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Reminder:

A series
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is called a power series at zg with coefficients a,,. By Cauchy—Hadamard formula it is convergent
in {zeC: |z— 2| < R}, where
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and divergent in {z € C : |z — 29| > R}. Moreover it is absolutely and uniformly convergent in
{z€C : |z— 2| <r} for r < R. If we define
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then:
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L] S(k)(ZO) = k‘!ak.
Let us recall the following, known power series and their exact forms:
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Exercises:

(A1) Determine the set on which the following series converge:
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(A2) Determine the set on which the following series converge:
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(A3) Knowing that the number R € Ry is a radius of convergence of the power series Y oo a, "
calculate the radius of convergence of
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(A4) Find the exact form of the following series:
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(A5) Find the Taylor series at z¢p = 0 of the following functions:

1) f(x) =sin(z?), xR,

2)  f(x) =sin*(x) +cos*(z), = €R,
(z) =In(1 +z+2%), ze€(-1,1).
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(A6) Find the Taylor series at z¢g = 1 of the following functions and calculate their radius of conver-
gence.

1) f(z) = (z+1)exp(z),



