
Transparent Huge Pages

Table of contents

• Why we need contiguous memory and huge pages?

• Page sizes

• Hugetlbfs, Transparent Huge Pages and DAX

• Transparent Huge Pages

– Advantages and disadvantages

– Original implementation

– Improvements
• Huge zero page

• Controlling

• Support for tmpfs/shmem

• THP for filesystems

• Reducing data structures

• Compound pages and folios

2

3

The best solution would be to have the OS do what is necessary for high performance. We need

• Contiguous memory.

• Larger chunks of memory than 4K managed by the OS.

• If we want to support multiple page sizes then we need the ability to defragment memory. A
fundamental change how we manage objects in the kernel. They would need to be movable in
order to recover contiguous memory areas to be able to consistently provide larger page sizes
than the basic page.

Systems with terabytes of memory are not uncommon for many database or cloud provider
companies like AWS, Google, Meta, IBM, Oracle, and others. On a system with terabytes of
DRAM, there can be millions of struct page objects.

Currently, the struct page structure is 64 bytes in size and can consume up to 1.6% of the total
physical memory, which can amount to several gigabytes on a system with terabytes of memory.

How to capture 100G Ethernet traffic at wire speed to local disk
Christoph Lameter (LCA 2020)
https://www.youtube.com/watch?v=uBBaVtHkiOI

https://www.youtube.com/watch?v=uBBaVtHkiOI

4
Mike Kravetz, Huge page concepts in Linux,

https://www.youtube.com/watch?v=n67gCNiKVcw

Page size 4KB

https://www.youtube.com/watch?v=n67gCNiKVcw

5

Page_PSE – Page Size Extension
Huge page size = 2^(12+9)= 2^21 = 2MB

Page size 2MB

Mike Kravetz, Huge page concepts in Linux,
https://www.youtube.com/watch?v=n67gCNiKVcw

https://www.youtube.com/watch?v=n67gCNiKVcw

6

Huge page size = 2^(12+9+9)= 2^30 = 1GB

Page size 1GB

Mike Kravetz, Huge page concepts in Linux,
https://www.youtube.com/watch?v=n67gCNiKVcw

https://www.youtube.com/watch?v=n67gCNiKVcw

Possible approaches – overview (2018)

7

• Hugetlbfs (RAM-based filesystem)

– Original/oldest method.

– Preallocation at boot or early system init time.

– Memory ONLY available for hugetlbfs.

– Every file on this filesystem is backed by huge
pages and is accessed with mmap() or read().

– Taking advantage of it requires application
awareness or library support (libhugetlbfs).

– When there are multiple mount points (to make
different page sizes available), it gets more
complicated.

– Good for ‘single purpose’ use cases.

• Promoting huge page usage, Christopher Lameter, Mike Kravetz
https://www.linuxplumbersconf.org/event/2/contributions/157/
Linux Plumbers Conference 2018, Vancouver

• https://www.kernel.org/doc/Documentation/filesystems/dax.txt

• Transparent Huge Pages (THP)

– Enabled by default on most distributions.

– No system configuration or application changes
required (although desirable for optimal usage).

– Single huge page size (PMD_SIZE).

• DAX (Persistent Memory)

– Mechanism that is used to bypass the page cache and
map files stored in persistent memory directly into
user space.

– Uses 2M and 1G mappings by default.

– Does not work correctly on architectures which have
virtually mapped caches such as ARM, MIPS and
SPARC.

– Various features have to be turned off when DAX is in
use, and others must be bypassed. It gives the whole
subsystem the feel of a permanent experiment, and
that makes people not want to use it (2019).

https://www.linuxplumbersconf.org/event/2/contributions/157/
https://www.kernel.org/doc/Documentation/filesystems/dax.txt

Huge pages

8

104857KB=1024*1024KB=2^20*2^10B=2^30B=1GB
 2048KB=2*2^10*2^10B=2MB

Hugetlbfs multiple page size pools Default hugetlb page size: 2MB

THP – Advantages and disadvantages

9

• Advantages

– The size of page tables decreases, as does the number of page faults required to get an application into
RAM.

– A single TLB entry will be mapping a much larger amount of virtual memory in turn reducing the number
of TLB misses.

– The TLB miss will run faster (fewer page-table levels are required to span the same range of virtual
addresses).

• Disadvantages

– The amount of wasted memory will increase as a result of internal fragmentation.

– Larger pages take longer to transfer from secondary storage, increasing page fault latency (while
decreasing page fault counts).

– The time required to simply clear very large pages can create significant kernel latencies.

• THP works by quietly substituting huge pages into a process's address space when
 those page are available and
 it appears that the process would benefit from the change.

• Introduced to Linux in 2.6.38 (2011) by Andrea Arcangeli.

THP – Original implementation

10

• Patchset by Andrea Arcangeli (2011)

– When a fault happens, the kernel will attempt to allocate a huge page to satisfy it. Should the
allocation succeed, the huge page will be filled, any existing small pages in the new page's address
range will be released, and the huge page will be inserted into the VMA. If no huge pages are
available, the kernel falls back to small pages and the application never knows the difference.

– Huge pages must be swappable, lest the system run out of memory. Rather than complicate the
swapping code with an understanding of huge pages, a huge page is split back into its component
small pages if that page needs to be reclaimed.

– Khugepaged kernel thread will occasionally attempt to allocate a huge page; if it succeeds, it will scan
through memory looking for a place where that huge page can be substituted for a bunch of smaller
pages. Thus, available huge pages should be quickly placed into service, maximizing the use of huge
pages in the system as a whole.

– The current patch only works with anonymous pages.

– Up to 10% improvements for some benchmarks.

THP – Enhancements

11

• Patchset by Kirill Shutemov – Zero pages (2012)

– Adds a special, zero-filled huge page to function as the huge zero page. Only one such page is needed,
since the transparent huge pages feature only uses one size of huge page.

• Patchset by Andi Kleen – Supporting variable-sized huge pages (2013)

– Some modern architectures permit multiple huge page sizes, and where the system admin has
configured the system to provide huge page pools of different sizes, applications may want to choose
the page size used for their allocation.

– Extends the shmget()and mmap() system calls to allow the caller to select the size used for huge
page allocations.

• Patchset by Alex Thorlton – Controlling transparent huge pages (2013)

– The feature can be turned off globally, but what about situations where some applications benefit while
others do not?

– Provides an option to disable transparent huge pages on a per-process basis. This operation sets a flag
in the task_struct structure; setting that flag causes the memory management system to avoid
using huge pages for the associated process. And that allows the creation of mixed workloads, where
some processes use transparent huge pages and others do not.

THP for filesystems (page cache)

12

• Patchset by Kirill Shutemov – THP in the page cache (October 2016, ver. 4.8)

– Two implementations competed (Hugh Dickins from Google lost).

– Adds support for transparent huge pages in the page cache in tmpfs/shmem (other filesystems may be added in
the future).

– One of the primary goals was the ability for applications to access individual 4KB subpages of a huge page
without the need to split the huge page itself.

– Using compound pages (used also for anonymous THP and for files in the hugetlbfs). The first of the range of
(small) pages that makes up a huge page is the head page, while the rest are tail pages. Most of the important
metadata is stored in the head page. Using compound pages allows the entire huge page to be represented by a
single entry in the LRU lists, and all buffer-head structures, if any, are tied to the head page.

– Unlike DAX, transparent huge pages do not force any constraints on a file's on-disk layout.

• Huge pages in the ext4fs (2017)

With tmpfs the creation of a huge page causes the addition of 512 (single-page) entries to the
radix tree; this cannot work in ext4. It is also necessary to add DAX support and to make it work
consistently. There are a few other problems; for example, readahead doesn't currently work with
huge pages. The maximum size of the readahead window is 128 KB, far less than the size of a huge
page. Huge pages also cause any shadow entries in the page cache to be ignored, which could
worsen the system's page-reclaim decisions.

SKIP

Kirill A. Shutemov

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1b5946a84d6eb096158e535bdb9bda06e7cdd941
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1b5946a84d6eb096158e535bdb9bda06e7cdd941
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1b5946a84d6eb096158e535bdb9bda06e7cdd941
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1b5946a84d6eb096158e535bdb9bda06e7cdd941
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1b5946a84d6eb096158e535bdb9bda06e7cdd941
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=1b5946a84d6eb096158e535bdb9bda06e7cdd941
https://lwn.net/Articles/718102/
https://lwn.net/Articles/718102/
https://lwn.net/Articles/718102/
https://lwn.net/Articles/718102/
https://lwn.net/Articles/718102/
https://lwn.net/Articles/718102/
https://lwn.net/Articles/718102/
https://lwn.net/Articles/718102/
https://lwn.net/Articles/718102/
https://lwn.net/Articles/495543/

THP for filesystems, performance

13

• Transparent huge pages for filesystems (2019)

– Facebook is trying to reduce misses on the TLB for instructions by putting hot functions into huge pages. Those
functions are collected up into an 8MB region in the generated executable.

– At run time, the application creates an 8MB temporary buffer and the hot section of the executable memory is
copied to it. The 8MB region in the executable memory is then converted to a huge page.

– This results in a 5-10% performance boost without requiring any kernel changes to support it.

– There is no support for writing to the THP, thus no writeback is required. That would prove to be a sticking
point.

• Transparent huge pages, NUMA locality and performance regressions, Dueling memory-management performance
regressions (2019)

– Some patches were made to tackle with performance regressions, but then have to be reverted.

– If the system is configured to always enable memory compaction and a huge page allocation is requested, the
page allocator will refuse to allocate pages on remote nodes. It behaves as if the program had been explicitly
bound to the current node, which was never the intended result. The reasoning that led to this behavior is that
it is better to allocate local 4KB pages than remote huge pages. But the kernel goes beyond that in this
situation, refusing to allocate any pages on remote nodes and potentially forcing the local node deeply into
swap.

SKIP

https://lwn.net/Articles/789159/
https://lwn.net/Articles/789159/
https://lwn.net/Articles/789159/
https://lwn.net/Articles/789159/
https://lwn.net/Articles/789159/
https://lwn.net/Articles/789159/
https://lwn.net/Articles/789159/
https://lwn.net/Articles/789159/
https://lwn.net/Articles/787434/
https://lwn.net/Articles/787434/
https://lwn.net/Articles/787434/
https://lwn.net/Articles/787434/
https://lwn.net/Articles/787434/
https://lwn.net/Articles/787434/
https://lwn.net/Articles/787434/
https://lwn.net/Articles/787434/
https://lwn.net/Articles/787434/
https://lwn.net/Articles/790985/
https://lwn.net/Articles/790985/
https://lwn.net/Articles/790985/
https://lwn.net/Articles/790985/
https://lwn.net/Articles/790985/
https://lwn.net/Articles/790985/
https://lwn.net/Articles/790985/
https://lwn.net/Articles/790985/

THP – Data structures

14

– There is one page structure for each physical page in the system;
in common configurations, that means one 64-byte structure for
every 4096-byte page.

– The preferred memory model in current times (for 64-bit systems)
is sparsemem-vmemmap; it uses MMU to restore the illusion of a
simple, linear map (called the vmemmap).

– Whenever memory is added to the, a suitable number of page
structures is allocated and the set is mapped into the vmemmap.

– On a system with 4096-byte pages and a 64-byte struct page, one
page of memory needs to be allocated and mapped into the
vmemmap array for every 64 page structures.

– Once that is done, the page structure for any given page can be
found by using its page-frame number as an offset from
vmemmap_base (on x86 systems).

Reducing page structures for huge pages (December 2020)

• Nodes in NUMA systems have distinct ranges of
memory with, possibly, large gaps between
them.

• Memory can be plugged into a system (or
removed from it) at run time.

• Virtualized guests can have memory injected
into them (or removed) while they run as well.

• As a result, the simple, linear model of memory
no longer works.

https://lwn.net/Articles/839737/

THP – Data structures

15

– A compound page is formed when a group of adjacent pages is
grouped together into a larger unit.

– The most common use is for huge pages.

– Whenever a huge page is created from a set of single (base)
pages, the associated page structures are changed to reflect the
compound page that they now represent.

– The first base page in a compound page is called the head page,
while all of the others are called tail pages.

– A 2MB huge page is thus made up of one head page and 511 tail
pages.

– The page structure for the head page is marked as a compound
page, and represents the whole set.

– The page structures for the tail pages, instead, contain only a
pointer to the head page.

Thus, of the 512 page structures associated with a
2MB huge page, 511 are essentially identical copies
of a sign saying "look over there instead". Those
structures take up eight pages of memory in their
own right, seven of which represent only tail pages
and contain identical data.

Reducing page structures for huge pages
(December 2020)

https://lwn.net/Articles/839737/

THP – Data structures

16

• One 2MB huge page is represented by eight pages of page
structures, almost all of which correspond to tail pages and just
point to the structure for the head page.

• Since seven of those eight pages all contain identical pages, they
can be replaced with a single page instead; that one page can be
mapped seven times to fill out the vmemmap array.

• Six pages of duplicated data can now be given back to the system
for other uses for as long as the compound page continues to
exist. 75% of the memory overhead for this compound page has
just been eliminated.

• The savings for 1GB huge pages are even more dramatic; 4094 of
the 4096 pages representing tail pages can be eliminated.

• Huge pages do not remain huge forever; they can be returned to
the kernel or split up for a number of reasons. When that
happens, the full set of page structures must be restored.

Reducing page structures for huge pages
(December 2020)

https://lwn.net/Articles/839737/

17

Normal high-order page and compound page

(source: Adrian Huang, Memory Management with Page Folios, 2023)

pages = alloc_pages(GFP_KERNEL, 2);

pages = alloc_pages(GFP_KERNEL | __GFP_COMP, 2);

(source: Yu Xu, New Features of Linux
Memory management – Memory folios,

November 2023)

https://www.slideshare.net/AdrianHuang/memory-management-with-page-folios
https://www.slideshare.net/AdrianHuang/memory-management-with-page-folios
https://www.slideshare.net/AdrianHuang/memory-management-with-page-folios
https://www.slideshare.net/AdrianHuang/memory-management-with-page-folios
https://www.slideshare.net/AdrianHuang/memory-management-with-page-folios
https://www.slideshare.net/AdrianHuang/memory-management-with-page-folios
https://www.slideshare.net/AdrianHuang/memory-management-with-page-folios
https://www.alibabacloud.com/blog/new-features-of-linux-memory-management---memory-folios_600565
https://www.alibabacloud.com/blog/new-features-of-linux-memory-management---memory-folios_600565
https://www.alibabacloud.com/blog/new-features-of-linux-memory-management---memory-folios_600565
https://www.alibabacloud.com/blog/new-features-of-linux-memory-management---memory-folios_600565
https://www.alibabacloud.com/blog/new-features-of-linux-memory-management---memory-folios_600565
https://www.alibabacloud.com/blog/new-features-of-linux-memory-management---memory-folios_600565
https://www.alibabacloud.com/blog/new-features-of-linux-memory-management---memory-folios_600565
https://www.alibabacloud.com/blog/new-features-of-linux-memory-management---memory-folios_600565
https://www.alibabacloud.com/blog/new-features-of-linux-memory-management---memory-folios_600565
https://www.alibabacloud.com/blog/new-features-of-linux-memory-management---memory-folios_600565
https://www.alibabacloud.com/blog/new-features-of-linux-memory-management---memory-folios_600565
https://www.alibabacloud.com/blog/new-features-of-linux-memory-management---memory-folios_600565

Folios

18

Matthew Wilcox

• Compound page is a group of pages, represented by a head page. Other pages are called
tail pages.

• A folio is a way of representing a set of physically contiguous base pages.

• It is a container for a struct page that is guaranteed not to be a tail page.

• The plan is for struct page to shrink down to a single, eight-byte memory descriptor, the bottom few bits of which
describe what type of page is being described. The descriptor itself will be specific to the page type; slab pages
will have different descriptors than anonymous folios or pages full of page-table entries, for example.

• A key objective behind the move to descriptors is reducing the size of the memory map. The memory-map
overhead can be reduced from 1.56% to 0.2% of memory, which can save multiple gigabytes of memory on larger
systems.

• Any function accepting a folio will operate on the full compound page (if, indeed, it is a compound page)
with no ambiguity.

• The result is greater clarity in the kernel's memory-management subsystem; as functions are converted to
take folios as arguments, it will become clear that they are not meant to operate on tail pages.

• The first set of folio patches was merged for the 5.16 kernel.

The state of the page in 2024, May 15, 2024, Jonathan Corbet

https://lwn.net/Articles/973565/
https://lwn.net/Articles/973565/
https://lwn.net/Articles/973565/
https://lwn.net/Articles/973565/
https://lwn.net/Articles/973565/
https://lwn.net/Articles/973565/
https://lwn.net/Articles/973565/
https://lwn.net/Articles/973565/

page struct vs folio struct

19
(source: Adrian Huang, Memory Management with Page Folios, 2023)

SKIP

https://www.slideshare.net/AdrianHuang/memory-management-with-page-folios
https://www.slideshare.net/AdrianHuang/memory-management-with-page-folios
https://www.slideshare.net/AdrianHuang/memory-management-with-page-folios
https://www.slideshare.net/AdrianHuang/memory-management-with-page-folios
https://www.slideshare.net/AdrianHuang/memory-management-with-page-folios
https://www.slideshare.net/AdrianHuang/memory-management-with-page-folios
https://www.slideshare.net/AdrianHuang/memory-management-with-page-folios

Additional reading

• https://lwn.net/Kernel/Index/#Huge_pages

• https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

• /Documentation/mm/transhuge.rst

• Proactive compaction, Jonathan Corbet, 2017.

• Proactive compation for the kernel, Nitin Gupta, April 2020.

• Memory: the flat, the discontiguous, and the sparse, Mike Rapaport, May 2019.

• The end of the DAX experiment, Jonathan Corbet, May 2019.

• Sidestepping kernel memory management with DMEMFS, Jonathan Corbet, December 2020.

• Large Pages in Linux, Matthew Wilcox, LCA 2020.

• Large Pages in the Linux kernel, Matthew Wilcox, February 2021.

• LWN – A memory-folio update, Jonathan Corbet, May 2022

• The state of the page in 2025, Jonathan Corbet, March 2025

20

https://lwn.net/Kernel/Index/
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://elixir.bootlin.com/linux/latest/source/Documentation/mm/transhuge.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/mm/transhuge.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/mm/transhuge.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/mm/transhuge.rst
https://lwn.net/Articles/717656/
https://lwn.net/Articles/717656/
https://lwn.net/Articles/717656/
https://lwn.net/Articles/817905/
https://lwn.net/Articles/817905/
https://lwn.net/Articles/817905/
https://lwn.net/Articles/817905/
https://lwn.net/Articles/817905/
https://lwn.net/Articles/817905/
https://lwn.net/Articles/817905/
https://lwn.net/Articles/817905/
https://lwn.net/Articles/789304/
https://lwn.net/Articles/789304/
https://lwn.net/Articles/789304/
https://lwn.net/Articles/789304/
https://lwn.net/Articles/789304/
https://lwn.net/Articles/789304/
https://lwn.net/Articles/789304/
https://lwn.net/Articles/789304/
https://lwn.net/Articles/789304/
https://lwn.net/Articles/789304/
https://lwn.net/Articles/789304/
https://lwn.net/Articles/789304/
https://lwn.net/Articles/789304/
https://lwn.net/Articles/787233/
https://lwn.net/Articles/839216/
https://lwn.net/Articles/839216/
https://lwn.net/Articles/839216/
https://lwn.net/Articles/839216/
https://lwn.net/Articles/839216/
https://lwn.net/Articles/839216/
https://lwn.net/Articles/839216/
https://lwn.net/Articles/839216/
https://lwn.net/Articles/839216/
https://lwn.net/Articles/839216/
https://www.youtube.com/watch?v=p5u-vbwu3Fs
https://www.youtube.com/watch?v=hoSpvGxXgNg
https://www.youtube.com/watch?v=hoSpvGxXgNg
https://www.youtube.com/watch?v=hoSpvGxXgNg
https://www.youtube.com/watch?v=hoSpvGxXgNg
https://www.youtube.com/watch?v=hoSpvGxXgNg
https://www.youtube.com/watch?v=hoSpvGxXgNg
https://lwn.net/Articles/893512/
https://lwn.net/Articles/893512/
https://lwn.net/Articles/893512/
https://lwn.net/Articles/893512/
https://lwn.net/Articles/893512/
https://lwn.net/Articles/893512/
https://lwn.net/Articles/893512/
https://lwn.net/Articles/893512/
https://lwn.net/Articles/893512/
https://lwn.net/Articles/1015320/
https://lwn.net/Articles/1015320/
https://lwn.net/Articles/1015320/
https://lwn.net/Articles/1015320/
https://lwn.net/Articles/1015320/
https://lwn.net/Articles/1015320/
https://lwn.net/Articles/1015320/
https://lwn.net/Articles/1015320/

