
Zaawansowane Systemy
Operacyjne

(wykład obieralny, semestr letni)

http://students.mimuw.edu.pl/ZSO
(komplet materiałów, kryteria zaliczania)

Janina Mincer-Daszkiewicz
Łukasz Sznuk, Wojciech Ciszewski, Maciej Matraszek

Wsparcie: Adam Cichy

http://students.mimuw.edu.pl/ZSO
http://students.mimuw.edu.pl/ZSO

Linux history

May 1991, version 0.01: no support for the network, limited number of device drivers, one
file system (Minix), processes with protected address spaces

The Linux Kernel Archives – https://www.kernel.org/

– 2025-02-21, latest stable version 6.13.4

– 2025-02-16, latest mainline 6.14-rc3

 Numbering of the kernel versions – see Wikipedia

2

Linus Torvalds
announcing Linux
1.0, 30.03.1994

Richard Stallman, founder of the GNU project and the Free
Software Foundation, co-creator of the GNU GPL license, creator
of the Emacs editor, GCC compiler, GDB debugger.

Linus
Torvalds in

2024

Richard
Stallman in

2019

Linus Torvalds, Finland, born in
the same year as UNIX, i.e. 1969,
creator of the Linux kernel and
the Git version control sysem.

Andrew Tanenbaum in 2023

in conversation
with Dirk Hohndel

at OSS Vienna

Currently hired by the Linux
Foundation

https://www.kernel.org/
https://en.wikipedia.org/wiki/Linux_kernel
http://pl.wikipedia.org/wiki/Richard_Stallman
http://pl.wikipedia.org/wiki/Linus_Torvalds
http://pl.wikipedia.org/wiki/Linus_Torvalds
http://pl.wikipedia.org/wiki/Linus_Torvalds
https://www.youtube.com/watch?v=xloQRA3ttIs
https://www.youtube.com/watch?v=xloQRA3ttIs
https://www.youtube.com/watch?v=xloQRA3ttIs
https://www.youtube.com/watch?v=xloQRA3ttIs
https://stats.erasmuswithoutpaper.eu/monitoring/?group_by=server_provider&date_from=2024-10-15&client_message=Required+element+"iias-get-response/iia/iia-hash"+is+missing&sort_by=
https://stats.erasmuswithoutpaper.eu/monitoring/?group_by=server_provider&date_from=2024-10-15&client_message=Required+element+"iias-get-response/iia/iia-hash"+is+missing&sort_by=
https://stats.erasmuswithoutpaper.eu/monitoring/?group_by=server_provider&date_from=2024-10-15&client_message=Required+element+"iias-get-response/iia/iia-hash"+is+missing&sort_by=
https://stats.erasmuswithoutpaper.eu/monitoring/?group_by=server_provider&date_from=2024-10-15&client_message=Required+element+"iias-get-response/iia/iia-hash"+is+missing&sort_by=
https://stats.erasmuswithoutpaper.eu/monitoring/?group_by=server_provider&date_from=2024-10-15&client_message=Required+element+"iias-get-response/iia/iia-hash"+is+missing&sort_by=
https://stats.erasmuswithoutpaper.eu/monitoring/?group_by=server_provider&date_from=2024-10-15&client_message=Required+element+"iias-get-response/iia/iia-hash"+is+missing&sort_by=
https://stats.erasmuswithoutpaper.eu/monitoring/?group_by=server_provider&date_from=2024-10-15&client_message=Required+element+"iias-get-response/iia/iia-hash"+is+missing&sort_by=
https://stats.erasmuswithoutpaper.eu/monitoring/?group_by=server_provider&date_from=2024-10-15&client_message=Required+element+"iias-get-response/iia/iia-hash"+is+missing&sort_by=
https://stats.erasmuswithoutpaper.eu/monitoring/?group_by=server_provider&date_from=2024-10-15&client_message=Required+element+"iias-get-response/iia/iia-hash"+is+missing&sort_by=
https://stats.erasmuswithoutpaper.eu/monitoring/?group_by=server_provider&date_from=2024-10-15&client_message=Required+element+"iias-get-response/iia/iia-hash"+is+missing&sort_by=
https://stats.erasmuswithoutpaper.eu/monitoring/?group_by=server_provider&date_from=2024-10-15&client_message=Required+element+"iias-get-response/iia/iia-hash"+is+missing&sort_by=
https://stats.erasmuswithoutpaper.eu/monitoring/?group_by=server_provider&date_from=2024-10-15&client_message=Required+element+"iias-get-response/iia/iia-hash"+is+missing&sort_by=
https://stats.erasmuswithoutpaper.eu/monitoring/?group_by=server_provider&date_from=2024-10-15&client_message=Required+element+"iias-get-response/iia/iia-hash"+is+missing&sort_by=
https://www.linuxfoundation.org/
https://www.linuxfoundation.org/

3

2024 Kernel Maintainers Summit group photo

4 Linux kernel versions (source: Wikipedia)

Oct. 2024

Roughly 14% of the code is part of the
"core" (arch, kernel and mm directories),
while 60% is drivers.

https://en.wikipedia.org/wiki/Linux_kernel

5

Structure of monolithic kernel, microkernel and hybrid kernel-based operating systems (source: Wikipedia)

Linus Torvalds :

“As to the whole ‘hybrid kernel’ thing - it’s just marketing. It’s ‘oh, those microkernels had good PR, how can
we try to get good PR for our working kernel? Oh, I know, let’s use a cool name and try to imply that it has
all the PR advantages that that other system has’.”

But – eBPF makes a change ...

https://en.wikipedia.org/wiki/Monolithic_kernel

What is BPF?
Highly efficient sandboxed virtual
machine in the Linux kernel
making the Linux kernel
programmable at native
execution speed.

Programmability allows to
continuously adapt to changing
requirements and innovate
quickly.

6

Linux Development

How to Make Linux Microservice-Aware with Cilium and eBPF, Thomas Graf, QCon 2018,
(presentation, transcript)

Linux Development

2018, new Code
of Conduct

https://www.youtube.com/watch?v=_Iq1xxNZOAo&t=1845s
https://www.infoq.com/presentations/linux-cilium-ebpf/?utm_source=youtube&utm_medium=link&utm_campaign=qcontalks

7

Memory hierarchy, Intel
(Latency numbers for 2020)

Memory hierarchy, sample values ~2021
https://www.youtube.com/watch?v=J6jkrDlgflo

https://software.intel.com/content/dam/develop/external/us/en/images/latency-pyramid-816193.jpg
https://software.intel.com/content/dam/develop/external/us/en/images/latency-pyramid-816193.jpg
https://software.intel.com/content/dam/develop/external/us/en/images/latency-pyramid-816193.jpg
https://www.youtube.com/watch?v=J6jkrDlgflo
https://www.youtube.com/watch?v=J6jkrDlgflo

8

IBM POWER10, 2020

https://www.youtube.com/watch?v=J6jkrDlgflo

https://www.youtube.com/watch?v=J6jkrDlgflo

UMA vs NUMA

9 Understanding Non-Uniform Memory Access/Architectures (NUMA)

In Symmetric Multiprocessing (SMP) Systems, a
single memory controller is shared among all
CPUs (Uniform Memory Access—UMA). All of
the processors have equal access to the memory
and I/O in the system.

To scale more, Non-
Uniform Memory
Architectures
(NUMA) implement
multiple buses and
memory
controllers.

As more processors were added to the system the processor bus became a
limitation to the overall system performance.

The interconnect between the two systems introduced latency for the memory access across nodes.

https://www.sqlskills.com/blogs/jonathan/understanding-non-uniform-memory-accessarchitectures-numa/
https://www.sqlskills.com/blogs/jonathan/understanding-non-uniform-memory-accessarchitectures-numa/
https://www.sqlskills.com/blogs/jonathan/understanding-non-uniform-memory-accessarchitectures-numa/

10

Remote Direct Memory Access (RDMA) provides direct memory access from the memory of one host to the memory
of another host without involving the remote Operating System and CPU, boosting network and host performance
with lower latency, lower CPU load and higher bandwidth. In contrast, TCP/IP communications typically require copy
operations, which add latency and consume significant CPU and memory resources.

RDMA supports zero-copy networking by enabling the network adapter to transfer data directly to or from application
memory, eliminating the need to copy data between application memory and the data buffers in the operating system.
Such transfers require no work to be done by CPUs, caches, or context switches, and transfers continue in parallel with
other system operations. When an application performs an RDMA Read or Write request, the application data is
delivered directly to the network, reducing latency and enabling fast message transfer.

Remote Direct Memory Access (RDMA)

https://www.teimouri.net/review-
whats-remote-direct-memory-
access-rdma/

Where used: High Performance
Computing, Machine Learning, Big
Data

https://www.teimouri.net/review-whats-remote-direct-memory-access-rdma/
https://www.teimouri.net/review-whats-remote-direct-memory-access-rdma/
https://www.teimouri.net/review-whats-remote-direct-memory-access-rdma/
https://www.teimouri.net/review-whats-remote-direct-memory-access-rdma/
https://www.teimouri.net/review-whats-remote-direct-memory-access-rdma/
https://www.teimouri.net/review-whats-remote-direct-memory-access-rdma/
https://www.teimouri.net/review-whats-remote-direct-memory-access-rdma/
https://www.teimouri.net/review-whats-remote-direct-memory-access-rdma/
https://www.teimouri.net/review-whats-remote-direct-memory-access-rdma/
https://www.teimouri.net/review-whats-remote-direct-memory-access-rdma/
https://www.teimouri.net/review-whats-remote-direct-memory-access-rdma/
https://www.teimouri.net/review-whats-remote-direct-memory-access-rdma/
https://www.teimouri.net/review-whats-remote-direct-memory-access-rdma/

Why do we need yet another memory allocator?

11 (source: Adrian Huang, Slab Allocator in Linux Kernel, 2022)

https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel
https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel
https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel
https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel
https://www.slideshare.net/AdrianHuang/slab-allocator-in-linux-kernel

12

Mike Kravetz, Huge page concepts in Linux,
https://www.youtube.com/watch?v=n67gC

NiKVcw

Page size
4KB

Page size
1GB

https://www.youtube.com/watch?v=n67gCNiKVcw
https://www.youtube.com/watch?v=n67gCNiKVcw

13

The Linux Block Layer.
Built for Fast Storage, Sagi

Grimberg, June 2018

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details

14

The Linux Block Layer.
Built for Fast Storage, Sagi

Grimberg, June 2018

Polling has been
added in v4.1.

https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.slideshare.net/kerneltlv/the-linux-block-layer-build-for-fast-storage
https://www.thomas-krenn.com/en/wiki/Linux_Multi-Queue_Block_IO_Queueing_Mechanism_(blk-mq)_Details

15 Faster IO through io_uring, Kernel Recepies, 2019, Jen Axboe

Asynchronous I/O – io_uring

https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.youtube.com/watch?v=-5T4Cjw46ys
https://www.scylladb.com/2020/05/05/how-io_uring-and-ebpf-will-revolutionize-programming-in-linux/

• This was just waiting to happen, if it hasn’t already happened earlier. In June 2023, Google
reported on its Security blog:

– in the past year, there has been a clear trend: 60% of the submissions exploited the io_uring
component of the Linux kernel[…]. Furthermore, io_uring vulnerabilities were used in all the
submissions which bypassed our mitigations.

– To protect our users, we decided to limit the usage of io_uring in Google products.

• LWN waved a big red flag four years ago, so the only surprise here is that the rootkit is issued in
public this much later, and apparently still works.

 Auditing io_uring, Jonathan Corbet, June 3, 2021

16

But … security

New Linux Rootkit, Bruce Schneier, April 24, 2025

• The company has released a working rootkit called “Curing” that
uses io_uring, a feature built into the Linux kernel, to stealthily
perform malicious activities without being caught by many of the
detection solutions currently on the market.

https://security.googleblog.com/2023/06/learnings-from-kctf-vrps-42-linux.html
https://lwn.net/Articles/858023/
https://lwn.net/Articles/858023/
https://lwn.net/Articles/858023/
https://www.schneier.com/blog/archives/2025/04/new-linux-rootkit.html
https://www.schneier.com/blog/archives/2025/04/new-linux-rootkit.html

Spinlocks – implementation

– In the 2.6.24 kernel, a spinlock was represented by an integer value. A value of one indicated that the lock is
available, the more negative the value of the lock gets, the more processors are trying to acquire it.

– Ticket spinlocks (2008) added fairness to the mechanism by using 16-bit quantity, split into two bytes. You
can think of the "next" field as being the number on the next ticket in the dispenser, while "owner" is the
number appearing in the "now serving" display over the counter.

– MCS locks (Mellor-Crummey & Scott, 2014) expand a spinlock into a per-CPU structure, eliminating much of
the cache-line bouncing.

17

struct mcs_spinlock {
 struct mcs_spinlock *next;
 int locked; /* 1 if lock acquired */
};

https://lwn.net/Articles/267968/
https://lwn.net/Articles/267968/
https://lwn.net/Articles/267968/
https://lwn.net/Articles/267968/
https://lwn.net/Articles/590243/
https://lwn.net/Articles/590243/

18

Ticket spinlock vs MCS lock

19 Paul McKenney

Read-Copy Update (RCU)

Grace period – time period
when every thread was in
at least one quiescent
state.

Quiescent state – any
point in the thread
execution where the
thread does not hold a
reference to shared
memory.

20 h
tt

p
:/

/w
w

w
.r

d
ro

p
.c

o
m

/u
se

rs
/p

au
lm

ck
/R

C
U

/l
in

u
xu

sa
ge

.h
tm

l

RCU is a very specialized
primitive, and it is
exceedingly important to
use the right tool for the
job.

For a great many jobs,
normal locking remains
the best tool.

Almost all RCU uses in the
Linux kernel use locking to
protect updates, which
does place a hard upper
limit on RCU's fraction of
synchronization
primitives.

Read-Copy Update
(RCU)

http://www.rdrop.com/users/paulmck/RCU/linuxusage.html

Priority inversion and priority inheritance

21
Solutions for Priority Inversion in Real-time Scheduling

https://durant35.github.io/2017/10/24/TACouses_ES2017_PriorityInversionbyResourceSharing/
https://durant35.github.io/2017/10/24/TACouses_ES2017_PriorityInversionbyResourceSharing/
https://durant35.github.io/2017/10/24/TACouses_ES2017_PriorityInversionbyResourceSharing/

22

The process can have NR_OPEN (usually 1024) open files
(this limit can be increased at run time if the process has
superuser privileges).

Thanks to dup() and fork() system calls, different
descriptors can refer to the same open file.

VFS data structures (source:
Internet)

Process data structures with file information

Red-black tree
for CFS scheduler

process selection O(1) insertion
O(log(n))

http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf

• When a task has finished running on the CPU, all of the other tasks in the tree need to have their
unfairness increase.

• To prevent having to update all of the tasks in the tree the scheduler maintains a per-task vruntime
statistic.

• This is the amount of total nanoseconds that the task has spent running on a CPU weighted by its
niceness.

• Thus, instead of updating all other tasks to be more unfair when a task has finished running on the
CPU, we update the leaving task to be more fair than others by increasing its virtual runtime.

• The scheduler always selects the most unfairly treated task by selecting the task with the lowest
vruntime.

23

Completely Fair Scheduler

http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf
http://cs.unm.edu/~eschulte/classes/cs587/data/bfs-v-cfs_groves-knockel-schulte.pdf

A short story of sched_ext

• Patchset v1: 2022-11-30, patchset v2: 2023-01-27

• Kernel Report 2023: The extensible scheduler class (write complete CPU schedulers in BPF)

• It allows users to write a custom scheduling policy using BPF without modifying the
kernel code.

• BPF provides a safe kernel programming environment.

• BPF verifier ensures that your custom scheduler has neither a memory bug nor an
infinite loop.

• BPF scheduler can be updated without reinstalling the kernel and rebooting a server.

• Developed by engineers from Meta and Google.

• Why: easy experimentation, faster scheduler development, ad hoc schedulers for
special workloads.

• Why not: added mainteance burden, benchmark gaming, vendors may require specific
schedulers, ABI concerns, redirection of work on core scheduler.

• Rejected by scheduler maintainer (Peter Zijlstra).

• September 30, 2024: Linus has released 6.12-rc1 – sched_ext got merged.

• https://github.com/sched-ext/scx/
24

David Vernet

Peter Zijlstra
Changwoo Min’s

introduction to the
sched_ext scheduling class

https://lore.kernel.org/all/20221130082313.3241517-1-tj@kernel.org/T/
https://lore.kernel.org/all/20221130082313.3241517-1-tj@kernel.org/T/
https://lore.kernel.org/all/20221130082313.3241517-1-tj@kernel.org/T/
https://lwn.net/ml/linux-kernel/20230128001639.3510083-1-tj@kernel.org/
https://lwn.net/ml/linux-kernel/20230128001639.3510083-1-tj@kernel.org/
https://lwn.net/ml/linux-kernel/20230128001639.3510083-1-tj@kernel.org/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/922405/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://lwn.net/Articles/992185/
https://github.com/sched-ext/scx/
https://github.com/sched-ext/scx/
https://github.com/sched-ext/scx/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/
https://blogs.igalia.com/changwoo/sched-ext-a-bpf-extensible-scheduler-class-part-1/

Earliest Eligible Virtual Deadline First (EEVDF)

• An EEVDF CPU scheduler for Linux, Jonathan Corbet, March 9, 2023.

• Completing the EEVDF scheduler, Jonathan Corbet, April 11, 2024.

• Work by Peter Zijlstra.

• (Oct 30, 2023) Merged as an option for the 6.6 kernel.

• It should provide better performance and fairness while relying less on fragile heuristics. The merge
message notes that there may be some rare performance regressions with some workloads, and that
work is ongoing to resolve them.

• One place where there is a desire for improvement is in the handling of latency.

• Scheduling algorithm is not new; it was described in this 1995 paper by Ion Stoica and Hussein Abdel-
Wahab.

• (April 05, 2024) Peter Zijlstra posted a patch series intended to finish the EEVDF work. Beyond some
fixes, this work includes a significant behavioral change and a new feature intended to help latency-
sensitive tasks.

• The amount of CPU time given to any two processes (with the same nice value) will be the same, but the
low-latency process will get it in a larger number of shorter slices.

• Currently a default scheduler (replaced CFS).

25

Peter Zijlstra

https://lwn.net/Articles/925371/
https://lwn.net/Articles/925371/
https://lwn.net/Articles/925371/
https://lwn.net/Articles/925371/
https://lwn.net/Articles/969062/
https://lwn.net/Articles/969062/
https://lwn.net/Articles/969062/
https://lwn.net/Articles/969062/
https://lwn.net/Articles/969062/
https://lwn.net/Articles/969062/
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=805acf7726282721504c8f00575d91ebfd750564

Deadline scheduling gets away with the notion of process priorities. Instead, processes provide three
parameters: runtime, period, and deadline. A SCHED_DEADLINE task is guaranteed to receive
"runtime" microseconds of execution time every "period" microseconds, and these "runtime"
microseconds are available within "deadline" microseconds from the beginning of the period. The
task scheduler uses that information to run the process with the earliest deadline first (EDF).

The Deadline scheduler

26

it is not possible to use a fixed-priority scheduler to schedule this task set while meeting every deadline;
regardless of the assignment of priorities, one task will not run in time to get its work done.

https://lwn.net/Articles/743740/

Worst-case execution time

https://lwn.net/Articles/743740/

Idle power (Intel OTC Server Power Lab)

27

The green line is with the old
idle loop, the red is with the
new: power consumption is less
under the new scheme, and
moreover it is much more
predictable than before.

CPU Idle Loop Rework, Rafael J. Wysocki (Intel), 2018.

https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A
https://www.youtube.com/watch?v=QSOo5N97T0A

Scheduling – Arm big.LITTLE CPU chip

Scheduling for asymmetric Arm systems, Jonathan Corbet, November 2020.

The big.LITTLE architecture placed fast (but power-hungry) and slower (but more power-efficient)
CPUs in the same system-on-chip (SoC); significant scheduler changes were needed for Linux to
be able to properly distribute tasks on such systems.

Putting tasks on the wrong CPU can result in poor performance or excessive power consumption, so
a lot of work has gone into the problem of optimally distributing workloads on big.LITTLE
systems.

When the scheduler gets it wrong, though, performance will suffer, but things will still work.

Future Arm designs, include systems where some CPUs can run both 64-bit and 32-bit tasks, while
others are limited to 64-bit tasks only. The result of an incorrect scheduling choice is no longer a
matter of performance; it could be catastrophic for the workload involved.

Cortex A57/A53 MPCore big.LITTLE CPU chip

What should happen if a 32-bit task attempts to run
on a 64-bit-only CPU?

• Kill the task or
• recalculate the task's CPU-affinity mask?

https://lwn.net/Articles/838339/
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://en.wikipedia.org/wiki/ARM_big.LITTLE
https://en.wikipedia.org/wiki/ARM_big.LITTLE

Core scheduling

On kernels where core scheduling is enabled, a core_cookie field is added to the task structure. These
cookies are used to define the trust boundaries; two processes with the same cookie value trust each
other and can be allowed to run simultaneously on the same core. (Peter Zijlstra)

Completing and merging core scheduling, Jonathan Corbet, May 2020.

A set of virtualization tests showed the system running at 96% of the performance of an unmodified
kernel with core scheduling enabled; the 4% performance hit hurts, but it's far better than the 87%
performance result measured for this workload with SMT turned off entirely.

The all-important kernel-build benchmark showed almost no penalty with core scheduling, while turning
off SMT cost 8%.

29

Core scheduling, Jonathan Corbet, February 2019.

SMT (simultaneous multithreading) increases performance by turning
one physical CPU into two virtual CPUs that share the hardware; while
one is waiting for data from memory, the other can be executing. Sharing
a processor this closely has led to security issues and concerns for years,
and many security-conscious users disable SMT entirely.

https://lwn.net/Articles/820321/
https://lwn.net/Articles/820321/
https://lwn.net/Articles/820321/
https://lwn.net/Articles/820321/
https://lwn.net/Articles/820321/
https://lwn.net/Articles/820321/
https://lwn.net/Articles/820321/
https://lwn.net/Articles/820321/
https://lwn.net/Articles/780703/
https://lwn.net/Articles/780703/
https://lwn.net/Articles/780703/

History of PREEMPT_RT

30

• Small group of core developers: Ingo Molnar, Steven Rostedt, Thomas
Gleixner, Sebastian A. Siewior, John Ogness.

• Started delivering patches in 2004.

• Merged last brick on a road – the first ever physical pull request (ver. 6.12,
September 19, 2024).

• Real time patches: https://lwn.net/Kernel/Index/#Realtime.

• Today almost all required parts of the PREEMPT_RT are part of the common
Linux code base.

• Work is continued.

On September 19, Thomas Gleixner delivered
the pull request for the realtime preemption
enablement patches to Linus Torvalds — in printed
form, wrapped in gold, with a ribbon, as Torvalds
had requested. It was a significant milestone,
marking the completion of a project that required
20 years of effort. (https://lwn.net/Articles/990985/)

Realtime kernels are unlikely to become the
default, simply because there's some small
performance overhead from using the
realtime config option. But with all the
necessary code being part of the mainline
kernel, it's certainly possible that some
distributions might turn it on by default or
make it easier to turn on.
(https://lwn.net/Articles/990985/)

https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=baeb9a7d8b60
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=baeb9a7d8b60
https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/commit/?id=baeb9a7d8b60
https://lwn.net/Kernel/Index/
https://lwn.net/Articles/990985/
https://lwn.net/Articles/990985/

Admiral Grace Hopper explains
the nanosecond

• I called over to the engineering building and I said: „Please cut
off a nanosecond and send it over to me”.

• I wanted a piece of wire which would represent the maximum
distance that electricity could travel in a billionth of a second.
Of course, it wouldn’t really be through wire. It’d out in space;
the velocity of light.

• So, if you start with the velocity of light, you’ll discover that a
nanosecond is 11.8 inches long (29,97 cm)

31

• At the end of about a week, I called back and said: „I need something to
compare this to. Could I please have a microsecond?”

• Here is a microsecond, 984 feet (29992,32 cm). I sometimes think we ought
to hang one over every programmer’s desk (or around their neck) so they
know when they’re throwing away when they throw away microseconds.

https://www.youtube.com/watch?v=9eyFDBPk4Yw

1906-1992

6,2 tys. km

https://www.youtube.com/watch?v=9eyFDBPk4Yw

But ...

Be aware, shouting in the datacenter

is not recommended

32

https://www.youtube.com/watch?v=tDacjrSCeq4
https://www.youtube.com/watch?v=lMPozJFC8g0

Brendan Gregg

Vibration can badly influence disk latency

https://www.youtube.com/watch?v=tDacjrSCeq4
https://www.youtube.com/watch?v=lMPozJFC8g0

The Kernel Report 2024 – what to expect in 2025?

• Rust (Commiting to Rust in the kernel)
– Memory-safe systems programming, eliminates whole classes of bugs.

– First merged in October 2022 for 6.1 (as an experiment), slow development.

– Conclusion from the Kernel Maintainers Summit in 2024: Rust in the kernel is viable.

– Rust concerns – not easy to learn, language stability, Rust/C API correspondence, getting
abstractions upstream – if they are not used yet.

– What might be merged (lots if infrastructure, Nova – NVIDIA GPU driver, Apple GPU
driver).

• CPU scheduler creativity
– For decades there could be only one CPU scheduler.

– Sched_ext – a new scheduling class, based on BPF, merged in November 2024 for 6.12.

• Anybody can write a CPU scheduler.

• Quick and safe iteration.

• Focus on one use case.

• Security
– The problems with CVE (Common Vulnerabilities and Exposure) numbers

• Many vulnerabilities never get CVEs.

• The kernel is now a CNA – Certficate Numbering Authority. 33

Jonathan Corbet, Executive
Editor, LWN.net & Kernel

Documentation Maintainer

https://lwn.net/Articles/991062/
https://lwn.net/Articles/991062/
https://lwn.net/Articles/991062/
https://lwn.net/Articles/991062/
https://lwn.net/Articles/991062/
https://lwn.net/Articles/991062/
https://lwn.net/Articles/991062/
https://lwn.net/Articles/991062/
https://lwn.net/Articles/991062/
https://github.com/sched-ext/
https://docs.kernel.org/process/cve.html
https://docs.kernel.org/process/cve.html

