

Series I, Taylor's expansion

Jakub Woźnicki

27.02.2023

Reminder:

Let $f : (a, b) \rightarrow \mathbb{R}$ be a $(n-1)$ -times differentiable function in (a, b) and n -times at $x_0 \in (a, b)$. Then, f admits a Taylor's expansion of order n at x_0 . In particular, we may write f as

$$f(x) = f(x_0) + \sum_{k=1}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + o((x - x_0)^n) \text{ as } x \rightarrow x_0.$$

This is **Taylor's expansion with Peano's remainder**. If moreover, f is $(n+1)$ -times differentiable in (a, b) , then we may write

$$f(x) = f(x_0) + \sum_{k=1}^n \frac{f^{(k)}(x_0)}{k!} (x - x_0)^k + \frac{f^{(n+1)}(\xi_x)}{(n+1)!} (x - x_0)^{n+1}, \text{ where } \xi_x \text{ is between } x_0 \text{ and } x.$$

This is **Taylor's expansion with Lagrange's remainder**. The notation $g(x) = o((x - x_0)^n)$ as $x \rightarrow x_0$ means that

$$\lim_{x \rightarrow x_0} \frac{g(x)}{(x - x_0)^n} = 0.$$

Exercises:

(A1) Calculate $\exp(1/3)$ with an error of at most 10^{-4} .

(A2) Show that

$$1 + \frac{1}{2}x - \frac{1}{8}x^2 < \sqrt{1+x} < 1 + \frac{1}{2}x$$

for any $x > 0$.

(A3) Determine whether the series

$$\sum_{n=1}^{\infty} \left(\ln(n+1) - \ln(n) - \frac{1}{n} \right)$$

is convergent.

(A4) Calculate the Maclaurin series of $f(x) = \ln(1 + \sin(x))$ up to the fourth-order terms. Knowing it calculate further the Maclaurin series of

- 1) $g(x) = \ln(1 - \sin(x))$,
- 2) $h(x) = \ln(\cos^2(x))$.

(A5) Calculate the limits:

- 1) $\lim_{x \rightarrow 0} \frac{x \operatorname{ctg}(x) - 1}{x^2}$,
- 2) $\lim_{x \rightarrow 0} \left(\frac{\operatorname{arctg}(x)}{x} \right)^{1/x^2}$,
- 3) $\lim_{x \rightarrow 0} \frac{\arcsin(x) - x}{\operatorname{tg}(2x) - 2 \ln(1 + x) - x^2}$.

(A6) Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be twice differentiable. Prove that

$$\lim_{h \rightarrow 0} \frac{f(x_0 + h) + f(x_0 - h) - 2f(x_0)}{h^2} = f''(x_0).$$

(A7) Show, that the opposite question to (A6) is untrue, i.e. that the existence of a limit in a previous exercise does not imply that f is twice differentiable at x_0 .

(A8) Assume that $f : (a, +\infty) \rightarrow \mathbb{R}$ is twice differentiable. Let $M_i = \sup_{x \in (a, +\infty)} |f^{(i)}(x)|$, where $f^{(0)}(x) = f(x)$. Show that $M_1 \leq 2\sqrt{M_0 M_2}$.

(A9) Suppose that $f : [-1, 1] \rightarrow \mathbb{R}$ is thrice differentiable and

$$f(-1) = 0, \quad f(1) = 1, \quad f'(0) = 0.$$

Show, that $f^{(3)}(\xi) \geq 3$ for some $\xi \in (-1, 1)$.

(A10) Let $f : \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function, such that $f(0) = 0$, $f'(0) = 1$, and $f''(0) < 0$. Define a sequence

$$x_1 = a \in \mathbb{R}, \quad x_{n+1} = f(x_n).$$

Show, that there exists a $\delta > 0$, such that if $0 < a < \delta$, then $\{x_n\}_{n \in \mathbb{N}}$ converges and its limit is equal to 0.

Bonus exercises:

(Z1) Assume $f : \mathbb{R} \rightarrow (0, +\infty)$ is twice differentiable. Determine whether there always exists a point $x_0 \in \mathbb{R}$ such that for any $x \in \mathbb{R}$

$$f(x_0) + f'(x_0)(x - x_0) + \frac{f''(x_0)}{2!}(x - x_0)^2 \geq 0.$$