

Series 19

Jakub Woźnicki

29.05.2023

Exercises:

(A1) Calculate the measure of

- a set $\mathcal{C} \subset [0, 1]$ of all of the numbers whose expansion in base 3 does not contain a 1 (or contains only one 1 and it is the last non-zero number in the expansion) (Cantor's set),
- a set $\mathcal{D} \subset [0, 1]$ of all of the numbers whose decimal expansion does not contain a 1.

(A2) Define a function $F : [0, 1] \rightarrow [0, 1]$ by $F(x) = 2x - \lfloor 2x \rfloor$. Suppose $A \subset [0, 1]$ is a measurable set. Show that $F^{-1}(A)$ is measurable and calculate its measure.

(A3) Calculate the following limits

a)

$$\lim_{n \rightarrow +\infty} \int_0^n \left(1 + \frac{x}{n}\right)^{n+1} e^{-2x} dx,$$

b)

$$\lim_{n \rightarrow +\infty} \int_{e^{-n}}^1 \left(1 + \frac{\ln(x)}{n}\right)^n x^{-\frac{3}{2}} dx,$$

c)

$$\lim_{n \rightarrow +\infty} \int_0^1 n e^{-nx} dx,$$

d)

$$\lim_{n \rightarrow +\infty} \int_0^1 \frac{n}{n x + x^5 + 1} dx,$$