
 Linux schedulers – overview
continued

CFS, BFS, Deadline, MuQSS, etc.

What’s new in process scheduling?

Table of contents

• Linux schedulers – overview (continued)

– CFS

– BFS

– Performance comparison

– Deadline

– MuQSS

• What’s new in process scheduling?

– CPU Idle Loop

– Thermal pressure

– Energy Aware Scheduling (EAS)

– Arm big.LITTLE CPU chip

– Core scheduling

2

Completely Fair Scheduler
Ingo Molnar, April 2007

Schedulers: the plot thickens, https://lwn.net/Articles/230574/, J. Corbet, April 2007

The new scheduler which got into the game so abruptly caused a big storm on Linux mailing lists.
Ultimately, CFS was incorporated into the 2.6.23 kernel, and Con Kolivas gave up work on the
Linux kernel (temporarily).

 3

Ingo Molnar, April 2007

I wrote the first line of code of the CFS patch this week, 8am Wednesday morning, and released it
to lkml 62 hours later, 22pm on Friday.

I’d like to give credit to Con Kolivas for the general approach here: he has proven via RSDL/SD that
‘fair scheduling’ is possible and that it results in better desktop scheduling. Kudos Con!

The CFS patch uses a completely different approach and implementation from RSDL/SD. My goal
was to make CFS’s interactivity quality exceed that of RSDL/SD, which is a high standard to
meet 

18 files changed, 1454 inserstions(+), 1133 deletions(-)

https://lwn.net/Articles/230574/

• A completely new concept for the scheduler.

• Trying to implement Processor Sharing (there is no state in which one process has gotten more
of the CPU than another, since all tasks are running on it at once, so all processes have a fair
share of the CPU).

• On a real CPU unfairness will inevitably be nonzero when there are more tasks than CPUs.
When one task is running on a CPU, this increases the amount of CPU time that the CPU owes
to all other tasks. CFS schedules the task with the largest unfairness onto the CPU first.

• Unfairness is measured by the virtual runtime.

• In practice, the virtual runtime of a task is its actual runtime normalized to the total number of
running tasks.

• Virtual time flows at a priority-dependent speed.

• Instead of queues of tasks – a red-black tree, sorted after the virtual runtime and the selection
of the task, that run for the shortest time period.

Completely Fair Scheduler

4

• It is also possible to group tasks and share processor time fairly among defined „entities” –
process groups.

• When implementing CFS, the code was reorganized to separate sections responsible for the
scheduling policy (the struct sched_class has been created, there is a pointer to this structure
in struct task_struct).

• Like the O(1) scheduler, CFS maintains separate data structures for each CPU. This reduces the
wait for the lock to be removed, but requires explicit processor load balancing.

• When a new task is created, it is assigned the minimum current vruntime (min_vruntime).

5

• With CFS, tasks have no concept of timeslice but
rather run until they are no longer the most unfairly
treated task. To reduce context switching overhead,
CFS divides time into a minimum granularity.

struct task_struct {
 ...
 const struct sched_class *sched_class;
 ...
}

Completely Fair Scheduler

Red-black tree
for CFS scheduler

process selection O(1) insertion
O(log(n))

http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf

• When a task has finished running on the CPU, all of the other tasks in the tree need to have their
unfairness increase.

• To prevent having to update all of the tasks in the tree the scheduler maintains a per-task vruntime
statistic.

• This is the amount of total nanoseconds that the task has spent running on a CPU weighted by its
niceness.

• Thus, instead of updating all other tasks to be more unfair when a task has finished running on the
CPU, we update the leaving task to be more fair than others by increasing its virtual runtime.

• The scheduler always selects the most unfairly treated task by selecting the task with the lowest
vruntime.

6

Completely Fair Scheduler

http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf

sched_latency_ns – the time when one era should take place, i.e. all tasks from the queue should
be completed. The default is 20 ms.

sched_min_granularity_ns – minimum time, which on average should be given to a task in an era.
The default is 4 ms.

epoch = max(sched_latency_ns; sched_min_granularity_ns * nr_running)
ideal_slice = epoch * (weight/∑weight)

Variable quantum lengths, but a fixed period of rotation of the era, guarantees small delays. Under
heavy load, the quanta are not shortened below the minimum value, at the expense of
responsiveness.

Processes with different priorities receive different weights. The virtual time is scaled with these
weights – the scheduler takes into account the differences in nice values of processes. Priority
weights are allocated as geometric progression:
 prio_to_weight[n] ≈ prio_to_weight[n+1] * 1.25
Processes with a given priority difference will always receive CPU time in a constant proportion.

7

Completely Fair Scheduler

8

A process with nice -20 will get about 6000 times more CPU time than a process with nice 19 (for
comparison: 160 time more than in the old scheduler)

Completely Fair Scheduler
weights of processes

9 Source: https://myaut.github.io/dtrace-stap-book/kernel/sched.html

CFS scheduler doesn’t deal with tasks, but with
scheduler entities of type struct sched_entity.

Sched entity may represent a task or a queue of
entities of type struct cfs_rq (which is referenced by
field my_q), thus allowing to build hierarchies of
entities and allocate resources to task groups
(Cgroups).

Processor run queue, represented by type struct rq,
contains field cfs which is instance of struct cfs_rq
and contains queue of all high-level entities.

Each entity has cfs_rq pointer which points to CFS
runqueue to which that entity belongs.

In this example processor run queue has two scheduler entities: one CFS queue with single task
(which refers to top-level cfs_rq through parent pointer) in it and one top-level task.

https://myaut.github.io/dtrace-stap-book/kernel/sched.html
https://myaut.github.io/dtrace-stap-book/kernel/sched.html
https://myaut.github.io/dtrace-stap-book/kernel/sched.html
https://myaut.github.io/dtrace-stap-book/kernel/sched.html
https://myaut.github.io/dtrace-stap-book/kernel/sched.html

• CFS doesn't allocate timeslices. Instead it accounts total time which task had spend on CPU and saves it to
sum_exec_runtime field.

• When task is dispatched onto CPU, its sum_exec_runtime is saved into prev_sum_exec_runtime, so
calculating their difference will give time period that task spent on CPU since last dispatch.
sum_exec_runtime is expressed in nanoseconds but it is not directly used to measure task's runtime.

• To implement priorities, CFS uses task weight (in field load.weight) and divides runtime by tasks weight, so
tasks with higher weights will advance their runtime meter (saved into vruntime field) slower.

• Tasks are sorted according to their vruntime in a red-black tree called tasks_timeline, while left-most task
which has lowest vruntime of all tasks and saved into rb_leftmost.

• CFS has special case for tasks that have been woken up. Because they can be sleeping too long, their
vruntime may be too low and they will get unfairly high amount of CPU time. To prevent this, CFS keeps
minimum possible vruntime of all tasks in min_vruntime field, so all waking up tasks will get min_vruntime
minus a predefined "timeslice" value.

• CFS also have a scheduler buddies – helper pointers for a dispatcher:

– next – task that was recently awoken,

– last – task that recently was evicted from CPU and

– skip – task that called sched_yield() giving CPU to other entities.

10 Source: https://myaut.github.io/dtrace-stap-book/kernel/sched.html

SKIP
Completely Fair Scheduler

https://myaut.github.io/dtrace-stap-book/kernel/sched.html
https://myaut.github.io/dtrace-stap-book/kernel/sched.html
https://myaut.github.io/dtrace-stap-book/kernel/sched.html
https://myaut.github.io/dtrace-stap-book/kernel/sched.html
https://myaut.github.io/dtrace-stap-book/kernel/sched.html

Ingo refuted Con's allegations that his proposed reorganization of the scheduler code was not
intended to allow the interchangeability of schedulers, but only to improve the quality of the
code.

11

Linus Torwalds (https://yarchive.net/comp/linux/security.html)
The arguments that ‘servers’ have a different profile than ‘desktop’ is pure and

utter garbage, and is perpetuated by people who don’t know what they are
talking about (...) Yes, there are differences in tuning, but those have nothing
to do with the basic algorithm. They have to do with goals and trade-offs, and
most of the time we should aim for those things to auto-tune.

Con Kolivas accused CFS of having used his scheduler modularization ideas included in the plugsched
framework (enabling easy exchange of schedulers), although they were previously criticized.

Completely Fair Scheduler
easy exchange of schedulers or modularization?

https://yarchive.net/comp/linux/security.html

Con Kolivas returns in 2009
in FAQ about BFS

Why „Brain Fuck”?

Because ...
... it throws out everything about what we know is good about how to design a modern

scheduler in scalability.
... it's so ridiculously simple.
... it performs so ridiculously well on what it's good at despite being that simple.
... it's designed in such a way that mainline would never be interested in adopting it, which is

how I like it.
... it will make people sit up and take notice of where the problems are in the current design.
... it throws out the philosophy that one scheduler fits all and shows that you can do a -lot-

better with a scheduler designed for a particular purpose. I don't want to use a steamroller
to crack nuts.

... it actually means that more CPUs means better latencies.

... I must be fucked in the head to be working on this again.

I'll think of some more becauses later.

12

Con Kolivas – on lwn.net (and wiki) about BFS

The main focus of BFS is to achieve excellent desktop interactivity and responsiveness without
heuristics and tuning knobs that are difficult to understand, impossible to model and predict
the effect of, and when tuned to one workload cause massive detriment to another.

BFS is best described as a single runqueue, O(n) lookup, earliest effective virtual deadline first
design.

The reason for going back to a single runqueue design is that once multiple runqueues are
introduced, per-CPU or otherwise, there will be complex interactions as each runqueue will be
responsible for the scheduling latency and fairness of the tasks only on its own runqueue, and
to achieve fairness and low latency across multiple CPUs, any advantage in throughput of
having CPU local tasks causes other disadvantages.

A significant feature of BFS is that all accounting is done purely based on CPU used and nowhere is
sleep time used in any way to determine entitlement or interactivity.

13

http://lwn.net/Articles/357451/
http://ck.wikia.com/wiki/BFS

Con Kolivas – on lwn.net (i na wiki) about BFS

The task put into the queue receives a time quantum of rr_interval and deadline

 jiffies + (prio_ratio * rr_interval)

where prio_ratio, like the weights in CFS, depends geometrically on the priority.

If the calculated deadline is earlier than the deadline of the process performed on one of the
processors, then the new process immediately preempts it.

The system selects the task by reviewing the entire list of tasks in O(n) (!). If it encounters a task with
an expired deadline, it immediately runs it. Otherwise, the one with the nearest deadline begins
to run.

Simple additional mechanisms that favor tasks on the same processor as they were previously run.

Only two configuration parameters:

 rr_interval – time quantum, default 6 ms,

 iso_cpu – percentage of processor time that user processes simulating RT tasks can take up at
maximum, default 70%.

 14

http://lwn.net/Articles/357451/
http://ck.wikia.com/wiki/BFS

Comparing performance of Linux
schedulers

Charts removed, conclusions left

Experiments by Ingo Molnar (2009-09-06)

http://marc.info/?l=linux-kernel&m=125227082723350&w=2

• First and foremost, let me say that I'm happy that you are hacking the Linux scheduler again.

• It's perhaps proof that hacking the scheduler is one of the most addictive things on the planet
;-)

• I understand that BFS is still early code and that you are not targeting BFS for mainline inclusion
– but BFS is an interesting and bold new approach, cutting a _lot_ of code out of
kernel/sched*.c, so it raised my curiosity and interest :-)

• The testbox i picked fits into the upper portion of what I consider a sane range of systems to
tune for – and should still fit into BFS's design bracket as well according to your description: it's
a dual quad core system with hyperthreading.

16

http://marc.info/?l=linux-kernel&m=125227082723350&w=2
http://marc.info/?l=linux-kernel&m=125227082723350&w=2
http://marc.info/?l=linux-kernel&m=125227082723350&w=2

• Alas, as it can be seen in the graphs, I can not see any BFS performance improvements, on
this box.

• In the kbuild test BFS is showing significant weaknesses up to 16 CPUs.

• BFS performed very poorly in the pipe test: at 8 pairs of tasks it had a runtime of 45.42
seconds - while sched-devel finished them in 3.8 seconds.

• Messaging: mainline sched-devel is significantly faster for smaller and larger loads as well.
With 20 groups mainline ran 61.5% faster.

• OLTP peformance: for sysbench OLTP performance sched-devel outperforms BFS on each of
the main stages.

• General interactivity of BFS seemed good to me - except for the pipe test when there was
significant lag over a minute. I think it's some starvation bug, not an inherent design property
of BFS, so I'm looking forward to re-test it with the fix.

• I agree with the general goals described by you in the BFS announcement - small desktop
systems matter more than large systems. We find it critically important that the mainline
Linux scheduler performs well on those systems too.

17

Experiments by Ingo Molnar (2009-09-06)

http://marc.info/?l=linux-kernel&m=125227082723350&w=2

http://marc.info/?l=linux-kernel&m=125227082723350&w=2
http://marc.info/?l=linux-kernel&m=125227082723350&w=2
http://marc.info/?l=linux-kernel&m=125227082723350&w=2

Hard to keep a project under wraps and get an audience at the same time, it is. I do realise it was
inevitable LKML would invade my personal space no matter how much I didn't want it to, but it
would be rude of me to not respond.

/me sees Ingo run off to find the right combination of hardware and benchmark to prove his point.
[snip lots of bullshit meaningless benchmarks showing how great cfs is and/or how bad bfs is, along

with telling people they should use these artificial benchmarks to determine how good it is,
demonstrating yet again why benchmarks fail the desktop]

I'm not interested in a long protracted discussion about this since I'm too busy to live linux the way
full time developers do, so I'll keep it short, and perhaps you'll understand my intent better if
the FAQ wasn't clear enough.

Do you know what a normal desktop PC looks like? No, a more realistic question based on what
you chose to benchmark to prove your point would be: Do you know what normal people
actually do on them?

Feel free to treat the question as rhetorical.
Regards, -ck
/me checks on his distributed computing client's progress, fires up his next H264 encode, changes

music tracks and prepares to have his arse whooped on quake live.
https://lwn.net/Articles/351504/

Con replies (7 September 2009) ...

18

https://lwn.net/Articles/351504/

T. Groves, J. Knockel, E. Schulte Conclusions

• The results indicate that CFS outperformed BFS with minimizing turnaround time but that BFS
outperformed CFS for minimizing latency. This indicates that BFS is better for interactive tasks
that block on I/O or user input and that CFS is better for batch processing that is CPU bound.

• Many distros like Ubuntu already have separate kernel packages for desktops and servers
optimized for those common use cases. To improve the average desktop experience, distros
could patch their kernel to use the BFS scheduler. If desktop users do perform a lot of batch
processing, distros could provide two different kernel packages alternatives.

19 http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf

http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf

20

CPU schedulers compared – Graysky, 2012

http://repo-ck.com/bench/cpu_schedulers_compared.pdf

http://repo-ck.com/bench/cpu_schedulers_compared.pdf
http://repo-ck.com/bench/cpu_schedulers_compared.pdf
http://repo-ck.com/bench/cpu_schedulers_compared.pdf

Deadline scheduling gets away with the notion of process priorities. Instead, processes provide three
parameters: runtime, period, and deadline. A SCHED_DEADLINE task is guaranteed to receive
"runtime" microseconds of execution time every "period" microseconds, and these "runtime"
microseconds are available within "deadline" microseconds from the beginning of the period. The
task scheduler uses that information to run the process with the earliest deadline first (EDF).

The Deadline scheduler

21

it is not possible to use a fixed-priority scheduler to schedule this task set while meeting every deadline;
regardless of the assignment of priorities, one task will not run in time to get its work done.

https://lwn.net/Articles/743740/

Worst-case execution time

https://lwn.net/Articles/743740/

• /Documentation/echeduler/sched-deadline.rst.

• SCHED_DEADLINE in Wikipedia.

• Deadline scheduling: coming soon?, Jonathan Corbet, December 2013.

• Deadline scheduling in the Linux kernel, J.Lelli, C. Scordino, L. Abeni, D.Faggioli, Software – Practice&
Experience, vol. 46 (6), June 2016.

 Container-Based Real-Time Scheduling in the Linux Kernel, L. Abeni, A. Balsini, T. Cucinotta,
EWiLi’18, October 4th, 2018.

• Deadline scheduling part 1 — overview and theory, D. Oliveira, 2018.

• Deadline scheduler part 2 — details and usage, D.Oliveira, 2018.

• https://lwn.net/Kernel/Index/#Realtime-Deadline_scheduling.

• SCHED_DEADLINE desiderata and slightly crazy ideas, D. Oliveira, J. Lelli, DevConf.cz, January 2020.

• Capacity awareness for the deadline scheduler, M. Rybczyńska, May 2020.

 The current implementation of the deadline scheduler does not work well on asymmetric CPU
configurations like Arm's big.LITTLE. Dietmar Eggemann posted a patch set to address this problem by
adding the notion of CPU capacity (the number of instructions that can be executed in a given time) and
taking it into account in the admission-control and task-placement algorithms.

22

The Deadline scheduler

https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://en.wikipedia.org/wiki/SCHED_DEADLINE
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://dl.acm.org/doi/10.1002/spe.2335
https://dl.acm.org/doi/10.1002/spe.2335
https://dl.acm.org/doi/10.1002/spe.2335
https://dl.acm.org/doi/10.1002/spe.2335
https://dl.acm.org/doi/10.1002/spe.2335
https://dl.acm.org/doi/10.1002/spe.2335
https://dl.acm.org/doi/10.1002/spe.2335
https://dl.acm.org/doi/10.1002/spe.2335
https://dl.acm.org/doi/10.1002/spe.2335
https://dl.acm.org/doi/10.1002/spe.2335
http://sigbed.seas.upenn.edu/archives/2019-10/paper_2018_5.pdf
http://sigbed.seas.upenn.edu/archives/2019-10/paper_2018_5.pdf
http://sigbed.seas.upenn.edu/archives/2019-10/paper_2018_5.pdf
http://sigbed.seas.upenn.edu/archives/2019-10/paper_2018_5.pdf
http://sigbed.seas.upenn.edu/archives/2019-10/paper_2018_5.pdf
https://lwn.net/Articles/743740/
https://lwn.net/Articles/743740/
https://lwn.net/Articles/743740/
https://lwn.net/Articles/743740/
https://lwn.net/Articles/743946/
https://lwn.net/Articles/743946/
https://lwn.net/Articles/743946/
https://lwn.net/Articles/743946/
https://lwn.net/Kernel/Index/
https://lwn.net/Kernel/Index/
https://lwn.net/Kernel/Index/
https://www.youtube.com/watch?v=VBPwNRJReGk
https://lwn.net/Articles/821578/
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://lwn.net/ml/linux-kernel/20200520134243.19352-1-dietmar.eggemann@arm.com/

• Based on https://lwn.net/Articles/720227/ by Nur Hussein, April 2017.

• Original message from Con Kolivas : http://ck-hack.blogspot.com/2016/10/muqss-multiple-queue-
skiplist-scheduler.html announcing patch for Linux 4.7 (October 2016).

The MuQSS CPU scheduler

23

• MuQSS – The Multiple Queue Skiplist Scheduler (pronounced mux)

• The main goal is to tackle 2 major scalability limitations in BFS:

• The single runqueue which means all CPUs would fight for lock contention over the one
runqueue (problems start when the number of CPUs increases beyond 16),

• The O(n) look up which means linear increase in overhead for task lookups as number of
processes increases. Also, iterating over a linked list led to cache-thrashing behavior.

https://lwn.net/Articles/720227/
http://ck-hack.blogspot.com/2016/10/muqss-multiple-queue-skiplist-scheduler.html
http://ck-hack.blogspot.com/2016/10/muqss-multiple-queue-skiplist-scheduler.html
http://ck-hack.blogspot.com/2016/10/muqss-multiple-queue-skiplist-scheduler.html
http://ck-hack.blogspot.com/2016/10/muqss-multiple-queue-skiplist-scheduler.html
http://ck-hack.blogspot.com/2016/10/muqss-multiple-queue-skiplist-scheduler.html
http://ck-hack.blogspot.com/2016/10/muqss-multiple-queue-skiplist-scheduler.html
http://ck-hack.blogspot.com/2016/10/muqss-multiple-queue-skiplist-scheduler.html
http://ck-hack.blogspot.com/2016/10/muqss-multiple-queue-skiplist-scheduler.html
http://ck-hack.blogspot.com/2016/10/muqss-multiple-queue-skiplist-scheduler.html
http://ck-hack.blogspot.com/2016/10/muqss-multiple-queue-skiplist-scheduler.html
http://ck-hack.blogspot.com/2016/10/muqss-multiple-queue-skiplist-scheduler.html

24

MuQSS is BFS with multiple run queues, one per CPU.

The queues have been implemented as skip lists.

Wikipedia, https://en.wikipedia.org/wiki/Skip_list

Skip list is a data structure that allows O(log n) search complexity as well as O(log n) insertion
complexity within an ordered sequence of n elements.

The MuQSS CPU scheduler

https://en.wikipedia.org/wiki/Skip_list

Virtual deadline is calculated as in BFS, niffies are used instead of jiffies (nanosecond-resolution
monotonic counter)

 virtual_deadline = niffies + (prio_ratio * rr_interval)

The scheduler can find the next eligible task to run in O(1), insertion is done in O(log n).

The scheduler will use a non-blocking "trylock" attempt when popping the chosen task from the
relevant run queue, but will move on to the next-nearest deadline on another queue if it fails to
acquire the queue lock (no lock contention among different CPU queues).

Only 3 configuration parameters:

 rr_interval – CPU quantum, which defaults to 6 ms,

 interactive – a tunable to toggle the deadline behavior. If disabled, searching for the next task to
run is done independently on each CPU, instead of across all CPUs.

 iso_cpu – percentage of CPU time, across a rolling five-second average, that isochronous tasks
(SCHED_ISO) will be allowed to use.

25

The MuQSS CPU scheduler

Introduction – A short story of sched_ext

• Patchset v1: 2022-11-30, patchset v2: 2023-01-27

• Kernel Report 2023: The extensible scheduler class (write complete CPU schedulers in BPF)

• It allows users to write a custom scheduling policy using BPF without modifying the
kernel code.

• BPF provides a safe kernel programming environment.

• BPF verifier ensures that your custom scheduler has neither a memory bug nor an
infinite loop.

• BPF scheduler can be updated without reinstalling the kernel and rebooting a server.

• Developed by engineers from Meta and Google.

• Why: easy experimentation, faster scheduler development, ad hoc schedulers for
special workloads.

• Why not: added mainteance burden, benchmark gaming, vendors may require specific
schedulers, ABI concerns, redirection of work on core scheduler.

• Rejected by scheduler maintainer (Peter Zijlstra).

• September 30, 2024: Linus has released 6.12-rc1 – sched_ext got merged.

• https://github.com/sched-ext/scx/
26

David Vernet

Peter Zijlstra
Changwoo Min’s

introduction to the
sched_ext scheduling class

https://lore.kernel.org/all/20221130082313.3241517-1-tj@kernel.org/T/
https://lore.kernel.org/all/20221130082313.3241517-1-tj@kernel.org/T/
https://lore.kernel.org/all/20221130082313.3241517-1-tj@kernel.org/T/
https://lwn.net/ml/linux-kernel/20230128001639.3510083-1-tj@kernel.org/
https://lwn.net/ml/linux-kernel/20230128001639.3510083-1-tj@kernel.org/
https://lwn.net/ml/linux-kernel/20230128001639.3510083-1-tj@kernel.org/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://github.com/sched-ext/scx/
https://github.com/sched-ext/scx/
https://github.com/sched-ext/scx/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/

Sched_ext: pluggable scheduling using BPF

• A new scheduling class, called SCHED_EXT, that can be selected with a sched_setscheduler() call like
most others.

• SCHED_EXT is placed between the idle class (SCHED_IDLE) and the completely fair scheduler
(SCHED_NORMAL) in the priority stack. As a result, no SCHED_EXT scheduler can take over the system.

• The BPF-written scheduler is global to the system as a whole.

• If there is no BPF scheduler loaded, then any processes that have been put into the SCHED_EXT class will
be run as if they were in SCHED_NORMAL.

27

• Once a BPF scheduler is loaded, it will take over the
responsibility for all SCHED_EXT tasks.

• A BPF program implementing a scheduler will manage
a set of dispatch queues, each of which may contain
runnable tasks that are waiting for a CPU to execute on.

• The BPF side of the scheduler is mostly implemented as
a set of callbacks to be invoked via an operations
structure, each of which informs the BPF code of an
event or a decision that needs to be made.

https://man7.org/linux/man-pages/man2/sched_setscheduler.2.html
https://man7.org/linux/man-pages/man2/sched_setscheduler.2.html
https://lwn.net/Articles/811631/
https://lwn.net/Articles/811631/

Sched_ext: pluggable scheduling using BPF

• Sched_ext: pluggable scheduling in the Linux kernel, Kernel Recepies, Oct. 5, 2023, David Vernet.

– Scheduling is a notoriously difficult problem. An effective scheduler should fully utilize a system,
while also optimizing for cache locality, while also accounting for real time constraints, while
also accounting for battery life and power management, while also ensuring fairness, etc.

– The landscape of the tech industry has changed a lot in the last 15 years. Back in the late 2000s,
cores were typically homogeneous, and were spaced further apart from one another. Modern
systems are by comparison much more complex. Heterogeneous architectures are the norm for
mobile devices, and are becoming more common in x86. Cache hierarchies are also less
uniform, with Core Complex (CCX) chips having multiple shared L3 caches within a single socket.
Use cases have evolved as well. Applications such as mobile and VR have latency requirements
to avoid missing deadlines that impact user experience, and stacking workloads in data centers
is constantly pushing the demands on the scheduler in terms of workload isolation and
resource distribution.

– While CFS is a great scheduler, there are opportunities to continue to improve it for such use
cases. With sched_ext, we can easily experiment and find scheduling algorithms that address
these use cases by allowing developers to implement scheduling policies in BPF programs.

28

https://www.youtube.com/watch?v=8kAcnNVSAdI
https://www.youtube.com/watch?v=8kAcnNVSAdI
https://www.youtube.com/watch?v=8kAcnNVSAdI
https://www.youtube.com/watch?v=8kAcnNVSAdI
https://www.youtube.com/watch?v=8kAcnNVSAdI
https://www.youtube.com/watch?v=8kAcnNVSAdI
https://www.youtube.com/watch?v=8kAcnNVSAdI
https://www.youtube.com/watch?v=8kAcnNVSAdI
https://www.youtube.com/watch?v=8kAcnNVSAdI
https://www.youtube.com/watch?v=8kAcnNVSAdI
https://www.youtube.com/watch?v=8kAcnNVSAdI

Sched_ext: pluggable scheduling using BPF

• LSF/MM/BPF Summit 2024, 13 May, More features and use cases for sched_ext, David Vernet.

• LPC, Vienna, 18-20 Sept., 2024 – First public gathering of sched_ext community, many presentations

– Sched_ext at LPC 2024, Jonathan Corbet, Sept. 26, 2024

– „Hey, pssst, try this.” The underground culture around custom CPU schedulers.

– The current status and future potential of sched_ext, David Vernet

• Scheduling with superpowers: Using sched_ext to get big perf gains, Kernel recepies, Oct. 1, 2024,
David Vernet.

– Since last year the project has grown significantly; both in terms of its technical capabilities, as
well as in the number of contributors and users of the project.

– sched_ext now runs at massive scale at Meta, and will also soon run as the default scheduler on
Steam Deck devices (the year of Linux gaming is upon us at last)!

– Some cutting edge sched_ext schedulers enable great performance on certain workloads.

– New features available in sched_ext, like cpufreq integration, which can improve both
datacenter and handheld workloads.

29

https://www.youtube.com/watch?v=skCBvHVrVhc&list=PLbzoR-pLrL6oj1rVTXLnV7cOuetvjKn9q&index=70
https://www.youtube.com/watch?v=skCBvHVrVhc&list=PLbzoR-pLrL6oj1rVTXLnV7cOuetvjKn9q&index=70
https://lpc.events/event/18/timetable/?view=lpc
https://lpc.events/event/18/timetable/?view=lpc
https://lpc.events/event/18/timetable/?view=lpc
https://lpc.events/event/18/timetable/?view=lpc
https://lpc.events/event/18/timetable/?view=lpc
https://lwn.net/Articles/991205/
https://lwn.net/Articles/991205/
https://lwn.net/Articles/991205/
https://lwn.net/Articles/991205/
https://lwn.net/Articles/991205/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1772/
https://lpc.events/event/18/contributions/1694/attachments/1515/3188/sched_ext status and plans.pdf
https://lpc.events/event/18/contributions/1694/attachments/1515/3188/sched_ext status and plans.pdf
https://lpc.events/event/18/contributions/1694/attachments/1515/3188/sched_ext status and plans.pdf
https://lpc.events/event/18/contributions/1694/attachments/1515/3188/sched_ext status and plans.pdf
https://lpc.events/event/18/contributions/1694/attachments/1515/3188/sched_ext status and plans.pdf
https://lpc.events/event/18/contributions/1694/attachments/1515/3188/sched_ext status and plans.pdf
https://lpc.events/event/18/contributions/1694/attachments/1515/3188/sched_ext status and plans.pdf
https://lpc.events/event/18/contributions/1694/attachments/1515/3188/sched_ext status and plans.pdf
https://lpc.events/event/18/contributions/1694/attachments/1515/3188/sched_ext status and plans.pdf
https://lpc.events/event/18/contributions/1694/attachments/1515/3188/sched_ext status and plans.pdf
https://lpc.events/event/18/contributions/1694/attachments/1515/3188/sched_ext status and plans.pdf
https://www.youtube.com/watch?v=Cy7-oqdcUCs
https://www.youtube.com/watch?v=Cy7-oqdcUCs
https://www.youtube.com/watch?v=Cy7-oqdcUCs
https://www.youtube.com/watch?v=Cy7-oqdcUCs
https://www.youtube.com/watch?v=Cy7-oqdcUCs
https://www.youtube.com/watch?v=Cy7-oqdcUCs
https://www.youtube.com/watch?v=Cy7-oqdcUCs

Quotes of the week – posted by J. Corbet on Jan 2024

I ended up writing a Linux scheduler in Rust using sched-ext during Christmas break, just for
fun. I'm pretty shocked to see that it doesn't just work, but it can even outperform the
default Linux scheduler (EEVDF) with certain workloads (i.e., gaming).

Writing a Linux scheduler in Rust that runs in user-space, OSPM, 30 May 2024
Crafting a Linux kernel scheduler that runs in user-space using Rust, LPC, 18-20 Sept, 2024

Andrea Righi introduced scx_rustland, a framework to write CPU schedulers for Linux that run

as user-space programs.

Initially a project aimed at teaching operating systems concepts to undergraduate students, it
led Righi to appreciate the convenience of the change/build/run workflow to modify the
kernel's behavior without rebooting.

30

Andrea Righi

Principal System
Software Engineer at
NVIDIA

This effort was able to prove that user-space
scheduling is not only possible, but can even
reach respectable performance, such as video
gaming at 60 frames per second while compiling
the Linux kernel at the same time.

scx_rustland_core architecture

https://www.youtube.com/watch?v=HQRHo8E_4Ks
https://www.youtube.com/watch?v=HQRHo8E_4Ks
https://www.youtube.com/watch?v=HQRHo8E_4Ks
https://www.youtube.com/watch?v=UK6XX27mK3c
https://www.youtube.com/watch?v=UK6XX27mK3c
https://www.youtube.com/watch?v=UK6XX27mK3c

Earliest Eligible Virtual Deadline First (EEVDF)

• An EEVDF CPU scheduler for Linux, Jonathan Corbet, March 9, 2023.

• Completing the EEVDF scheduler, J. Corbet, April 11, 2024.

• Work by Peter Zijlstra.

• (Oct 30, 2023) Merged as an option for the 6.6 kernel.

• It should provide better performance and fairness while relying less on fragile heuristics. The merge
message notes that there may be some rare performance regressions with some workloads, and that
work is ongoing to resolve them.

• (April 05, 2024) Peter Zijlstra posted a patch series intended to finish the EEVDF work. Beyond some
fixes, this work includes a significant behavioral change and a new feature intended to help latency-
sensitive tasks.

• One place where there is a desire for improvement is in the handling of latency.

• The amount of CPU time given to any two processes (with the same nice value) will be the same, but the
low-latency process will get it in a larger number of shorter slices.

• Currently a default scheduler (replaced CFS).

31

https://lwn.net/Articles/925371/
https://lwn.net/Articles/925371/
https://lwn.net/Articles/925371/
https://lwn.net/Articles/925371/
https://lwn.net/Articles/969062/
https://lwn.net/Articles/969062/
https://lwn.net/Articles/969062/
https://lwn.net/Articles/969062/
https://lwn.net/Articles/969062/
https://lwn.net/Articles/969062/

Earliest Eligible Virtual Deadline First (EEVDF)

• There are many constraints beyond the fair allocation of CPU time that are placed on the scheduler.

– It should maximize the benefit of the system's memory caches.

– It should preserve battery life (Power management).

– Improvement in the handling of latency is required.

• CFS does not give processes a way to express their latency requirements; nice values (priorities) can be
used to give a process more CPU time, but that is not the same thing.

• For each process, EEVDF calculates the difference between the time that process should have gotten (a
task's virtual run time) and how much it actually got (its actual running time); that difference is called lag.

• For any process with a negative lag, there will be a time in the future where the time it is entitled to
catches up to the time it has actually gotten and it will become eligible again; that time is deemed the
eligible time.

• The virtual deadline is the earliest time by which a process should have received its due CPU time. This
deadline is calculated by adding a process's allocated time slice to its eligible time. A process with a 10ms
time slice, and whose eligible time is 20ms in the future, will have a virtual deadline that is 30ms in the
future.

• EEVDF will run the process with the earliest virtual deadline first.

 32

Earliest Eligible Virtual Deadline First (EEVDF)

1. CPU-bound tasks (A, B, and C) start at the same time. Before any of them runs, they will all
have a lag of zero:

 A: 0ms B: 0ms C: 0ms

2. Since none of the tasks have a negative lag, all are eligible. If the scheduler picks A to run first
with a 30ms (to pick a number) time slice, and if A runs until the time slice is exhausted, the
lag situation will look like this:

 A: -20ms B: 10ms C: 10ms

 Over those 30ms, each task was entitled to 10ms of CPU time. A got 30ms, so it accumulated
a lag of -20ms; the other two tasks, which got no CPU time at all, ended up with 10ms of lag.

3. Task A is no longer eligible, so the scheduler will have to pick one of the others next. If B is
given (and uses) a 30ms time slice, the situation becomes:

 A: -10ms B: -10ms C: 20ms

 Each task has earned 10ms of lag corresponding to the CPU time it was entitled to, and B
burned 30ms by actually running. Now only C is eligible, so the scheduler's next decision is
easy.

33

Earliest Eligible Virtual Deadline First (EEVDF)

• The sum of all the lag values in the system is always zero.

• Any task can request shorter time slices, which will cause it to be run sooner and, possibly,
more frequently. If, however, the requested time slice is too short, the task will find itself
frequently preempted and will run slower overall.

• A task can use the sched_setattr() system call, passing the desired slice time (in nanoseconds)
in the sched_runtime field of the sched_attr structure.

• EEVDF allows one task to preempt another if its virtual deadline is earlier. This provides more
consistent timings for short-time-slice tasks, while slowing long-running tasks slightly.

• When a task sleeps, it is normally removed from the run queue so that the scheduler need not
consider it. In EEVDF an ineligible process that goes to sleep will be left on the queue, but
marked for "deferred dequeue". Since it is ineligible, it will not be chosen to execute, but its
lag will increase according to the virtual run time that passes. Once the lag goes positive, the
scheduler will notice the task and remove it from the run queue. The result of this
implementation is that a task that sleeps briefly will not be able to escape a negative lag
value, but long-sleeping tasks will eventually have their lag debt forgiven. A positive lag value
is, instead, retained indefinitely until the task runs again.

34

Last discussions on schedulers

• Scheduler related topics discussed at OSPM 2023

– Part 1, Part 2

• Scheduler related topics discussed at OSPM 2024

– Part 1, Part 2

35

https://lwn.net/Articles/934142/
https://lwn.net/Articles/934459/
https://lwn.net/Articles/981371/

Role of CPU Idle loop

• Intel - CPU idle time management, Rafael J. Wysocki

• When there are no other tasks to run on a CPU, the idle task runs on it.

• The idle task’s code is the idle loop.

• The idle loop calls into cpuidle to allow the CPU to be put into an energy-saving state (if this
makes sense).

• Cpuidle uses a governor to decide which idle state to put the CPU into (and whether of not to
stop the scheduler tick on it).

• Three cpuidle governors are available (in the mainline), but 2 of them are practicaly relevant
(menu and teo).

• Idle state parameters that are used by the governors for making decisions are the target
residency and the exit latency.

36

https://www.youtube.com/watch?v=4q7nf19T6K0&list=PLXJaBJgIrHE3g1hdEpypbFR4SHLEX6NfN&index=17
https://www.youtube.com/watch?v=4q7nf19T6K0&list=PLXJaBJgIrHE3g1hdEpypbFR4SHLEX6NfN&index=17
https://www.youtube.com/watch?v=4q7nf19T6K0&list=PLXJaBJgIrHE3g1hdEpypbFR4SHLEX6NfN&index=17
https://www.youtube.com/watch?v=4q7nf19T6K0&list=PLXJaBJgIrHE3g1hdEpypbFR4SHLEX6NfN&index=17
https://www.youtube.com/watch?v=4q7nf19T6K0&list=PLXJaBJgIrHE3g1hdEpypbFR4SHLEX6NfN&index=17
https://www.youtube.com/watch?v=4q7nf19T6K0&list=PLXJaBJgIrHE3g1hdEpypbFR4SHLEX6NfN&index=17
https://www.youtube.com/watch?v=4q7nf19T6K0&list=PLXJaBJgIrHE3g1hdEpypbFR4SHLEX6NfN&index=17

CPU Idle Loop

 CPU Idle Loop Rework, Rafael J. Wysocki (Intel), 2018.

 What’s a CPU to do when it has nothing to do?, Tom Yates, October 2018.

 Although increasingly deep idle states consume decreasing amounts of power, they have
increasingly large costs to enter and exit. It is in the kernel's best interests to predict how long a
CPU will be idle before deciding how deeply to idle it. This is the job of the idle loop. The
scheduler then calls the governor, which does its best to predict the appropriate idle state to
enter.

 He reworked the idle loop for kernel 4.17 so that the decision about stopping the tick is taken
after the governor has made its recommendation of the idle state.

37

https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://lwn.net/Articles/767630/
https://lwn.net/Articles/767630/
https://lwn.net/Articles/767630/
https://lwn.net/Articles/767630/
https://lwn.net/Articles/767630/
https://lwn.net/Articles/767630/
https://lwn.net/Articles/767630/
https://lwn.net/Articles/767630/
https://lwn.net/Articles/767630/
https://lwn.net/Articles/767630/
https://lwn.net/Articles/767630/
https://lwn.net/Articles/767630/

CPU Idle Loop

38

High-level CPU idle time management control flow But there is a CPU scheduler tick timer ..
Original idle loop design issue

CPU Idle Loop Rework, Rafael J. Wysocki (Intel), 2018.

jmd@students$ cat /sys/devices/system/cpu/cpuidle/current_governor_ro
menu

https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A

CPU Idle Loop

39

Short idle duration prediction problem

Redesigned idle loop (Linux 4.17 and later)

CPU Idle Loop Rework, Rafael J. Wysocki (Intel), 2018.

Before

After

https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A

Idle power (Intel OTC Server Power Lab)

40

The green line is with the old
idle loop, the red is with the
new: power consumption is
less under the new scheme,
and moreover it is much more
predictable than before.

CPU Idle Loop Rework, Rafael J. Wysocki (Intel), 2018.

https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A

CPU Idle Loop

• Improving idle behavior in tickless systems, Marta Rybczyńska, December 2018.

 Linux currently provides two cpu idle governors, ladder and menu. Wysocki implemented the
third, timer events oriented (TEO) – similar to menu, but takes into cosideration different factors.

• Fixing SCHED_IDLE, Viresh Kumar, November 2019 – The 5.4 kernel release includes a few
improvements to the existing SCHED_IDLE scheduling policy that can help users improve the
scheduling latency of their high-priority (interactive) tasks if they use the SCHED_IDLE policy for
the lowest-priority (background) tasks.

• Intel - CPU idle time management, Rafael J. Wysocki, Intel, OSPM 20, May 31, 2024. Problems with
governors – they don’t take latency into account.

41

https://lwn.net/Articles/775618/
https://lwn.net/Articles/775618/
https://lwn.net/Articles/775618/
https://lwn.net/Articles/775618/
https://lwn.net/Articles/775618/
https://lwn.net/Articles/775618/
https://lwn.net/Articles/775618/
https://lwn.net/Articles/775618/
https://lwn.net/Articles/775618/
https://lwn.net/Articles/775618/
https://lwn.net/Articles/775618/
https://lwn.net/Articles/805317/
https://lwn.net/Articles/805317/
https://lwn.net/Articles/805317/
https://www.youtube.com/watch?v=4q7nf19T6K0&list=PLXJaBJgIrHE3g1hdEpypbFR4SHLEX6NfN&index=17
https://www.youtube.com/watch?v=4q7nf19T6K0&list=PLXJaBJgIrHE3g1hdEpypbFR4SHLEX6NfN&index=17
https://www.youtube.com/watch?v=4q7nf19T6K0&list=PLXJaBJgIrHE3g1hdEpypbFR4SHLEX6NfN&index=17
https://www.youtube.com/watch?v=4q7nf19T6K0&list=PLXJaBJgIrHE3g1hdEpypbFR4SHLEX6NfN&index=17
https://www.youtube.com/watch?v=4q7nf19T6K0&list=PLXJaBJgIrHE3g1hdEpypbFR4SHLEX6NfN&index=17
https://www.youtube.com/watch?v=4q7nf19T6K0&list=PLXJaBJgIrHE3g1hdEpypbFR4SHLEX6NfN&index=17
https://www.youtube.com/watch?v=4q7nf19T6K0&list=PLXJaBJgIrHE3g1hdEpypbFR4SHLEX6NfN&index=17

Energy Model of devices • The Energy Model (EM) framework serves as an interface
between drivers knowing the power consumed by devices at
various performance levels, and the kernel subsystems willing
to use that information to make energy-aware decisions.

• The source of the information about the power consumed by
devices can vary from one platform to another. These power
costs can be estimated using device tree data in some cases. In
others, the firmware will know better. Alternatively, user space
might be best positioned.

• In order to avoid each and every client subsystem to re-
implement support for each and every possible source of
information on its own, the EM framework intervenes as an
abstraction layer which standardizes the format of power cost
tables in the kernel.

• The power values might be expressed in micro-Watts or in an
abstract scale.

• In case of CPU the EM framework manages power cost tables
per performance domain in the system. A performance domain
is a group of CPUs whose performance is scaled together.

• Performance domains generally have a 1-to-1 mapping with
CPUFreq policies.

42

Energy models of devices

https://docs.kernel.org/power/energy-model.html
https://docs.kernel.org/power/energy-model.html
https://docs.kernel.org/power/energy-model.html
https://docs.kernel.org/power/energy-model.html

Energy Aware Scheduling

• Energy Aware Scheduling (EAS) gives the scheduler the ability to predict the impact of its decisions on
the energy consumed by CPUs.

• EAS relies on an Energy Model of the CPUs to select an energy efficient CPU for each task, with a
minimal impact on throughput.

• EAS operates only on heterogeneous CPU topologies (such as Arm big.LITTLE and other multi-core
SoCs) because this is where the potential for saving energy through scheduling is the highest.

• Definitions

– energy = [joule] (resource like a battery on powered devices)

– power = energy/time = [joule/second] = [watt]

• The goal of EAS is to minimize energy, while still getting the job done. That is, we want to

– maximize: performance [inst/s] / power [W] which is equivalent to

– minimizing: energy [J] / instruction.

• It is essentially an alternative optimization objective to the current performance-only objective for the
scheduler. This alternative considers two objectives: energy-efficiency and performance.

• The use-cases where EAS can help the most are those involving a light/medium CPU utilization.
43

https://docs.kernel.org/scheduler/sched-energy.html
https://docs.kernel.org/scheduler/sched-energy.html
https://docs.kernel.org/scheduler/sched-energy.html
https://docs.kernel.org/scheduler/sched-energy.html

44

Energy Aware Scheduling

• Researched since 2013. In 2019 added to Linux 5.0.

• Energy Aware Scheduling (EAS) on ARM wiki. Arm, Linaro and key partners are contributing
jointly to the development of EAS. Energy-Aware Scheduling Project on linaro.org.

• An Unbiased Look at the Energy Aware Scheduler, Vitaly Wool, Embedded Linux Conference,
2018.

• Evaluating vendor changes to the scheduler, Jonathan Corbet, May 2020.

 The benchmark results for each of these patches were remarkably similar. They all tended to
hurt performance by 3-5% while reducing energy use by 8-11%.

• Saving frequency scaling in the data center, J. Corbet, May 2020.

 Frequency scaling — adjusting a CPU's operating frequency to save power when the workload
demands are low — is common practice across systems supported by Linux. It is, however,
viewed with some suspicion in data-center settings, where power consumption is less of a
concern and there is a strong emphasis on getting the most performance out of the hardware.

• Imbalance detection and fairness in the CPU scheduler, J. Corbet, May 2020.

https://community.arm.com/developer/tools-software/oss-platforms/w/docs/530/energy-aware-scheduling-eas
https://community.arm.com/developer/tools-software/oss-platforms/w/docs/530/energy-aware-scheduling-eas
https://old.linaro.org/blog/energy-aware-scheduling-eas-progress-update/
https://old.linaro.org/blog/energy-aware-scheduling-eas-progress-update/
https://old.linaro.org/blog/energy-aware-scheduling-eas-progress-update/
https://old.linaro.org/blog/energy-aware-scheduling-eas-progress-update/
https://www.youtube.com/watch?v=UGhKeCyOIJM
https://lwn.net/Articles/820825/
https://lwn.net/Articles/820825/
https://lwn.net/Articles/820825/
https://lwn.net/Articles/820825/
https://lwn.net/Articles/820825/
https://lwn.net/Articles/820825/
https://lwn.net/Articles/820825/
https://lwn.net/Articles/820825/
https://lwn.net/Articles/820825/
https://lwn.net/Articles/820825/
https://lwn.net/Articles/820872/
https://lwn.net/Articles/821123/

Scheduling – thermal pressure

Telling the scheduler about thermal pressure, Marta Rybczyńska, May 2019.

Even with radiators and fans, a system's CPUs can overheat. When that happens, the kernel's thermal
governor will cap the maximum frequency of that CPU to allow it to cool. The scheduler, however, is not
aware that the CPU's capacity has changed; it may schedule more work than optimal in the current
conditions, leading to a performance degradation.

The solution adds an interface to inform the scheduler about thermal events so that it can assign tasks better
and thus improve the overall system performance.

The term thermal pressure means the difference between the maximum processing capacity of a CPU and the
currently available capacity, which may be reduced by overheating events.

The two approaches, the thermal pressure approach and energy-aware scheduling (EAS), have different
scope: thermal pressure is going to work better in asymmetric configurations where capacities are
different and it is more likely to cause the scheduler to move tasks between CPUs.

The two approaches should also be independent because thermal pressure should work even if EAS is not
compiled in.

Enhancements and adjustments of the thermal control subsystem, Rafael J. Wysocki , Linux Plumbers
Conference (LPC), September 19, 2024.

45

https://lwn.net/Articles/788380/
https://lwn.net/Articles/788380/
https://lwn.net/Articles/788380/
https://lwn.net/Articles/788380/
https://lwn.net/Articles/788380/
https://lwn.net/Articles/788380/
https://lwn.net/Articles/788380/
https://lwn.net/Articles/788380/
https://lwn.net/Articles/788380/
https://lwn.net/Articles/788380/
https://www.youtube.com/watch?v=lsSwZj_gViM
https://www.youtube.com/watch?v=lsSwZj_gViM
https://www.youtube.com/watch?v=lsSwZj_gViM
https://www.youtube.com/watch?v=lsSwZj_gViM
https://www.youtube.com/watch?v=lsSwZj_gViM
https://www.youtube.com/watch?v=lsSwZj_gViM
https://www.youtube.com/watch?v=lsSwZj_gViM
https://www.youtube.com/watch?v=lsSwZj_gViM
https://www.youtube.com/watch?v=lsSwZj_gViM
https://www.youtube.com/watch?v=lsSwZj_gViM
https://www.youtube.com/watch?v=lsSwZj_gViM
https://www.youtube.com/watch?v=lsSwZj_gViM

Scheduling – Arm big.LITTLE CPU chip

Scheduling for asymmetric Arm systems, Jonathan Corbet, November 2020.

The big.LITTLE architecture placed fast (but power-hungry) and slower (but more power-efficient)
CPUs in the same system-on-chip (SoC); significant scheduler changes were needed for Linux to
be able to properly distribute tasks on such systems.

Putting tasks on the wrong CPU can result in poor performance or excessive power consumption, so
a lot of work has gone into the problem of optimally distributing workloads on big.LITTLE
systems.

When the scheduler gets it wrong, though, performance will suffer, but things will still work.

Future Arm designs, include systems where some CPUs can run both 64-bit and 32-bit tasks, while
others are limited to 64-bit tasks only. The result of an incorrect scheduling choice is no longer a
matter of performance; it could be catastrophic for the workload involved.

Cortex A57/A53 MPCore big.LITTLE CPU chip

What should happen if a 32-bit task attempts to run
on a 64-bit-only CPU?

• Kill the task or
• recalculate the task's CPU-affinity mask?

https://lwn.net/Articles/838339/
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://en.wikipedia.org/wiki/ARM_big.LITTLE

Core scheduling

On kernels where core scheduling is enabled, a core_cookie field is added to the task structure. These
cookies are used to define the trust boundaries; two processes with the same cookie value trust each
other and can be allowed to run simultaneously on the same core. (Peter Zijlstra)

Completing and merging core scheduling, Jonathan Corbet, May 2020.

A set of virtualization tests showed the system running at 96% of the performance of an unmodified
kernel with core scheduling enabled; the 4% performance hit hurts, but it's far better than the 87%
performance result measured for this workload with SMT turned off entirely.

The all-important kernel-build benchmark showed almost no penalty with core scheduling, while turning
off SMT cost 8%.

47

Core scheduling, Jonathan Corbet, February 2019.

SMT (simultaneous multithreading) increases performance by turning
one physical CPU into two virtual CPUs that share the hardware; while
one is waiting for data from memory, the other can be executing. Sharing
a processor this closely has led to security issues and concerns for years,
and many security-conscious users disable SMT entirely.

https://lwn.net/Articles/820321/
https://lwn.net/Articles/820321/
https://lwn.net/Articles/820321/
https://lwn.net/Articles/820321/
https://lwn.net/Articles/820321/
https://lwn.net/Articles/820321/
https://lwn.net/Articles/820321/
https://lwn.net/Articles/820321/
https://lwn.net/Articles/780703/
https://lwn.net/Articles/780703/
https://lwn.net/Articles/780703/

Core scheduling

Core Scheduling Looks Like It Will Be Ready For Linux 5.14 To Avoid Disabling SMT/HT, Michael Larabel,
May 2021.

Core scheduling lands in 5.14, Jonathan Corbet, 2021.

Core scheduling should be effective at mitigating user-space to user-space and user-to-kernel attacks
when the functionality is properly used. But the default kernel policy will not change over how tasks
are scheduled but is up to the administrator for identifying tasks that can or cannot share CPU
resources.

48
https://www.youtube.com/watch?v=_8_xUf47-jE

https://www.phoronix.com/scan.php?page=news_item&px=Core-Scheduling-Linux-5.14
https://lwn.net/Articles/861251/
https://lwn.net/Articles/861251/
https://lwn.net/Articles/861251/
https://lwn.net/Articles/861251/
https://lwn.net/Articles/861251/
https://lwn.net/Articles/861251/
https://lwn.net/Articles/861251/
https://www.youtube.com/watch?v=_8_xUf47-jE
https://www.youtube.com/watch?v=_8_xUf47-jE
https://www.youtube.com/watch?v=_8_xUf47-jE

Conclusions

49

Scheduler performance varies
dramatically according to hardware and
workload, and as a result we strongly
encourage Linux distributions to take an
increased level of responsibility for
selecting appropriate default schedulers
that best suit the intended usage of the
system.

