

Series 4, Power series

Jakub Woźnicki

10.03.2023

Reminder:

A series

$$\sum_{n=0}^{\infty} a_n(z - z_0)^n, \quad z, z_0, a_n \in \mathbb{C}$$

is called a **power series** at z_0 with **coefficients** a_n . By **Cauchy–Hadamard formula** it is convergent in $\{z \in \mathbb{C} : |z - z_0| < R\}$, where

$$R = \frac{1}{\limsup_{n \rightarrow \infty} |a_n|^{\frac{1}{n}}}$$

and divergent in $\{z \in \mathbb{C} : |z - z_0| > R\}$. Moreover it is absolutely and uniformly convergent in $\{z \in \mathbb{C} : |z - z_0| \leq r\}$ for $r < R$. If we define

$$S(z) := \sum_{n=0}^{\infty} a_n(z - z_0)^n,$$

then:

- S is well-defined in $\{z \in \mathbb{C} : |z - z_0| < R\}$,
- S is smooth in $\{z \in \mathbb{C} : |z - z_0| < R\}$ and

$$S^{(k)}(z) = \sum_{n=k}^{\infty} n \cdot (n-1) \cdot \dots \cdot (n-k+1) a_n (z - z_0)^{n-k},$$

- $S^{(k)}(z_0) = k! a_k$.

Let us recall the following, known power series and their exact forms:

- $\ln(1 + x) = \sum_{n=1}^{\infty} (-1)^{n+1} \frac{x^n}{n}, \quad -1 < x \leq 1$
- $\exp(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}, \quad x \in \mathbb{R}$
- $\sin(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{(2n+1)!}, \quad x \in \mathbb{R}$
- $\cos(x) = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}, \quad x \in \mathbb{R}$
- $\frac{1}{1-x} = \sum_{n=0}^{\infty} x^n, \quad |x| < 1$

•
$$(1+x)^\alpha = \sum_{n=0}^{\infty} \binom{\alpha}{n} x^n, \quad |x| < 1.$$

Exercises:

(A1) Determine the set on which the following series converge:

$$\begin{array}{ll} 1) \sum_{n=1}^{\infty} n^3 x^n, & 2) \sum_{n=1}^{\infty} \frac{2^n}{n!} x^n, \\ 3) \sum_{n=1}^{\infty} (2 + (-1)^n)^n x^n, & 4) \sum_{n=1}^{\infty} 2^n x^{n^2}, \\ 5) \sum_{n=1}^{\infty} 2^{n^2} x^{n!}. \end{array}$$

(A2) Determine the set on which the following series converge:

$$\begin{array}{l} 1) \sum_{n=1}^{\infty} \frac{1}{2^n n^3} (x-1)^{2n} \\ 2) \sum_{n=1}^{\infty} \frac{n}{n+1} \left(\frac{2x+1}{x} \right)^n. \end{array}$$

(A3) Knowing that the number $R \in \mathbb{R}_+$ is a radius of convergence of the power series $\sum_{n=0}^{\infty} a_n x^n$ calculate the radius of convergence of

$$\begin{array}{l} 1) \sum_{n=0}^{\infty} 2^n a_n x^n, \\ 2) \sum_{n=0}^{\infty} n^n a_n x^n. \end{array}$$

(A4) Find the exact form of the following series:

$$\begin{array}{l} 1) \sum_{n=0}^{\infty} \frac{1}{2n+1} x^{2n+1}, \\ 2) \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n+1}}{2n+1}, \\ 3) \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}, \\ 4) \sum_{n=1}^{\infty} n x^n, \\ 5) \sum_{n=1}^{\infty} n^2 x^n. \end{array}$$

(A5) Find the Taylor series at $x_0 = 0$ of the following functions:

$$\begin{array}{l} 1) f(x) = \sin(x^3), \quad x \in \mathbb{R}, \\ 2) f(x) = \sin^4(x) + \cos^4(x), \quad x \in \mathbb{R}, \\ 3) f(x) = \ln(1 + x + x^2), \quad x \in (-1, 1). \end{array}$$

(A6) Find the Taylor series at $x_0 = 1$ of the following functions and calculate their radius of convergence.

$$1) \quad f(x) = (x + 1) \exp(x),$$

$$2) \quad f(x) = \frac{1}{x}.$$