest/source/fs/ext4/mballoc.c

Delayed allocation

33

Delayed allocation (allocate-on-flush) is a technique used in many modern file systems, consisting
in maximum delay in block allocation (in contrast to traditional file systems, in which blocks are
allocated as soon as possible) .

If the process writes to a file, the file system immediately allocates the blocks where the data will
be written, even if it does not happen immediately and the data is cached for some time.

In the case of delayed allocation, blocks are not allocated immediately upon writing, but only
when disk writing is actually to take place. This allows the block allocator to optimize allocation.

Delayed writing works very well with two other techniques: extents and multiple block allocation,
because in many situations when the file is finally saved to disk, it will be placed in the extents
allocated using the mballoc allocator. This improves performance and reduces fragmentation.

In the case of temporary files, there is a chance that you will not need to save them to disk at all.

Disadvantages: Increases the risk of data loss during a failure. Many assumptions about writing to
a file, true for ext2, become false for ext4.

Persistent preallocation

34

Persistent preallocation allows blocks to be assigned to files without initializing first:

• Most useful for databases and video files.

• Also useful for files that grow gradually via small append operations (i.e. Unix mail files and log
files).

• Protects against the lack of disk space for file extension and allows to reduce data
fragmentation.

• The fallocate() system call allows to reserve a specific area for a file that does not initially use all
space.

• Information that the file is pre-allocated and extent contains uninitialized data is contained in bit
16 of the field describing the size of the extent (ee_len).

• During reads, an uninitialized extent is treated just like a hole, so that the VFS returns zero-filled
blocks.

• Upon writes, the extent must be split into initialized
and uninitialized extents, merging the initialized
portion with an adjacent initialized extent if
contiguous.

 LWN: fallocate()

https://lwn.net/Kernel/Index/
https://lwn.net/Kernel/Index/
https://lwn.net/Kernel/Index/
https://lwn.net/Kernel/Index/

Layout of the large inode

35 Source : The new ext4 filesystem: current status and future plans

In order to avoid duplicating a lot of code in the kernel and e2fsck, the
large inodes keep the same fixed layout for the first 128-bytes. The rest
of the inode is split into two parts:

1. A fixed-field section that allows addition of fields common to all
inodes, such as nanosecond timestamps.

2. A section for Fast Extended Attributes (EAs) that consumes the
rest of the inode (support for fast EAs in large inodes has been
available in Linux kernels since 2.6.12).

The first use of EAs was to store file ACLs and other security data
(selinux).

Ext3 supports different inode sizes. The inode size can be set to any power-of-two larger than 128 bytes
size up to the filesystem block size. This can be done by the mke2fs -I [inode size] command at
format time. The default inode size is 128 bytes, which is already crowded with data and has little
space for new fields.

In ext4, the default inode structure size is 256 bytes.

https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf

Journal

36

Journal checksums

The journal is one of the most intensively used areas of the disk, therefore data corruption in this area is
particularly severe for the entire file system.

Ext4 introduces the journal checksumming.

The checksum is calculated for each transaction and each block group descriptor.

Larger overhead for I/O operations, but allows to transform two journal writing phases known from ext3 to
one, which improves both reliability and performance.

Fast commits for ext4, Marta Rybczyńska, January 2021.

Barriers

This mechanism allows to order the disk driver to save data in a specific order, which prevents data from being
split in case of an emergency.

The file system must explicitly instruct the disk that writing data to the journal must precede writing the
record with a commit.

Barriers are used for this.

Nanosecond timestamps

Ext4 introduces time stamps with nanosecond precision.

The new time stamps also shift the problem of 2038 by another 204 years.

SKIP

https://lwn.net/Articles/842385/
https://en.wikipedia.org/wiki/Year_2038_problem

Additional reading

• Documentation/filesystems/ext2.txt.

• State of the Art: Where we are with the Ext3 filesystem, M. Cao, T. Y. Ts'o, B. Pulavarty, S. Bhattacharya, IBM.

• A Directory Index for Ext2, Daniel Phillips, 2001.

• Journaling the Linux ext2fs Filesystem, LinuxExpo, Stephen C. Tweedie, 1998.

• Anatomy of Linux journaling file systems, M. Tim Jones, IBM.

• Ext3, Wikipedia, the free encyclopedia, 7 maja 2010.

• Ext3 removal, quota & udf fixes (Linus Torwalds, September 2015)

 So the thing I'm happy to see is that the ext4 developers seem to unanimously agree that maintaining ext3
compatibility is part of their job, and nobody seems to be arguing for keeping ext3 around.

 Assuming no major objections come up, the EXT3 file-system driver will be dropped for the Linux 4.3 kernel.

• File system design case studies (Paul Krzyzanowski, March 2012)

37

https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/ext2.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/ext2.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/ext2.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/ext2.txt
http://ext2.sourceforge.net/2005-ols/paper-html/cao.html
http://ext2.sourceforge.net/2005-ols/paper-html/cao.html
http://ext2.sourceforge.net/2005-ols/paper-html/cao.html
http://ext2.sourceforge.net/2005-ols/paper-html/cao.html
http://ext2.sourceforge.net/2005-ols/paper-html/cao.html
http://ext2.sourceforge.net/2005-ols/paper-html/cao.html
http://ext2.sourceforge.net/2005-ols/paper-html/cao.html
http://ext2.sourceforge.net/2005-ols/paper-html/cao.html
http://ext2.sourceforge.net/2005-ols/paper-html/cao.html
http://ext2.sourceforge.net/2005-ols/paper-html/cao.html
http://ext2.sourceforge.net/2005-ols/paper-html/cao.html
http://ext2.sourceforge.net/2005-ols/paper-html/cao.html
http://ext2.sourceforge.net/2005-ols/paper-html/cao.html
http://ext2.sourceforge.net/2005-ols/paper-html/cao.html
http://ext2.sourceforge.net/2005-ols/paper-html/cao.html
http://www.usenix.org/publications/library/proceedings/als01/full_papers/phillips/phillips.ps
http://www.usenix.org/publications/library/proceedings/als01/full_papers/phillips/phillips.ps
http://www.usenix.org/publications/library/proceedings/als01/full_papers/phillips/phillips.ps
http://www.usenix.org/publications/library/proceedings/als01/full_papers/phillips/phillips.ps
http://www.usenix.org/publications/library/proceedings/als01/full_papers/phillips/phillips.ps
http://www.usenix.org/publications/library/proceedings/als01/full_papers/phillips/phillips.ps
http://e2fsprogs.sourceforge.net/journal-design.pdf
http://e2fsprogs.sourceforge.net/journal-design.pdf
http://e2fsprogs.sourceforge.net/journal-design.pdf
http://e2fsprogs.sourceforge.net/journal-design.pdf
http://e2fsprogs.sourceforge.net/journal-design.pdf
http://e2fsprogs.sourceforge.net/journal-design.pdf
http://www.ibm.com/developerworks/library/l-journaling-filesystems
http://www.ibm.com/developerworks/library/l-journaling-filesystems
http://www.ibm.com/developerworks/library/l-journaling-filesystems
http://www.ibm.com/developerworks/library/l-journaling-filesystems
http://www.ibm.com/developerworks/library/l-journaling-filesystems
http://www.ibm.com/developerworks/library/l-journaling-filesystems
http://en.wikipedia.org/wiki/Ext3
https://lwn.net/Articles/656819
https://lwn.net/Articles/656819
https://lwn.net/Articles/656819
https://lwn.net/Articles/656819
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/ext4.txt
https://www.cs.rutgers.edu/~pxk/416/notes/13-fs-studies.html
https://www.cs.rutgers.edu/~pxk/416/notes/13-fs-studies.html
https://www.cs.rutgers.edu/~pxk/416/notes/13-fs-studies.html
https://www.cs.rutgers.edu/~pxk/416/notes/13-fs-studies.html
https://www.cs.rutgers.edu/~pxk/416/notes/13-fs-studies.html

Additional reading

• Documentation/filesystems/ext4.txt.

• Ext4 wiki.

• Ext4 Howto.

• Ext4 Disk Layout.

• Ext4, FOSDEM, Theodore Ts’o, 2009.

• Ted Ts'o on the ext4 filesystem, NYLUG, Theodore Ts’o, 2013.

• Ext4 block and inode allocator improvements, A. Kumar, M. Cao, J. Santos, A. Diliger, 2008 Linux Symposium.

• Case-insensitive ext4, Jake Edge, March 2019.

• The new ext4 filesystem: current status and future plans, A. Mathur, M. Cao, S. Bhattacharya, A. Dilger, A.
Tomas, L. Vivier, 2007 Linux Symposium.

• Ext4: The Next Generation of Ext2/3 Filesystem, M. Cao, S. Bhattacharya, T. Tso, IBM, 2007.

• A Minimum Complete Tutorial of Linux ext4 File System, Mete Balci, 2017.

• Understanding Linux filesystems: ext4 and beyond, Jim Salter, April 2018

• How do SSDs work?, Joel Hruska, ExtremeTech, 2021.

38

https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/ext4.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/ext4.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/ext4.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/filesystems/ext4.txt
https://ext4.wiki.kernel.org/index.php/Main_Page
https://ext4.wiki.kernel.org/index.php/Main_Page
https://ext4.wiki.kernel.org/index.php/Ext4_Howto
https://ext4.wiki.kernel.org/index.php/Ext4_Howto
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://ext4.wiki.kernel.org/index.php/Ext4_Disk_Layout
https://www.youtube.com/watch?v=Fhixp2Opomk
https://www.youtube.com/watch?v=2mYDFr5T4tY&t=0s
https://www.youtube.com/watch?v=2mYDFr5T4tY&t=0s
https://www.youtube.com/watch?v=2mYDFr5T4tY&t=0s
https://www.youtube.com/watch?v=2mYDFr5T4tY&t=0s
https://www.youtube.com/watch?v=2mYDFr5T4tY&t=0s
https://www.youtube.com/watch?v=2mYDFr5T4tY&t=0s
http://ols.fedoraproject.org/OLS/Reprints-2008/kumar-reprint.pdf
http://ols.fedoraproject.org/OLS/Reprints-2008/kumar-reprint.pdf
http://ols.fedoraproject.org/OLS/Reprints-2008/kumar-reprint.pdf
http://ols.fedoraproject.org/OLS/Reprints-2008/kumar-reprint.pdf
http://ols.fedoraproject.org/OLS/Reprints-2008/kumar-reprint.pdf
http://ols.fedoraproject.org/OLS/Reprints-2008/kumar-reprint.pdf
http://ols.fedoraproject.org/OLS/Reprints-2008/kumar-reprint.pdf
http://ols.fedoraproject.org/OLS/Reprints-2008/kumar-reprint.pdf
http://ols.fedoraproject.org/OLS/Reprints-2008/kumar-reprint.pdf
https://lwn.net/Articles/784041/
https://lwn.net/Articles/784041/
https://lwn.net/Articles/784041/
https://lwn.net/Articles/784041/
https://lwn.net/Articles/784041/
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.kernel.org/doc/ols/2007/ols2007v2-pages-21-34.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://www.usenix.org/legacy/event/lsf07/tech/cao_m.pdf
https://metebalci.com/blog/a-minimum-complete-tutorial-of-linux-ext4-file-system/
https://opensource.com/article/18/4/ext4-filesystem
https://opensource.com/article/18/4/ext4-filesystem
https://opensource.com/article/18/4/ext4-filesystem
https://opensource.com/article/18/4/ext4-filesystem
https://opensource.com/article/18/4/ext4-filesystem
https://opensource.com/article/18/4/ext4-filesystem
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec21-fs.pdf
https://www.extremetech.com/extreme/210492-extremetech-explains-how-do-ssds-work
https://www.extremetech.com/extreme/210492-extremetech-explains-how-do-ssds-work
https://www.extremetech.com/extreme/210492-extremetech-explains-how-do-ssds-work
https://www.extremetech.com/extreme/210492-extremetech-explains-how-do-ssds-work
https://www.extremetech.com/extreme/210492-extremetech-explains-how-do-ssds-work
https://www.extremetech.com/extreme/210492-extremetech-explains-how-do-ssds-work
https://www.extremetech.com/extreme/210492-extremetech-explains-how-do-ssds-work

