
Real Time Linux
(PREEMPT_RT)

Table of contents

• Definitions

• History of PREEMPT_RT

• Who is using PREEMPT_RT?

• Real Time checklist & kernel configuration

• What PREEMPT_RT gave to Linux ?

• Priority inheritance

• Deadline sheduler

2

Definitions

3

• Based on
– Kernel Recipes 2016 – Understanding a Real-Time System (more than just a kernel) – Steven Rostedt,

https://www.youtube.com/watch?v=w3yT8zJe0Uw

– Kernel Recipes 2016 – Real Time Linux, Who need it? (Not you!) – Steven Rostedt,
https://www.youtube.com/watch?v=4UY7hQjEW34

• Real Time System – Hard vs Soft
– Soft Real Time: can deal with outliers, tries to be reliable, may have unbounded latency.

 Examples: video games, video systems, some communication systems.

– Hard Real Time: mathematically provable code, bounded latency.

 Examples: Airplane engine controls, nuclear power plants, Mars Lander, Space shuttle.

• What is PREEMPT_RT then?
– Hard Real time „designed”.

• Real Time Linux
– Can not be mathematically proven.

– Tries to bound all latency (unexpected latency are considered bugs).

– The design follows that of any hard real time operating system.

https://www.youtube.com/watch?v=w3yT8zJe0Uw
https://www.youtube.com/watch?v=w3yT8zJe0Uw
https://www.youtube.com/watch?v=4UY7hQjEW34
https://www.youtube.com/watch?v=4UY7hQjEW34
https://www.youtube.com/watch?v=4UY7hQjEW34

History of PREEMPT_RT

4

• Small group of core developers: Ingo Molnar, Steven Rostedt, Thomas
Gleixner, Sebastian A. Siewior, John Ogness.

• Started delivering patches in 2004.

• Merged last brick on a road – the first ever physical pull request (ver. 6.12,
September 19, 2024).

• Real time patches: https://lwn.net/Kernel/Index/#Realtime.

• Today almost all required parts of the PREEMPT_RT are part of the common
Linux code base.

• Work is continued.

On September 19, Thomas Gleixner delivered
the pull request for the realtime preemption
enablement patches to Linus Torvalds — in printed
form, wrapped in gold, with a ribbon, as Torvalds
had requested. It was a significant milestone,
marking the completion of a project that required
20 years of effort. (https://lwn.net/Articles/990985/)

Realtime kernels are unlikely to become the
default, simply because there's some small
performance overhead from using the
realtime config option. But with all the
necessary code being part of the mainline
kernel, it's certainly possible that some
distributions might turn it on by default or
make it easier to turn on.
(https://lwn.net/Articles/990985/)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=baeb9a7d8b60
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=baeb9a7d8b60
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=baeb9a7d8b60
https://lwn.net/Kernel/Index/
https://lwn.net/Kernel/Index/
https://lwn.net/Articles/990985/
https://lwn.net/Articles/990985/
https://lwn.net/Articles/990985/

Who is using PREEMPT_RT over the years?

5

• PLC – Programmable Logic Controlers.

• Engel Victory for controling the moulding of Lego bricks.

• Keba KeMotion/robotics – painting cars.

• Trumpf TruControl (welding).

 Max cycle 150 ms

Max cycle 150 ms Max cycle 4 ms Max cycle 2 ms

• Medical devices
• ABS brake controller in a car
• CNC mills and lathes

Kernel Recipes 2024 – PREEMPT_RT over the years – Sebastian A. Siewior, https://www.youtube.com/watch?v=1dBK7Wp1NMY

https://www.youtube.com/watch?v=1dBK7Wp1NMY
https://www.youtube.com/watch?v=1dBK7Wp1NMY

Realtime Linux (PREEMPT_RT patch)

6

In the realtime domain, correctness means running at the correct time. The application must wake up
within a bounded time limit when there is time-critical work to do. The right timing of tasks is a
requirement; things will go wrong if the constraints are not met.
Developers need to define which tasks and applications are time-critical; a lot of people mistakenly think
that all tasks in a realtime system are realtime, while most of them are not.

The PREEMPT_RT functionality is about making the kernel more predictable and reducing latencies (maintaining
low latency) of the kernel to cater to real-time workloads.

The key point of the PREEMPT_RT patch is to minimize the amount of kernel code that is non-preemptible, while
also minimizing the amount of code that must be changed in order to provide this added preemptibility.

There are three properties that a realtime operating system must have:

• deterministic scheduling behavior,

• interruptibility,

• and a way to avoid priority inversion.

The implementation of many lock types changes in the PREEMPT_RT kernels; in particular, most spinning locks
becoming sleeping locks.

Real-Time Checklist & Kernel Configuration

7

• A checklist for writing Linux real-time applications, John Ogness, Embedded Linux Conference
Europe, Oct. 2020. (also https://www.youtube.com/watch?v=NrjXEaTSyrw)

• A real time developer’s checklist, Marta Rybczyńska, Nov 16, 2020.

https://ogness.net/ese2020/ese2020_johnogness_rtchecklist.pdf
https://ogness.net/ese2020/ese2020_johnogness_rtchecklist.pdf
https://ogness.net/ese2020/ese2020_johnogness_rtchecklist.pdf
https://ogness.net/ese2020/ese2020_johnogness_rtchecklist.pdf
https://ogness.net/ese2020/ese2020_johnogness_rtchecklist.pdf
https://ogness.net/ese2020/ese2020_johnogness_rtchecklist.pdf
https://ogness.net/ese2020/ese2020_johnogness_rtchecklist.pdf
https://ogness.net/ese2020/ese2020_johnogness_rtchecklist.pdf
https://ogness.net/ese2020/ese2020_johnogness_rtchecklist.pdf
https://ogness.net/ese2020/ese2020_johnogness_rtchecklist.pdf
https://ogness.net/ese2020/ese2020_johnogness_rtchecklist.pdf
https://ogness.net/ese2020/ese2020_johnogness_rtchecklist.pdf
https://www.youtube.com/watch?v=NrjXEaTSyrw
https://www.youtube.com/watch?v=NrjXEaTSyrw
https://www.youtube.com/watch?v=NrjXEaTSyrw
https://lwn.net/Articles/837019/
https://lwn.net/Articles/837019/
https://lwn.net/Articles/837019/
https://lwn.net/Articles/837019/
https://lwn.net/Articles/837019/
https://lwn.net/Articles/837019/
https://lwn.net/Articles/837019/

What PREEMPT_RT gave to current Linux?

8

• What does RTOS give us? Determinism, determinism, determinism!

– Repeatability.

– Reliable results.

– Known worst case scenarios.

– Known reaction times.

• What PREEMPT_RT gave to current Linux?

– NO_HZ and High resolution timers.

– Generic interrupt design.

– EDF scheduler (SCHED_DEADLINE).

– Threaded interrupts.

– Mutex_lock/unlock (before all sleeping locks were just a semaphore).

– Priority inheritance (futex).

– Lockdep – runtime locking correctness validator.

– Ftrace – the Linux kernel tracer.

– Printk – prints messages to the kernel log.

Kernel Recipes 2024 – Making the kernel suck less – Steven Rostedt,
https://www.youtube.com/watch?v=AjFTVxAU3Vg

https://www.youtube.com/watch?v=AjFTVxAU3Vg
https://www.youtube.com/watch?v=AjFTVxAU3Vg

Real time mutexes

9

Real time mutexes implement priority inheritence, and solve the problem of priority inversion, which
affects real-time systems.

Priority inversion is when a lower priority process executes while a higher priority process wants to
run. The example of unbounded priority inversion is where you have three processes, A, B, and C,
where A is the highest priority process, C is the lowest, and B is in between. A tries to grab a lock
that C owns and must wait and lets C run to release the lock. In the meantime, B executes, and
since B is of a higher priority than C, it preempts C, but by doing so, it is in fact preempting A which
is a higher priority process.

The problem is solved by priority inheritance – process inherits the priority of another process if the
other process blocks on a lock owned by the current process. Let's use the previous example. This
time, when A blocks on the lock owned by C, C would inherit the priority of A. So now if B becomes
runnable, it would not preempt C, since C now has the high priority of A. As soon as C releases the
lock, it loses its inherited priority, and A then can continue with the resource that C had.

Priority inversion and priority inheritance

10
Solutions for Priority Inversion in Real-time Scheduling

https://durant35.github.io/2017/10/24/TACouses_ES2017_PriorityInversionbyResourceSharing/
https://durant35.github.io/2017/10/24/TACouses_ES2017_PriorityInversionbyResourceSharing/
https://durant35.github.io/2017/10/24/TACouses_ES2017_PriorityInversionbyResourceSharing/

Real time mutexes and local locks

11

Real time mutexes are implemented as a structure rt_mutex.

There are functions available:

 rt_mutex_init(), rt_mutex_lock(), rt_mutex_unlock(), rt_mutex_trylock().

Local locks in the kernel (from v5.8), Marta Rybczyńska, August 2020.

On non-realtime systems, the acquisition of a local lock simply maps to disabling preemption (and possibly
interrupts).

On real time systems, instead, local locks are actually sleeping spinlocks; they do not disable either preemption or
interrupts. They are sufficient to serialize access to the resource being protected without increasing latencies in
the system as a whole.

Interface: local_lock(), local_unlock(), local_lock_irq(), local_unlock_irq() etc.

struct rt_mutex {
 raw_spinlock_t wait_lock;
 struct rb_root_cached waiters; /*rbtree root to enqueue waiters in priority order; */
 struct task_struct *owner;
 ...
};

Simplified version

https://lwn.net/Articles/828477/
https://lwn.net/Articles/828477/

Deadline scheduling gets away with the notion of process priorities. Instead, processes provide three
parameters: runtime, period, and deadline. A SCHED_DEADLINE task is guaranteed to receive
"runtime" microseconds of execution time every "period" microseconds, and these "runtime"
microseconds are available within "deadline" microseconds from the beginning of the period. The
task scheduler uses that information to run the process with the earliest deadline first (EDF).

The Deadline scheduler

12

it is not possible to use a fixed-priority scheduler to schedule this task set while meeting every deadline;
regardless of the assignment of priorities, one task will not run in time to get its work done.

https://lwn.net/Articles/743740/

Worst-case execution time

https://lwn.net/Articles/743740/

• /Documentation/echeduler/sched-deadline.rst.

• SCHED_DEADLINE in Wikipedia.

• Deadline scheduling in the Linux kernel, J.Lelli, C. Scordino, L. Abeni, D.Faggioli, Software – Practice&

Experience, vol. 46 (6), June 2016.

 Container-Based Real-Time Scheduling in the Linux Kernel, L. Abeni, A. Balsini, T. Cucinotta,

EWiLi’18, October 4th, 2018.

• Deadline scheduling part 1 — overview and theory, D. Oliveira, 2018.

• Deadline scheduler part 2 — details and usage, D.Oliveira, 2018.

• https://lwn.net/Kernel/Index/#Realtime-Deadline_scheduling.

• SCHED_DEADLINE desiderata and slightly crazy ideas, D. Oliveira, J. Lelli, DevConf.cz, January 2020.

• Capacity awareness for the deadline scheduler, M. Rybczyńska, May 2020.

 The current implementation of the deadline scheduler does not work well on asymmetric CPU

configurations like Arm's big.LITTLE. Dietmar Eggemann posted a patch set to address this problem by

adding the notion of CPU capacity (the number of instructions that can be executed in a given time) and

taking it into account in the admission-control and task-placement algorithms.

13

The Deadline scheduler

https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://elixir.bootlin.com/linux/latest/source/Documentation/scheduler/sched-deadline.rst
https://en.wikipedia.org/wiki/SCHED_DEADLINE
https://dl.acm.org/doi/10.1002/spe.2335
https://dl.acm.org/doi/10.1002/spe.2335
https://dl.acm.org/doi/10.1002/spe.2335
https://dl.acm.org/doi/10.1002/spe.2335
https://dl.acm.org/doi/10.1002/spe.2335
https://dl.acm.org/doi/10.1002/spe.2335
https://dl.acm.org/doi/10.1002/spe.2335
https://dl.acm.org/doi/10.1002/spe.2335
https://dl.acm.org/doi/10.1002/spe.2335
http://sigbed.seas.upenn.edu/archives/2019-10/paper_2018_5.pdf
http://sigbed.seas.upenn.edu/archives/2019-10/paper_2018_5.pdf
http://sigbed.seas.upenn.edu/archives/2019-10/paper_2018_5.pdf
http://sigbed.seas.upenn.edu/archives/2019-10/paper_2018_5.pdf
http://sigbed.seas.upenn.edu/archives/2019-10/paper_2018_5.pdf
https://lwn.net/Articles/743740/
https://lwn.net/Articles/743740/
https://lwn.net/Articles/743740/
https://lwn.net/Articles/743740/
https://lwn.net/Articles/743946/
https://lwn.net/Articles/743946/
https://lwn.net/Articles/743946/
https://lwn.net/Articles/743946/
https://lwn.net/Kernel/Index/
https://lwn.net/Kernel/Index/
https://lwn.net/Kernel/Index/
https://www.youtube.com/watch?v=VBPwNRJReGk
https://lwn.net/Articles/821578/
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://lwn.net/ml/linux-kernel/20200520134243.19352-1-dietmar.eggemann@arm.com/

