

Series 21

Jakub Woźnicki

05.06.2023

Exercises:

(A1) Calculate $\det DF$ for the following substitutions

a) $F : \mathbb{R}_+ \times (-\pi, \pi) \times \mathbb{R} \rightarrow \mathbb{R}^3$, given by

$$F(r, \phi, z) = (r \cos \phi, r \sin \phi, z).$$

This is the so-called cylindrical substitution.

b) $F : \mathbb{R}_+ \times (-\pi, \pi) \times (-\frac{\pi}{2}, \frac{\pi}{2}) \rightarrow \mathbb{R}^3$, given by

$$F(r, \phi, \theta) = (r \cos \theta \cos \phi, r \cos \theta \sin \phi, r \sin \theta).$$

This is the so-called geographical spherical substitution.

c) $F : \mathbb{R}_+ \times (-\pi, \pi) \rightarrow \mathbb{R}^2$, given by

$$F(r, \phi) = (r \cos \phi, r \sin \phi).$$

This is the so-called polar substitution.

(A2) Calculate the measure of the set $C = \{(x, y, z) \in \mathbb{R}^3 : x^2 + y^2 < 1, y^2 + z^2 < 1\}$.

(A3) Calculate the integral

$$\int_{\{0 < y < 2x\}} (1 + x - y) e^{-x} d\lambda_2(x, y).$$

(A4) Calculate the integral

$$\int_A \frac{1}{(x + y + 1)^2} d\lambda_3(x, y, z),$$

where $A = \{(x, y, z) \in \mathbb{R}^3 : 0 < x < 1, 0 < x + y < 1, 0 < z < \frac{1}{x+y+1}\}$.

(A5) Calculate the integral

$$\int_{\{x > 0, y > 1, z > 1\}} \frac{x}{1 + (xyz)^4} d\lambda_3(x, y, z).$$