

Series 15

Jakub Woźnicki

08.05.2023

Exercises:

(A1) Show that the function $f(x, y) = (x - y^2)(3x - y^2)$ restricted to any line passing through the point $(0, 0)$ has a local minimum at $(0, 0)$. Does the function f have a local minimum at $(0, 0)$?

(A2) Find the maximum and the minimum of the function

$$f(x, y) = x(y - x)e^{-y}$$

on the set $A = \{(x, y) \in \mathbb{R}^2 : -1 \leq 3x \leq 2y \leq 6\}$.

(A3) Find the maximum and the minimum of the function

$$f(x, y) = \frac{y}{x^2 + 4y^2 + 1}$$

on the set $A = \{(x, y) \in \mathbb{R}^2 : 0 \leq x\}$.

(A4) Find the maximum and the minimum of the function

$$f(x, y, z) = 6xy - 3xz - 2yz$$

on the set $A = \{(x, y, z) \in \mathbb{R}^3 : 0 \leq x, y, z \leq 1\}$.

(A5) Find a point lying on the surface $\{(x, y, z) \in \mathbb{R}^3 : z = xy + 1\}$, which lies closest to the origin of the coordinate system.

Bonus exercise:

(Z1) Suppose, that for a function $F : \mathbb{R}^2 \rightarrow \mathbb{R}$ there exists a limit $\lim_{(x,y) \rightarrow (0,0)} F(x, y)$. Show, that if

$$\lim_{x \rightarrow 0} \lim_{y \rightarrow 0} F(x, y), \quad \lim_{y \rightarrow 0} \lim_{x \rightarrow 0} F(x, y),$$

exist, then

$$\lim_{x \rightarrow 0} \lim_{y \rightarrow 0} F(x, y) = \lim_{y \rightarrow 0} \lim_{x \rightarrow 0} F(x, y) = \lim_{(x,y) \rightarrow (0,0)} F(x, y).$$