
The block I/O layer
I/O schedulers

Table of contents

• The block layer

• Handling block devices

• Representing disks and disk partitions

• I/O scheduling on block devices

• Representing request queues, requests, block ios

• The Linux Block Layer. Built for Fast Storage, Sagi Grimberg

• Goals of I/O schedulers

• I/O schedulers in Linux

• Simple (no multiqueue) I/O schedulers

– Noop, Deadline, CFQ

• Multiqueue I/O schedulers

– BFQ, Kyber

• Testing I/O schedulers

2

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage

Block layer

3 Source: https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer

https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer

Anatomy of a block device

4

• Block devices: HDD, SSD, CD/DVD, Fibre Channel (FC)
SAN, or other block-based storage device.

• Disk structure:

– Sector: minimum addressable unit in a block
device.

– Track: a set of all sectors on a single surface lying at
the same distance from the disk's rotation spindle.

– Cylinder: a set of all tracks lying at the same
distance from the disk's rotation spindle on a disk
with multiple platters.

Source: Internet

request handling time =

 seek time + latency time + transmission time

5

Handling block devices

6 Kernel components affected by a block device operation (source: Bovet, Cesati)

1. The read () system function transfers control to the
appropriate function from VFS. The VFS function
determines if the requested data is already available and,
if necessary, how to perform the read operation.

2. If the kernel must read the data from the block device, it
must determine the physical location of that data. The
kernel relies on the mapping layer, which:

– determines the block size of the filesystem including
the file and computes the extent of the requested
data in terms of file block numbers.

– invokes a filesystem-specific function that accesses
the file’s disk node and determines the position of
the requested data on disk in terms of logical block
numbers.

7

4. Generic block layer starts the I/O operations. Each I/O
operation involves a group of blocks that are adjacent on
disk. Because the requested data is not necessarily
adjacent on disk, the generic block layer might start
several I/O operations. Each I/O operation is represented
by a block I/O (bio) structure, which collects all
information needed by the lower components to satisfy
the request.

5. The I/O scheduler sorts the pending I/O data transfer
requests according to predefined kernel policies. The
purpose is to group requests of data that lie near each
other on the physical medium.

6. The block device drivers take care of the actual data
transfer by sending suitable commands to the hardware
interfaces of the disk controllers.

Kernel components affected by a block device operation (source: Bovet, Cesati)

Handling block devices

8 Typical layout of page including disk data (source: Bovet, Cesati)

1. The controllers of the hardware block devices transfer
data in chunks of fixed length called sectors.

 The I/O scheduler and the block device drivers must
manage sectors of data. In most disk devices, the size of a
sector is 512 bytes.

2. VFS, the mapping layer, and the filesystems group the
disk data in logical units called blocks.

 The block on disk corresponds to one or more adjacent
sectors, which are regarded by the VFS as a single data
unit.

 The block size cannot be larger than a page frame.

 The block size is not specific to a block device.

 Each block requires its own block buffer in RAM.

Handling block devices

9

3. Older disk controllers support simple DMA operations
only: data is transferred from /to memory cells that are
physically contiguous in RAM.

 Recent disk controllers may also support scatter-gather
DMA transfers. Such DMA operation may involve several
segments at once.

 A segment is a memory page — or a portion of a
memory page—that includes the data of some adjacent
disk sectors.

4. The disk caches work on pages of disk data, each of
which fits in a page frame.

The generic block layer has to know about sectors, blocks, segments, and pages of data.

Typical layout of page including disk data (source: Bovet, Cesati)

Handling block devices

A closer look at the block layer

10 Source: https://lwn.net/Articles/736534/

Jens Axboe

https://lwn.net/Articles/736534/

struct gendisk {
 int major; /* major number of driver */
 int first_minor;
 int minors; /* maximum number of minors, =1 for */
 /* disks that can't be partitioned. */

 char disk_name[DISK_NAME_LEN]; /* name of major driver */

 /* Array of pointers to partitions indexed by partno. */
 struct xarray part_tbl;

 const struct block_device_operations *fops;
 struct request_queue *queue;
 ...
}

Representing disks and disk partitions

11

A disk is a logical block device that is handled by the generic block layer. Usually corresponds to a
hardware block device, but can also be a virtual device built upon several physical disk
partitions, or a storage area living in some dedicated pages of RAM.

Simplified version

A disk is represented by the gendisk
object (a generic disk).

A gendisk can be associated with
multiple block_device structures
when it has a partition table.

There will be one block_device that
represents the whole gendisk, and
possibly some others that represent
partitions within the gendisk.

I/O scheduling on block devices

12

I/O requests to block devices are handled asynchronously at the kernel level, and block device
drivers are interrupt-driven.

The generic block layer invokes the I/O scheduler to create a new block device request or to enlarge
an already existing one and then terminates.

The block device driver invokes the strategy routine to select a pending request and satisfy it by
issuing suitable commands to the disk controller.

When the I/O operation terminates, the disk controller raises an interrupt and the handler invokes
the strategy routine again to process another pending request.

Each block device driver maintains its own request queue, which contains the list of pending
requests for the device.

 If the disk controller is handling several disks, there is
usually one request queue for each physical block
device. I/O scheduling is performed separately on each
request queue.

Source: Internet

13

The request queue is doubly linked list of request descriptors (struct request).

The ordering of elements in the queue is specific to each block device driver; the I/O scheduler
offers several predefined scheduling methods.

Each request consists of one or more bio structures.

– Initially, the generic block layer creates a request including just one bio.

– Later, the I/O scheduler may “extend” the request either by adding a new segment to the
original bio, or by linking another bio structure into the request. This is possible when the
new data is physically adjacent to the data already in the request.

Each request queue has a maximum number of allowed pending requests. If the number of pending
read (write) requests reaches the upper limit, the queue is marked as full, and blockable
processes trying to add requests for that data transfer direction are put to sleep.

The I/O scheduler determines the exact position of the new request in the queue.

I/O scheduling on block devices

Request queues and requests

14 VFS objects (source: Sergey Klyaus)

Each struct request is an I/O block
request, but may come from combining
more independent requests from a
higher level.

The sectors to be transferred for a
request can be scattered into the main
memory but they always correspond to
a set of consecutive sectors on the
device.

Each bio includes the initial sector number and the number of
sectors included in the storage area, and one or more segments
describing the memory areas involved in the I/O operation.

https://myaut.github.io/dtrace-stap-book/kernel/bio.html
https://myaut.github.io/dtrace-stap-book/kernel/bio.html
https://myaut.github.io/dtrace-stap-book/kernel/bio.html

15 The bio structure (source: https://hyunyoung2.github.io/2016/09/08/Block_Device/)

The bio
structure

Each bio vec
represents a page in
memory, by default
it is 4096 bytes.

Each BIO structure
can contain a
maximum of 256 bio
vec structures.

https://hyunyoung2.github.io/2016/09/08/Block_Device/
https://hyunyoung2.github.io/2016/09/08/Block_Device/
https://hyunyoung2.github.io/2016/09/08/Block_Device/

The bio structure

The bio_vec structure contains a pointer
to the page descriptor of the segment’s
page frame, length of the segment in
bytes, and offset of the segment’s data in
the page frame.

To iterate through a struct bio, we need to
iterate through the vector of struct
bio_vec and transfer the data from every
physical page.

To simplify vector iteration, the struct
bvec_iter is used. This structure maintains
information about how many buffers and
sectors were consumed during the
iteration.

16 Relationship between struct bio, struct bio_vec, and struct page (source: Bovet, Cesati)

SKIP

17

The Linux Block Layer. Built for Fast Storage, Sagi Grimberg, June 2018
Active contributor to Linux I/O and RDMA stack
Interested in video: enjoy (if you know the language)

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.youtube.com/watch?v=eQXGzTAUj4o

18 The Linux Block Layer. Built for Fast Storage, Sagi Grimberg, June 2018

NVMe is a high-performance, NUMA optimized, and highly scalable storage protocol, that connects the host to
the memory subsystem. The protocol is relatively new, feature-rich, and designed from the ground up for non-
volatile memory media (NAND and Persistent Memory) directly connected to CPU via PCIe interface.

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details

19

I/O stack

Existing I/O stack had a lot of data sharing

• between different applications (running on different cores)

• between submission and completion

• locking for synchronization

• zero NUMA awarness

All stack heuristics and optimizations centered around slow storage.

The result is very bad scaling, spending lots of CPU cycles and much higher latencies.

The Linux Block Layer. Built for Fast Storage, Sagi Grimberg, June 2018

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details

20 The Linux Block Layer. Built for Fast Storage, Sagi Grimberg, June 2018

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details

21 The Linux Block Layer. Built for Fast Storage, Sagi Grimberg, June 2018

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details

22 The Linux Block Layer. Built for Fast Storage, Sagi Grimberg, June 2018

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details

23 The Linux Block Layer. Built for Fast Storage, Sagi Grimberg, June 2018

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details

24 The Linux Block Layer. Built for Fast Storage, Sagi Grimberg, June 2018

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details

25 The Linux Block Layer. Built for Fast Storage, Sagi Grimberg, June 2018

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details

26 The Linux Block Layer. Built for Fast Storage, Sagi Grimberg, June 2018

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details

27 The Linux Block Layer. Built for Fast Storage, Sagi Grimberg, June 2018

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details

28 The Linux Block Layer. Built for Fast Storage, Sagi Grimberg, June 2018

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details

29 The Linux Block Layer. Built for Fast Storage, Sagi Grimberg, June 2018

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details

30 The Linux Block Layer. Built for Fast Storage, Sagi Grimberg, June 2018

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details

31 The Linux Block Layer. Built for Fast Storage, Sagi Grimberg, June 2018

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details

32

Polling has been
added in v4.1.

The Linux Block Layer. Built for Fast Storage, Sagi Grimberg, June 2018

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details

Goals of I/O schedulers

33

I/O schedulers can have many purposes depending on the goals; common purposes include the
following:

– To minimize time wasted by hard disk seeks.

– To prioritize a certain processes' I/O requests.

– To give a share of the disk bandwidth to each running process.

– To guarantee that certain requests will be issued before a particular deadline.

(by Wikipedia)

Linux Storage Stack, 2016

https://www.admin-magazine.com/Articles/Linux-Storage-Stack
https://www.admin-magazine.com/Articles/Linux-Storage-Stack
https://www.admin-magazine.com/Articles/Linux-Storage-Stack
https://www.admin-magazine.com/Articles/Linux-Storage-Stack
https://www.admin-magazine.com/Articles/Linux-Storage-Stack

I/O schedulers in Linux

34

The history of I/O schedulers in Linux:

– Linux 2.4: Linus Elevator.

– Linux 2.6: Deadline, Anticipatory (removed in 2.6.33), CFQ (Complete Fairness Queueing), Noop (No operation).

– Linux 3.0: Deadline, CFQ, Noop.

– Linux 4.11: MQ-Deadline, CFQ, Noop.

– Linux 4.12: MQ-Deadline, CFQ, BFQ (Budget Fair Queueing), Kyber, Noop.

– Linux 5.0: MQ-Deadline, BFQ (Budget Fair Queueing), Kyber, Noop.

I/O scheduler can be selected at boot time: elevator=<name of I/O scheduler> (eg. CFQ)

The administrator can replace the I/O scheduler while the kernel is running.

 $> cat /sys/block/hdc/queue/scheduler

 noop deadline [cfq]

 $> echo noop > /sys/block/hdc/queue/scheduler

 $> ls /sys/block/hdc/queue/iosched/

 back_seek_max fifo_expire_sync quantum slice_idle back_seek_penalty group_idle slice_async slice_sync
fifo_expire_async low_latency slice_async_rq target_latency

 $> cat /proc/version

 $> Linux version 4.9.122-1 (on duch but 4 years ago)

$> cat /sys/block/vdc/queue/scheduler
[none] mq-deadline
$ cat /proc/version
Linux version 6.1.0-21-amd64

(on students)

$> cat /sys/block/vdc/queue/scheduler
[mq-deadline] none

(on duch)

Simple (non multiqueue) I/O schedulers

Noop

Inserts all incoming I/O requests into a simple FIFO
queue and implements request merging. It
doesn't sort the requests

35

Tests by RedHat: The noop scheduler is suitable for
devices where there are no performance penalties for
seeks. Examples of such devices are ones that use
flash memory. Noop can also be suitable on some
system setups where I/O performance is optimized at
the block device level, with either an intelligent host
bus adapter, or a controller attached externally.

In Wikipedia:
https://en.wikipedia.org/wiki/Noop_scheduler

https://www.thomas-
krenn.com/de/wiki/Linux_I/O_Scheduler

https://en.wikipedia.org/wiki/Noop_scheduler
https://www.thomas-krenn.com/de/wiki/Linux_I/O_Scheduler
https://www.thomas-krenn.com/de/wiki/Linux_I/O_Scheduler
https://www.thomas-krenn.com/de/wiki/Linux_I/O_Scheduler

Deadline

Tries to provide fairness (avoid starvation) while
maximizing the global throughput.

Each request is given an expiration time, the
deadline:

Reads = now + 0,5 sec

Writes = now + 5 sec

The algorithm reduces latency for read requests, but
does so at the expense of global bandwidth.

Tests by RedHat: The deadline scheduler aims to
keep latency low, which is ideal for real-time
workloads.

In Wikipedia:
https://en.wikipedia.org/wiki/Deadline_scheduler

36

https://www.thomas-
krenn.com/de/wiki/Linux_I/O_Scheduler

Simple (non multiqueue) I/O schedulers

https://en.wikipedia.org/wiki/Deadline_scheduler
https://www.thomas-krenn.com/de/wiki/Linux_I/O_Scheduler
https://www.thomas-krenn.com/de/wiki/Linux_I/O_Scheduler
https://www.thomas-krenn.com/de/wiki/Linux_I/O_Scheduler

CFQ (Complete Fair Queueing)

The main goal is to ensure a fair distribution of I/O bandwidth between processes.

Per-process request queues (64 by default), which are served in round-robin order. A hash function is
called that converts the process thread group ID (usually PID) into an index in the queue

37 Source: https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer

Tests by RedHat: CFQ is well suited for most medium to large
multi-processor systems and for systems which require
balanced I/O performance over multiple Logical Unit Numbers
and I/O controllers.

In Wikipedia: https://en.wikipedia.org/wiki/CFQ

Simple (non multiqueue) I/O schedulers

https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer
https://computing.ece.vt.edu/~changwoo/ECE-LKP-2019F/l/lec22-block-layer
https://en.wikipedia.org/wiki/CFQ

Multiqueue I/O schedulers

The multiqueue block layer subsystem (blk-mq), introduced in 2013, was a step for the kernel to
scale to the fastest storage devices on large systems. The implementation in current kernels
was incomplete, in that it lacked an I/O scheduler designed to work with multiqueue devices.

High-end drives are generally solid-state devices lacking rotational delay problems; they are thus
not as sensitive to the ordering of operations.

There is value in I/O scheduling even for the fastest devices; a scheduler can coalesce adjacent
requests, reducing the overall operation count, and it can prioritize some operations over
others.

First MQ conversion was for deadline scheduler ( MQ-Deadline in 4.11)

Two multiqueue I/O schedulers were added to the mainline in 4.12.

In 5.0 the legacy (non-multiqueue) block layer code has been removed, now that no drivers
require it. The legacy I/O schedulers (including CFQ and deadline) have been removed as well.

38

Budget Fair Queuing (BFQ) scheduler

Maintains per-process queues of I/O requests like CFQ, but it does away with the round-robin approach
used by CFQ.

It assigns an I/O budget to each process, which is expressed as the number of sectors (instead of
amount of time as in CFQ) that the process is allowed to transfer when it is next scheduled for
access to the drive. Once a process is selected, it has exclusive access to the storage device until it
has transferred its budgeted number of sectors.

The calculation of the budget is complicated, but, in the end, it is based on each process's I/O weight
and observations of the process's past behavior.

The I/O weight functions like a priority value; it is set by the administrator (or by default) and is normally
constant. Processes with the same weight should all get the same allocation of I/O bandwidth.

Different processes may get different budgets, but BFQ tries to preserve fairness overall, so a process
getting a smaller budget now will get another turn at the drive sooner than a process that was
given a large budget.

To figure out whose requests should be serviced, BFQ examines the assigned budgets and chooses the
process whose I/O budget would, on an otherwise idle disk, be exhausted first.

39

Multiqueue I/O schedulers

Budget Fair Queuing (BFQ) scheduler – continued

By setting the budgets properly, BFQ tries to ensure that all processes get a fair amount of the
available I/O bandwidth within fairly tight latency limits.

The core idea is simple, but the real world is rather more complex; as a result, BFQ, like CFQ, has
accrued a number of heuristics aimed at improving performance in specific areas.

– Queues for cooperating processes working in the same area of the disk are merged to
enable more request consolidation.

– If a process doing read requests empties its queue before exhausting its budget, the
device will be idled briefly to give that process a chance to create another request.

– Processes identified as "soft realtime" (those with moderate bandwidth requirements
and an observed regular on/off request cycle) will get higher priority, as will processes
that are just starting up.

– And so on.

40

BFQ I/O scheduler. More throughput, control and efficiency, Paolo Valente, 2019

Multiqueue I/O schedulers

https://s3.amazonaws.com/connect.linaro.org/bkk19/presentations/bkk19-510.pdf
https://s3.amazonaws.com/connect.linaro.org/bkk19/presentations/bkk19-510.pdf
https://s3.amazonaws.com/connect.linaro.org/bkk19/presentations/bkk19-510.pdf
https://s3.amazonaws.com/connect.linaro.org/bkk19/presentations/bkk19-510.pdf
https://s3.amazonaws.com/connect.linaro.org/bkk19/presentations/bkk19-510.pdf
https://s3.amazonaws.com/connect.linaro.org/bkk19/presentations/bkk19-510.pdf
https://s3.amazonaws.com/connect.linaro.org/bkk19/presentations/bkk19-510.pdf
https://s3.amazonaws.com/connect.linaro.org/bkk19/presentations/bkk19-510.pdf
https://s3.amazonaws.com/connect.linaro.org/bkk19/presentations/bkk19-510.pdf

Kyber I/O scheduler

BFQ is a complex scheduler designed to provide good interactive response, especially on slower
devices. It has a relatively high per-operation overhead, which is justified when the I/O
operations are slow and expensive.

This complexity may not make sense when I/O operations are cheap and throughput is a primary
concern. When running a server workload using solid-state devices, it may be better to run a
simpler scheduler that allows for request merging and some simple policies, but mostly stays
out of the way.

Kyber is intended for fast multiqueue devices and lacks much of the complexity found in BFQ; it is
less than 1,000 lines of code.

I/O requests passing through Kyber are split into two primary queues, one for synchronous
requests (reads) and one for asynchronous requests (writes). Reads are prioritized over
writes, but not to the point that writes are starved.

The number of operations (both reads and writes) sent to the dispatch queues is strictly limited,
keeping those queues relatively short.

41

Multiqueue I/O schedulers

Kyber I/O scheduler – continued

If the dispatch queues are short, the amount of time that passes while any given request waits in the
queues (the per-request latency) will be small.

That ensures a quick completion time for higher-priority requests.

The scheduler tunes the number of requests allowed into the dispatch queues by measuring the
completion time of each request and adjusting the limits to achieve the desired latencies.

Two tuning knobs are available to the system administrator for setting the latency targets: they default
to 2 ms for read requests (read_lat_nsec) and 10 ms for writes (write_lat_nsec).

Tradeoffs: setting them too low will ensure low latencies, but at the cost of reducing the opportunities
for the merging of requests, hurting throughput.

 Omar Sandoval

42

Multiqueue I/O schedulers

Summary

Users concerned with interactive response and using slower devices will likely opt for BFQ.

Throughput-sensitive server loads are more likely to run with Kyber.

43

• Linux 5.0 I/O Scheduler Benchmarks On Laptop & Desktop Hardware

 (Michael Larabel, February 2019)

• Improving the performance of the BFQ I/O scheduler (Paolo Valente, March 2019)

• Linux 5.6 I/O Scheduler Benchmarks: None, Kyber, BFQ, MQ-Deadline (Michael Larabel, April 2020)

Testing I/O schedulers

Multiqueue I/O schedulers

https://www.phoronix.com/scan.php?page=article&item=linux5-io-sched&num=1
https://www.phoronix.com/scan.php?page=article&item=linux5-io-sched&num=1
https://www.phoronix.com/scan.php?page=article&item=linux5-io-sched&num=1
https://www.phoronix.com/scan.php?page=article&item=linux5-io-sched&num=1
https://www.phoronix.com/scan.php?page=article&item=linux5-io-sched&num=1
https://www.phoronix.com/scan.php?page=article&item=linux5-io-sched&num=1
https://www.phoronix.com/scan.php?page=article&item=linux-56-nvme&num=1
https://lwn.net/Articles/784267/
https://lwn.net/Articles/784267/
https://lwn.net/Articles/784267/
https://lwn.net/Articles/784267/
https://lwn.net/Articles/784267/
https://lwn.net/Articles/784267/
https://lwn.net/Articles/784267/
https://lwn.net/Articles/784267/
https://lwn.net/Articles/784267/
https://www.phoronix.com/scan.php?page=article&item=linux-56-nvme&num=1
https://www.phoronix.com/scan.php?page=article&item=linux-56-nvme&num=1
https://www.phoronix.com/scan.php?page=article&item=linux-56-nvme&num=1
https://www.phoronix.com/scan.php?page=article&item=linux-56-nvme&num=1
https://www.phoronix.com/scan.php?page=article&item=linux-56-nvme&num=1
https://www.phoronix.com/scan.php?page=article&item=linux-56-nvme&num=1
https://www.phoronix.com/scan.php?page=article&item=linux-56-nvme&num=1
https://www.phoronix.com/scan.php?page=article&item=linux-56-nvme&num=1
https://www.phoronix.com/scan.php?page=article&item=linux-56-nvme&num=1
https://www.phoronix.com/scan.php?page=article&item=linux-56-nvme&num=1
https://www.phoronix.com/scan.php?page=article&item=linux-56-nvme&num=1
https://www.phoronix.com/scan.php?page=article&item=linux-56-nvme&num=1

The bio structure

More IOPS with BIO caching, Jonathan Corbet, September 2021

A BIO must be allocated, managed, and eventually freed for every I/O operation executed by the
system. A large, busy system with fast block devices can generate millions of I/O operations per second
(IOPS).

It turns out, that the slab allocator is not fast enough; it has become a bottleneck slowing down block
I/O.

Jens Axboe designed a simple cache of BIO structures. It is built as a set of linked lists, one for each CPU
in the system. When a new BIO is needed, the linked list for the current CPU is checked; if a free BIO is
found there, it can be removed from the list and used without having to call into the slab allocator.

Axboe also replaced the memset() call with a series of statements explicitly setting each BIO field to
zero. This change halves the time it takes to allocate and initialize a BIO.

With these changes in place, the block layer's performance increased by about 10%; it can now execute
over 3.5 million IOPS on each CPU core on his test system.

Newest Linux Optimizations Can Achieve 10M IOPS Per-Core With IO_uring, Phoronics, October 2021
44

https://lwn.net/Articles/868070/
https://www.phoronix.com/scan.php?page=news_item&px=Linux-IO_uring-10M-IOPS
https://www.phoronix.com/scan.php?page=news_item&px=Linux-IO_uring-10M-IOPS
https://www.phoronix.com/scan.php?page=news_item&px=Linux-IO_uring-10M-IOPS
https://www.phoronix.com/scan.php?page=news_item&px=Linux-IO_uring-10M-IOPS
https://www.phoronix.com/scan.php?page=news_item&px=Linux-IO_uring-10M-IOPS
https://www.phoronix.com/scan.php?page=news_item&px=Linux-IO_uring-10M-IOPS

Additional reading

• LWN: Driver porting: the BIO structure, Jonathan Corbet, March 2003.

• LWN: Variations on fair I/O schedulers, Goldwyn Rodrigues, December 2008.

• Linux Block IO: Introducing Multi-queue SSD Access on Multi-core Systems. M. Bjorling, J.
Axobe, D. Nellans, P. Bonnet, 2013.

• LWN: The multiqueue block layer, Jonathan Corbet, June 2013.

• LWN: The BFQ I/O scheduler, Jonathan Corbet, June 2014.

• Linux kernel IO subsystem: How it works and how can I see what is it doing?, Kernel Recipes
2015, Jan Kara

• Solving the Linux storage scalability bottlenecks (slides), Kernel Recipes 2015 , Jens Axboe.

• Introduction to the Linux Block I/O Layer, Johannes Thumshin, 2016.

• LWN: The return of the BFQ I/O scheduler, Jonathan Corbet, February 2016.

45

https://lwn.net/Articles/26404/
https://lwn.net/Articles/26404/
https://lwn.net/Articles/26404/
https://lwn.net/Articles/26404/
https://lwn.net/Articles/26404/
https://lwn.net/Articles/26404/
https://lwn.net/Articles/26404/
https://lwn.net/Articles/309400/
https://lwn.net/Articles/309400/
http://kernel.dk/systor13-final18.pdf
http://kernel.dk/systor13-final18.pdf
http://kernel.dk/systor13-final18.pdf
http://kernel.dk/systor13-final18.pdf
http://kernel.dk/systor13-final18.pdf
http://kernel.dk/systor13-final18.pdf
http://kernel.dk/systor13-final18.pdf
http://kernel.dk/systor13-final18.pdf
http://kernel.dk/systor13-final18.pdf
http://kernel.dk/systor13-final18.pdf
http://kernel.dk/systor13-final18.pdf
http://kernel.dk/systor13-final18.pdf
http://kernel.dk/systor13-final18.pdf
http://kernel.dk/systor13-final18.pdf
https://lwn.net/Articles/552904/
https://lwn.net/Articles/552904/
https://lwn.net/Articles/552904/
https://lwn.net/Articles/552904/
https://lwn.net/Articles/552904/
https://lwn.net/Articles/552904/
https://lwn.net/Articles/552904/
https://lwn.net/Articles/552904/
https://lwn.net/Articles/552904/
https://lwn.net/Articles/601799/
https://lwn.net/Articles/601799/
https://www.youtube.com/watch?v=2tu__ZHC0mI
https://www.youtube.com/watch?v=VIdKBD9-Ozg
https://kernel-recipes.org/en/2015/talks/solving-the-linux-storage-scalability-bottlenecks/
https://www.youtube.com/watch?v=ebHINEF6PDk
https://lwn.net/Articles/736534/
https://lwn.net/Articles/674308/
https://lwn.net/Articles/674308/

Additional reading

• LWN: A block layer introduction part 1: the bio layer, Neil Brown, October 2017.

• LWN: A block layer introduction part 2: the request layer, Neil Brown, November 2017.

• LWN: Two new block I/O schedulers for 4.12, Jonathan Corbet, April 2017.

• What’s new in the world of storage for Linux, Kernel Recipes 2017, J. Axboe.

• Recent Developments in The Linux IO Stack (talk, slides), M. Petersen, SDC 2017.

• Linux Optimizations for Low-Latency Block Devices (talk, slides), S. Baytes, SDC, 2017.

• LWN: I/O scheduling for single-queue devices, Jonathan Corbet, October 2018.

• The Linux Block Layer. Built for Fast Storage, Sagi Grimberg, June 2018.

• LWN: Improving the performance of the BFQ I/O scheduler, Paolo Valente, March 2019.

• Linux Multi-Queue Block IO Queueing Mechanism (blk-mq) Details, Werner Fischer, May 2020.

• Documentation/block/bfq-iosched.rst

• Documentation/block/deadline-iosched.rst

46

https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
https://lwn.net/Articles/736534/
https://lwn.net/Articles/738449/
https://lwn.net/Articles/738449/
https://lwn.net/Articles/738449/
https://lwn.net/Articles/738449/
https://lwn.net/Articles/738449/
https://lwn.net/Articles/738449/
https://lwn.net/Articles/738449/
https://lwn.net/Articles/738449/
https://lwn.net/Articles/738449/
https://lwn.net/Articles/738449/
https://lwn.net/Articles/738449/
https://lwn.net/Articles/738449/
https://lwn.net/Articles/738449/
https://lwn.net/Articles/720675/
https://lwn.net/Articles/720675/
https://lwn.net/Articles/720675/
https://lwn.net/Articles/720675/
https://lwn.net/Articles/720675/
https://lwn.net/Articles/720675/
https://lwn.net/Articles/720675/
https://lwn.net/Articles/720675/
https://lwn.net/Articles/720675/
https://lwn.net/Articles/720675/
https://lwn.net/Articles/720675/
https://kernel-recipes.org/en/2017/talks/whats-new-in-the-world-of-storage-for-linux/
https://www.youtube.com/watch?v=XMwlpI49I9Q
https://www.snia.org/sites/default/files/SDC/2017/presentations/Storage_Architecture/Petersen_Martin_Recent_Developments_in_The_Linux_IO_Stack.pdf
https://www.youtube.com/watch?v=SO1dkn9m-oM
https://www.snia.org/sites/default/files/SDC/2017/presentations/General_Session/Bates_Stephen_Linux_Optimizations_for_Low_Latency_Block_Devices.pdf
https://lwn.net/Articles/767987/
https://lwn.net/Articles/767987/
https://lwn.net/Articles/767987/
https://lwn.net/Articles/767987/
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details
https://lwn.net/Articles/784267/
https://lwn.net/Articles/784267/
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details
https://elixir.bootlin.com/linux/latest/source/Documentation/block/bfq-iosched.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/block/bfq-iosched.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/block/bfq-iosched.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/block/bfq-iosched.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/block/bfq-iosched.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/block/deadline-iosched.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/block/deadline-iosched.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/block/deadline-iosched.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/block/deadline-iosched.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/block/deadline-iosched.rst

