
Process identifiers
Process scheduling

 Linux schedulers – overview

O(N), O(1), RSDS

Table of contents

• Process, thread, group, session, struct PID

• Containers, cgroups, namespaces, process namespace

• Pointer to the current process – macro current

• Switching context (macro switch_to)

• Process scheduling

– Process classes

– Fields of task_struct used by the process scheduler

– Data structures of the process scheduler

– Functions of the process scheduler

• Linux schedulers – overview (to be continued)

– Problems of early schedulers O(N), O(1)

– RSDS

2

Process, thread, group, session

3

A thread has its own execution context and its own thread ID number but can share most other
details, particularly an address space, a set of signal handlers, and a process ID number, with
other threads in the same process (the same thread group). The identifier shared by the threads
is the PID of the thread group leader (TGL), that is, the PID of the first thread in the group. A
thread can only leave a process by exiting.

Processes may belong to various process groups. Each process descriptor includes a field containing
the process group ID. Each group of processes may have a group leader, which is the process
whose PID coincides with the process group ID. A process group leader (PGL) must also be a
thread group leader (TGL). A process can move from one process group to another.

A login session contains all processes that are descendants of the process that has started a
working session on a specific terminal – usually, the first command shell process created for the
user. All processes in a process group must be in the same login session. A session leader can
exit before the end of the session.

See: setsid(), setpgid()

4

Thread groups, process groups, sessions
(struct pid is pictured blue)

(source: Control groups, part 6: A look
under the hood, Neil Brown, August

2014)

enum pid_type
{
 PIDTYPE_PID,
 PIDTYPE_TGID, // added in 2018
 PIDTYPE_PGID,
 PIDTYPE_SID,
 PIDTYPE_MAX,
};

https://lwn.net/Articles/606925/
https://lwn.net/Articles/606925/

Cgroups, namespaces, and beyond: what are containers
made from?

5

• What is important:
– uniqueness (unambiguous identification),

– safety (processes appear and disappear),

– isolation (because containerization).

• Cgroups = limits how much you can use.

• Namespaces = limits what you can see.

• Multiple namespaces: pid, net, mnt, uts, ipc, user.

• Each process is in one namespace of each type.

• Processes within a PID namespace only see processes in the same PID namespace.

• Each PID namespace has its own numbering starting at 1.

• If PID 1 goes away, whole namespace is killed.

https://www.youtube.com/watch?v=sK5i-N34im8&t=2028s, Jérôme Petazzoni, Tinkerer
Extraordinaire, Docker

https://www.youtube.com/watch?v=sK5i-N34im8&t=2028s
https://www.youtube.com/watch?v=sK5i-N34im8&t=2028s
https://www.youtube.com/watch?v=sK5i-N34im8&t=2028s

PID Namespace Hierarchy
(source: From the presentation by Fu-Hau Hsu) 6

Each namespace has its own unique set
of process identifiers (PIDs).

PID namespaces are hierarchical; once
a new PID namespace is created, all the
tasks in the current PID namespace will
see the tasks in this new namespace.

Tasks from the new namespace will not
see the ones from the current.

Each task has more than one PID – one
for each namespace.

A new PID namespace is created by
calling clone() with the CLONE_NEWPID
flag.

Process identifier

http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/linuxLecture_3_9-7-1.pdf
http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/linuxLecture_3_9-7-1.pdf
http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/linuxLecture_3_9-7-1.pdf
http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/linuxLecture_3_9-7-1.pdf
http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/linuxLecture_3_9-7-1.pdf

7

How containers use PID namespaces to provide process isolation, Brian Smith , RedHat

https://www.youtube.com/watch?v=J17rXQ5XkDE

8

enum pid_type
{
 PIDTYPE_PID,
 PIDTYPE_TGID, // added in 2018
 PIDTYPE_PGID,
 PIDTYPE_SID,
 PIDTYPE_MAX,
};
struct signal_struct {
 int nr_threads;
 struct list_head thread_head;
 /* PID/PID hash table linkage. */
 struct pid *pids[PIDTYPE_MAX];
 ...
};
struct task_struct
{
 struct task_struct *group_leader;
 // thread group leader
 ...
 pid_t pid; /* global PID */
 pid_t tgid; /* global TGID */

 struct signal_struct *signal;
 struct pid *thread_pid;
 struct hlist_node pid_links[PIDTYPE_MAX];
 struct list_head thread_node;
}

struct upid {
 int nr;
 struct pid_namespace *ns;
};
struct pid
{
 refcount_t count;
 unsigned int level;
 /* lists of tasks that use this pid */
 struct hlist_head tasks[PIDTYPE_MAX];
 struct rcu_head rcu;
 struct upid numbers[];
};

Processes in the same thread group are
chained together through the
thread_node field of their tast_struct
structures.

Simplified version

Simplified version

signal_struct contains a number of
fields that are specific to a process (as
opposed to a thread).

9

Global IDs are identification numbers that are valid within the kernel itself and in the initial global namespace.
For each ID type, a given global identifier is guaranteed to be unique in the whole system. The global PID and
TGID are directly stored in the task_struct, namely, in the elements pid and tgid.

Local IDs belong to a specific namespace and are not globally valid. For each ID type, they are valid within the
namespace to which they belong, but identifiers of identical type may appear with the same ID number in a
different namespace.

A struct pid is the kernel's internal notion of a process identifier. It refers to individual tasks, process groups, and
sessions. While there are processes attached to it, the struct pid lives in a hash table, so it and then the
processes that it refers to can be found quickly from the numeric pid value. The attached processes may be
quickly accessed by following pointers from struct pid.

A process will have one PID in each of the layers of the PID namespace hierarchy.

struct upid is used to get the id of the struct pid, as it is seen in particular namespace.

Field level denotes in how many namespaces the process is visible (this is the depth of the containing
namespace in the namespace hierarchy).

Field numbers contains a upid instance for each level. The array consists formally of one element, and this is true
if a process is contained only in the global namespace. Since the element is at the end of the structure,
additional entries can be added to the array by simply allocating more space

Process identifier

10 struct upid numbers[] (source: From the presentation by Fu-Hau Hsu)

struct upid {
 int nr;
 struct pid_namespace *ns;
};
struct pid
{
 refcount_t count;
 unsigned int level;
 struct hlist_head tasks[PIDTYPE_MAX];
 struct rcu_head rcu;
 struct upid numbers[];
};

PIDTYPE_TGID // added in 2018

http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/linuxLecture_3_9-7-1.pdf
http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/linuxLecture_3_9-7-1.pdf
http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/linuxLecture_3_9-7-1.pdf
http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/linuxLecture_3_9-7-1.pdf
http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/linuxLecture_3_9-7-1.pdf

PID space

11

There is a list of bitmap pages, which represent the PID space. Allocating and freeing PIDs is
completely lockless.

The worst-case allocation scenario when all but one out of 1 million PIDs possible are allocated
already: the scanning of 32 list entries and at most PAGE_SIZE bytes. The typical fastpath is a
single successful setbit. Freeing is O(1).

The IDR facility is used for that purpose (integer ID management – idr object can be thought of as
a sparse array mapping integer IDs onto arbitrary pointers).

 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
 { return idr_find(&ns->idr, nr); }

The maximum value of PID can be listed by cat /proc/sys/kernel/pid_max (on ’students’ server
the value is 4 194 304).

12
Linked list that links all processes in a process group, (source: From the presentation by Fu-Hau Hsu)

http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/linuxLecture_3_9-7-1.pdf
http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/linuxLecture_3_9-7-1.pdf
http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/linuxLecture_3_9-7-1.pdf
http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/linuxLecture_3_9-7-1.pdf
http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/linuxLecture_3_9-7-1.pdf

13

Code from

/include/linux/sched/
signal.h

showing how to get
various identifiers

static inline struct pid *task_pid(struct task_struct *task)
{
 return task->thread_pid;
}
static inline struct pid *task_tgid(struct task_struct *task)
{
 return task->signal->pids[PIDTYPE_TGID];
}
static inline struct pid *task_pgrp(struct task_struct *task)
{
 return task->signal->pids[PIDTYPE_PGID];
}
static inline struct pid *task_session(struct task_struct *task)
{
 return task->signal->pids[PIDTYPE_SID];
}
static inline int get_nr_threads(struct task_struct *task)
{
 return task->signal->nr_threads;
}

Simplified version

Process identifier

https://elixir.bootlin.com/linux/latest/source
https://elixir.bootlin.com/linux/latest/source/include
https://elixir.bootlin.com/linux/latest/source/include/linux
https://elixir.bootlin.com/linux/latest/source/include/linux
https://elixir.bootlin.com/linux/latest/source/include/linux/sched
https://elixir.bootlin.com/linux/latest/source/include/linux/sched/signal.h

Pidfd – file descriptor that refers to a process

Adding the pidfd abstraction to the kernel (Jonathan Corbet, October 2019)

When a process exits, its PID will eventually be recycled and assigned to an entirely unrelated process.
This leads to a number of security issues.

A pidfd is a file descriptor that refers to a process's thread-group leader.

Pidfds are stable (they always refer to the same process) and private to the owner of the file descriptor.
Internally to the kernel, a pidfd refers to the pid structure for the target process.

Why needed:

• to avoid vulnerabilities resulting from PID reuse,

• to support shared libraries that need to create invisible helper processes
(persistency),

• for process-management applications that want to delegate the handling of
specific processes to a non-parent process, e.g. for waiting, signalling (examples
are the Android low-memory killer daemon and systemd).

Implemented by Christian Brauner

https://lwn.net/Articles/801319/
https://lwn.net/Articles/801319/
https://lwn.net/Articles/801319/
https://lwn.net/Articles/801319/
https://lwn.net/Articles/801319/

Additional reading

– Process file descriptors on Linux (Christian Brauner, 2019)

– Toward race-free process signaling (Marta Rybczyńska, December 2018).

– PID Allocation in Linux Kernel (Gargi Sharma, March 2017).

– Control groups, part 6: A look under the hood (Neil Brown, August 2014).

– Namespaces in operation, part 3: PID namespaces (Michael Kerrisk, January 2013).

– PID namespaces in the 2.6.24 kernel (Pavel Emelyanov and Kir Kolyshkin, November 2007).

– idr – integer ID management (Jonathan Corbet, September 2004).

15

https://www.youtube.com/watch?v=19SlR_zjPxc
https://www.youtube.com/watch?v=19SlR_zjPxc
https://www.youtube.com/watch?v=19SlR_zjPxc
https://www.youtube.com/watch?v=19SlR_zjPxc
https://www.youtube.com/watch?v=19SlR_zjPxc
https://www.youtube.com/watch?v=19SlR_zjPxc
https://lwn.net/Articles/773459/
https://lwn.net/Articles/773459/
https://lwn.net/Articles/773459/
https://lwn.net/Articles/773459/
https://lwn.net/Articles/773459/
https://lwn.net/Articles/773459/
https://lwn.net/Articles/773459/
https://lwn.net/Articles/773459/
https://lwn.net/Articles/773459/
https://lwn.net/Articles/773459/
https://medium.com/@gargi_sharma/pid-allocation-in-linux-kernel-dc0c78d14e77
https://medium.com/@gargi_sharma/pid-allocation-in-linux-kernel-dc0c78d14e77
https://medium.com/@gargi_sharma/pid-allocation-in-linux-kernel-dc0c78d14e77
https://medium.com/@gargi_sharma/pid-allocation-in-linux-kernel-dc0c78d14e77
https://medium.com/@gargi_sharma/pid-allocation-in-linux-kernel-dc0c78d14e77
https://medium.com/@gargi_sharma/pid-allocation-in-linux-kernel-dc0c78d14e77
https://medium.com/@gargi_sharma/pid-allocation-in-linux-kernel-dc0c78d14e77
https://lwn.net/Articles/606925/
https://lwn.net/Articles/606925/
https://lwn.net/Articles/606925/
https://lwn.net/Articles/606925/
https://lwn.net/Articles/606925/
https://lwn.net/Articles/606925/
https://lwn.net/Articles/606925/
https://lwn.net/Articles/606925/
https://lwn.net/Articles/606925/
https://lwn.net/Articles/606925/
https://lwn.net/Articles/531419/
https://lwn.net/Articles/531419/
https://lwn.net/Articles/531419/
https://lwn.net/Articles/531419/
https://lwn.net/Articles/531419/
https://lwn.net/Articles/531419/
https://lwn.net/Articles/531419/
https://lwn.net/Articles/259217/
https://lwn.net/Articles/259217/
https://lwn.net/Articles/259217/
https://lwn.net/Articles/259217/
https://lwn.net/Articles/259217/
https://lwn.net/Articles/259217/
https://lwn.net/Articles/259217/
https://lwn.net/Articles/259217/
https://lwn.net/Articles/259217/
https://lwn.net/Articles/103209/
https://lwn.net/Articles/103209/
https://lwn.net/Articles/103209/
https://lwn.net/Articles/103209/
https://lwn.net/Articles/103209/
https://lwn.net/Articles/103209/
https://lwn.net/Articles/103209/

Pointer to the current process – macro current

16

The kernel most often refer to processes through a pointer to the process descriptor.

It uses a special macro (architecture dependent), because these references must be very fast.

In some architectures, the pointer to the current process is stored in the registry, where there are
not too many registers the stack pointer is used (kept in the registry esp).

When a certain process is performed in kernel mode, the esp register points to the top of the
kernel-mode stack of that particular process.

DECLARE_PER_CPU(struct task_struct *, current_task);

static __always_inline struct task_struct *get_current(void)
{
 return this_cpu_read_stable(current_task);
}
#define current get_current()

In /arch/x86/include/asm/current.h

The macros current and
current_thread_info usually
appear in the kernel code as the
prefix of the task_struct fields of
the process.

Simplified version

Context switch

17

When the schedule() function is called (as a result of handling an interrupt or a system call), there
may be a need to switch the context (change the currently executed process).

The set of data that must be loaded into the registers before the process resumes its execution on
the CPU is called the hardware context. The hardware context is a subset of the process
execution context, which includes all information needed for the process execution.

In Linux, a part of the hardware context of a process is stored in the process descriptor, while the
remaining part is saved in the kernel mode stack of the process.

Linux uses software to perform a process switch. Process switching occurs only in kernel mode. The
contents of all registers used by a process in user mode have already been saved on the kernel
mode stack before performing process switching. This includes the contents of the ss and esp
pair that specifies the user mode stack pointer address.

18

The 80x86 architecture includes a specific segment type called the Task State Segment (TSS) to
store hardware contexts. The tss_struct structure describes the format of the TSS. The init_tss
array stores one TSS for each CPU on the system. At each process switch, the kernel updates
some fields of the TSS so that the corresponding CPU's control unit may safely retrieve the
information it needs. Thus, the TSS reflects the privilege of the current process on the CPU, but
there is no need to maintain TSSs for processes when they're not running.

At every process switch, the hardware context of the process being replaced must be saved
somewhere. It cannot be saved on the TSS, as in the original Intel design, because Linux uses a
single TSS for each processor, instead of one for every process.

Thus, each process descriptor includes a field called thread of type thread_struct, in which the
kernel saves the hardware context whenever the process is being switched out. This data
structure includes fields for most of the CPU registers, except the general-purpose registers
such as eax, ebx, etc., which are stored in the kernel mode stack.

Context switch

19

struct task_struct {
 ...
 struct thread_struct thread;
 ...
};

struct thread_struct {
 /* Cached TLS descriptors: */
 struct desc_struct tls_array[GDT_ENTRY_TLS_ENTRIES];
 unsigned long sp;
 unsigned short es;
 unsigned short ds;
 struct io_bitmap *io_bitmap;
 ...
};

 struct tss_struct {
 /*
 * The fixed hardware portion...
 */
 struct x86_hw_tss x86_tss;
 unsigned long io_bitmap[IO_BITMAP_LONGS + 1];
 ...
 };

Simplified version

Simplified version

Context switch

20

Every process switch consists of two steps:

– Switching the Page Global Directory to install a new address space.

– Switching the kernel mode stack and the hardware context, which provides all the
information needed by the kernel to execute the new process, including the CPU registers.

static __always_inline struct rq *
context_switch (struct rq *rq, struct task_struct *prev,
 struct task_struct *next, struct rq_flags *rf)
{
 prepare_task_switch(rq, prev, next);
 arch_start_context_switch(prev);

 switch_to(prev, next, prev);
 barrier();

 return finish_task_switch(prev);
}

The second step of the process
switch is performed by the
switch_to() macro.
It is one of the most hardware-
dependent routines of the
kernel.

A process switch may occur at
one well-defined point – the
schedule() function.

Simplified version

Context switch

The switch_to macro

21

The function context_switch() calls switch_to(prev, next, last).

The first two parameters correspond to the local variables: prev (process to be suspended) and next
(process to be executed on the CPU).

What about the third parameter?

The last parameter identifies the prev local variable of A, so prev is overwritten with the address of C. The
figure shows the contents of the kernel mode stacks of processes A, B, and C, together with the values
of the eax register. The figure shows the value of the prev local variable before its value is overwritten
with the content of the eax register.

Preserving the
reference to
process C across a
process switch
(source: Bovet,
Cesati)

22

Since control flow comes back to the middle of the function, this cannot be done with regular
function return values, and that is why a three-parameter macro is used. However, the
conceptional effect is the same as if switch_to were a function of two arguments that would
return a pointer to the previously executing process. What switch_to essentially does is

where the prev value returned is not the prev value used as the argument, but the process that
executed last in time.

In the above example, process A would feed switch_to with A and B, but would obtain prev=C as
result.

Additional reading:

• Context switch in Linux, Gabriel Kliot, Technion

• Linux Scheduling and Kernel Synchronization, 7.1.2 Context Switch (chapter from the
textbook Linux Kernel Primer, A Top-Down Approach for x86 and PowerPC Architectures)

prev = switch_to(prev,next)

The switch_to macro

http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/Tutorial-5-context-switch.pdf
http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/Tutorial-5-context-switch.pdf
http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/Tutorial-5-context-switch.pdf
http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/Tutorial-5-context-switch.pdf
http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/Tutorial-5-context-switch.pdf
http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/Tutorial-5-context-switch.pdf
http://students.mimuw.edu.pl/ZSO/Wyklady/14_CPUschedulers1/Tutorial-5-context-switch.pdf
http://www.informit.com/articles/article.aspx?p=414983
http://www.informit.com/articles/article.aspx?p=414983
http://www.informit.com/articles/article.aspx?p=414983
http://www.informit.com/articles/article.aspx?p=414983
http://www.informit.com/articles/article.aspx?p=414983
http://www.informit.com/articles/article.aspx?p=414983
http://www.informit.com/articles/article.aspx?p=414983
https://pdfs.semanticscholar.org/78b5/ae8612fb7d8c9c421eb47484d496437a8e52.pdf
https://pdfs.semanticscholar.org/78b5/ae8612fb7d8c9c421eb47484d496437a8e52.pdf
https://pdfs.semanticscholar.org/78b5/ae8612fb7d8c9c421eb47484d496437a8e52.pdf
https://pdfs.semanticscholar.org/78b5/ae8612fb7d8c9c421eb47484d496437a8e52.pdf
https://pdfs.semanticscholar.org/78b5/ae8612fb7d8c9c421eb47484d496437a8e52.pdf
https://pdfs.semanticscholar.org/78b5/ae8612fb7d8c9c421eb47484d496437a8e52.pdf
https://pdfs.semanticscholar.org/78b5/ae8612fb7d8c9c421eb47484d496437a8e52.pdf
https://pdfs.semanticscholar.org/78b5/ae8612fb7d8c9c421eb47484d496437a8e52.pdf
https://pdfs.semanticscholar.org/78b5/ae8612fb7d8c9c421eb47484d496437a8e52.pdf
https://pdfs.semanticscholar.org/78b5/ae8612fb7d8c9c421eb47484d496437a8e52.pdf
https://pdfs.semanticscholar.org/78b5/ae8612fb7d8c9c421eb47484d496437a8e52.pdf
https://pdfs.semanticscholar.org/78b5/ae8612fb7d8c9c421eb47484d496437a8e52.pdf
https://pdfs.semanticscholar.org/78b5/ae8612fb7d8c9c421eb47484d496437a8e52.pdf

Process classes and fields of task_struct used
by process schedulers

23

Scheduling classes and policies (2019, kernel 5.4) in descending order of priorities:

– Stop: no policy (available for SMP, used by the kernel for task migration, CPU hotplug,
ftrace).

– Deadline: SCHED_DEADLINE (used for periodic real time user tasks, eg. video
encode/decode).

– Real time: SCHED_RR (100ms timeslice by default), SCHED_FIFO.

– Fair: SCHED_NORMAL, SCHED_BATCH (treated as permanently computationally oriented),
SCHED_IDLE (run only if there is nothing else to run).

– Idle: no policy (keeps a single per-CPU kthread, which may take the CPU to low power state).

Fields of task_struct (some new details are omitted):

– const struct sched_class *sched_class.

– unsigned int policy – the scheduling mode for the process.

https://lwn.net/Articles/805317/
https://lwn.net/Articles/805317/
https://lwn.net/Articles/805317/
https://lwn.net/Articles/805317/
https://lwn.net/Articles/805317/
https://lwn.net/Articles/805317/

24

Fields of task_struct (continued):

– int static_prio – static priority.

– int prio – dynamic priority.

– unsigned int rt_priority – priority for real-time processes.

– unsigned int time_slice – time slice.

– struct sched_entity se, sched_rt_entity rt.

– struct task_group *sched_task_group.

– TIF_NEED_RESCHED – a bit indicating that the system should re-schedule processes as soon
as possible. Its value is provided by the function need_resched.

Variable jiffies – system time counter.

static inline int need_resched(void)
{
 return test_thread_flag(TIF_NEED_RESCHED);
}

Process classes and fields of task_struct used
by process schedulers

Simplified version

Priorities

Static priority is the basis for calculating the time slice for the process . When creating a child
process, the static priority of the parent process is divided equally between the parent and child
processes. It is a number between 0 and 139, with priorities ranging from 0 to 99 for real-time
processes, and from 100 to 139 for normal processes.

25

Dynamic priority decides about the choice of the
process for execution. For normal processes, it
is calculated by the system during system
operation based on the static priority and some
additional bonus. It accepts values from 100 to
139. The bonus takes values from 0 to 10.

dynamic priority = max(100, min(static priority -
bonus + 5, 139))

The lower the number, the higher the priority

26

The task_nice function calculates
the nice value for the given static_prio.

NICE_TO_PRIO macro computes the
static_prio value for the given nice.

The task_prio function returns the task
priority value as seen in /proc.

#define MAX_NICE 19
#define MIN_NICE -20
#define NICE_WIDTH (MAX_NICE – MIN_NICE + 1)
#define MAX_RT_PRIO 100
#define MAX_PRIO (MAX_RT_PRIO + NICE_WIDTH)
#define DEFAULT_PRIO (MAX_RT_PRIO + NICE_WIDTH / 2)

#define NICE_TO_PRIO(nice) ((nice) + DEFAULT_PRIO)
#define PRIO_TO_NICE(prio) ((prio) - DEFAULT_PRIO)

static inline int task_nice (const struct task_struct *p)
 { return PRIO_TO_NICE((p)->static_prio); }

int task_prio (const struct task_struct *p)
 { return p->prio - MAX_RT_PRIO; }

The static priority can be changed by calling the
function nice() or setpriority().

Priorities

Functions of the scheduler – schedule() and
scheduler_tick()

27

....
if (likely (prev != next)) {
 rq->nr_switches++;
 RCU_INIT_POINTER(rq->curr , next);
 ++*switch_count;
 ...
 rq = context_switch (rq, prev, next, &rf);

Simplified version

void scheduler_tick (void)
{
 ...
 curr->sched_class->task_tick(rq, curr, 0);
 ...
}
DEFINE_SCHED_CLASS (rt) = {
 ...
 .task_tick = task_tick_fair, // differ for
 // various sched_class
 ...
}

Simplified version

The main task of the procedure schedule() is selecting
the next process to be executed and handing him the
processor. The procedure is invoked by the kernel
when it wants to fall asleep or when the process
needs to be preempted.

If the newly selected process (next) is different from
the one previously executed (prev), then the context
switches.

The procedure scheduler_tick() recalculates
priorities and time quanta. It is invoked once
every tick to perform some operations related
to scheduling.

Linux schedulers – overview
(to be continued)

O(N), O(1), RSDS

Scheduler developers

Ingo Molnar – official developer of schedulers in the Linux kernel, full-time
programmer, employee of RedHat, from Hungary.

Con Kolivas – anesthesiologist from Australia, hobbyist, digging in the
kernel learned to program, mainly interested in responsiveness and good
performance of the scheduler in "home" applications.

29

Peter Zijlstra – co-maintainer of various Linux kernel subsystems
including: the scheduler, locking primitives and performance monitoring,
currently employed by Intel where he assists in enabling new hardware
features on Linux. (2017)

Scheduler developers – new faces

David Vernet – main speaker and one of the developers of sched_ext.

With sched_ext, we can easily experiment and find scheduling algorithms that
address these use cases by allowing developers to implement scheduling
policies in BPF programs.

30

What's important when comparing schedulers

• Should be maximized:

– CPU utilization – How saturated the CPU is from 0 to 100%.

– Throughput – The number of processes completed per unit of time.

• Should be minimized:

– Turnaround time – The total time taken for a process to complete once started.

– Waiting time – The total time a process spends in the ready queue.

– Scheduler latency – The time between a wakeup signal being sent to a thread on the wait
queue and the scheduler executing that thread. Including the dispatch latency – the time
taken to handle a context switch, change in user-mode, and jump to starting location.

31

Chronology of events

• PS (Processor Sharing) – theory.

• Scheduler O(n) – in the 2.4 kernel versions.

• Scheduler O(1) – in the 2.6 kernel versions (up to 2.6.22).

• Staircase – designed by Con in 2004 (he became interested in the Linux kernel in 1999)
(https://lwn.net/Articles/87729/, Corbet June 2004)

• RSDL (RSDS – Rotating Staircase Deadline Scheduler) – developed by Con w 2007, then
renamed to SD, Linus seemed to agree to include RSDL into the main Linux distribution.

• CFS (Completely Fair Scheduler) – developed by Ingo in March 2007, almost immediately
entered the main distribution of the kernel (2.6.23), scheduler O(log(n)).

• BFS (Brain Fuck Scheduler) – developed by Con in 2009, although he promised he would
never look into the Linux code again.

• Deadline (real-time) scheduler – 3.14 kernel version, March 2014.

• MuQSS (The Multiple Queue Skiplist Scheduler) – Con comes back in 2016 to address
scalability concerns that BFS had with an increasing number of CPUs.

• EAS – Energy Aware Scheduling (2019).
32

https://lwn.net/Articles/87729/

Chronology of events – last year

• Sched_ext – pluggable scheduling using BPF. First patchset delivered in 2022 rejected, finally
got merged into 6.12.

• Earliest Eligible Virtual Deadline First (EEVDF) – currently a default scheduler (replaced CFS).
Provides better performance and fairness while relying less on fragile heuristics.

33

Data structures for schedulers O(n) and O(1)

• Scheduler in 2.6 kernels, up to 2.6.22

• Significant improvements over the 2.4 kernel

• Separate queues per processor and load
balancing

• Task selection in O(1)

• Queues switched in O(1)

• Behavior based on numerous heuristics

34

35

36

The important features of the scheduling algorithm O(1)

The scheduling takes place at time 0 (1). Each algorithm ends in a constant time, regardless of the
number of processes executed or other parameters.

Scalability in SMP systems is provided. Each processor has its own queue of ready processes and
sets up own locks.

It provides a good relation of the process with the processor (so called affinity). The process that
was executed on a processor, will continue – if possible – to be executed on the same
processor, unless it is necessary to balance the load (because of unequal lengths of the run
queues).

It provides good support for interactive processes, even in a situation of a high load.

It is fair – the processes are not starved, they do not get too unnaturally large time quanta.

It works well at both low and high loads.

 BUT!!!

Priorities and time quanta
• Uneven distribution

– Task with a priority 100 gets only 2.5% more CPU time than task with a priority 101.

– Task with a priority 138 gets 2 times more CPU time than task with a priority 139

– Task with a priority 119 gets 4 times more CPU time than task with a priority 120.

• Conclusion: jobs with the same priority difference can have very different CPU time proportions.

37

pstatic_prio

task_time_slice(p) (msec)

100

800

101

780

105

700

110

600

115

500

119

420

pstatic_prio

task_time_slice(p) (msec)

120

100

125

75

130

59

135

25

138

10

139

5

• Batch jobs – Batch jobs usually run with a lower priority, not to reduce the responsiveness of the user's
interactive tasks. However, at low load, when batch tasks could be performed efficiently, low priority
means that they have short quanta and often (every 5 ms at nice +10) switch the processor, while it
would be more efficient if they were performed in longer quanta.

• Paradox – Interactive processes that need a processor for shorter time periods (but more often) receive
long quanta, and processes that could use the processor effectively receive short quanta.

Bonuses and process interactivity

Processes that have obtained a large interactivity bonus can be considered interactive and be put back
into the active process queue. The higher the process priority, the smaller is the bonus which makes
the process to be considered as interactive.

 TASK_INTERACTIVE(p)

When several processes get a big bonus, they dominate the processor, because they are considered
interactive and after their quanta expire they are put back into the active queue. In addition, other
processes unable to reach the processor are considered to be sleeping too much and do not get a
priority bonus.

(S. Takeuchi, 2007) In an extreme test configuration (200 processes on one i386 processor or 400 on a
dual-core ia64, nice 0, 2.6.20 kernel) 4 processes (on 2 processors: 8 processes) took up 98% of the
processor time.

38

bonus to prio -5 -4 -3 -2 -1 0 1 2 3 4 5

nice -20 (100) T T T T T T T T T N N

nice -10 (110) T T T T T T T N N N N

nice 0 (120) T T T T N N N N N N N

nice 10 (130) T T N N N N N N N N N

nice 19 (139) N N N N N N N N N N N

Summary

• The scheduler performs all operations in O(1). There are many different calculations,
heuristics, patches hidden behind this constant.

• Heuristics work fine in most cases, but work very badly in some cases.

• To fix this, additional heuristics are added for special cases.

• There are many more hooks and such special cases in the code.

• Heuristics complicate both the concept and the code, and are not very universal and treat
processes very unevenly.

• Is this possible to develop a scheduler that performs better and is fair to processes?

39

Rotating Staircase Deadline Scheduler Con Kolivas,
2007

• Initially, processes get a time quantum (RR_INTERVAL, default 6 ms) on their static
priority.

• When they run out of quantum, they get a new one on a lower priority – „going down the
stairs”.

• Sleeping processes retain their quanta and if they wake up in the same era, they can use
them to the end.

40

• It is based on the old scheduler with two process queues.

• Process queues form the "stairs" of priorities.

• Each priority also has its own execution time limit. When it runs out, all processes from this "step" go down
a step, no matter how many quanta they have left – minor rotation.

• Processes that have used all their priorities are queued in an inactive array on their static priority. When the
active array is empty, major rotation occurs.

• Time limits on each priority guarantee that the era will end in a limited time and processes will not starve.

• Processes are treated fairly, there are no heuristics that favor interactive processes, except that when they
return from sleep they will most likely have more time quantum.

Linus Torvalds, March 2007

In 2007, Con Kolivas's Staircase Deadline scheduler was about to become an official scheduler in the
Linux kernel.

Linus Torvalds said in March 2007:

41

I agree, partly because it’s obviously been getting rave reviews so far, but mainly because it looks like
you can think about behaviour a lot better, something that was always very hard with the
interactivity boosters with process state history.

I’m not at all opposed to this, but we do need:

- To not do it at this stage in the stable kernel

- to let it sit in –mm for at least a short while

- and generally more people testing more loads.

So as long as the generic concerns above are under control, I’ll happily try something like this if it can
be merged early in a merge window.

 Linux schedulers – overview
continued at the next lecture

CFS, BFS, Deadline, MuQSS, etc.

What’s new in process scheduling?

