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Abstract

For an integer k, a homomorphism from a graph G to the Kneser graph K(2k + 1, k) is
equivalent to assigning to each vertex of G a k-element subset of {1, . . . , 2k + 1} in a way
that adjacent vertices receive disjoint subsets.

Chen and Raspaud [Discrete Mathematics, 2010] conjectured that for every k ≥ 2, every
graph G with maximum average degree less than 2k+1

k and no odd cycles with fewer than
2k+1 vertices admits a homomorphism toK(2k+1, k). They also showed that the statement
is true for k = 2. In this note we confirm the conjecture for k = 3.
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1 Introduction

Graph coloring is arguably one of the best studied graph problems and studying it has led to
many exciting and deep results about the structure of graphs, including the celebrated four color
theorem [1,2] or the notions of perfect [6, 17] and χ-bounded graph classes [14].

Besides the classic graph coloring, many other variants are also studied [15]. For example
for integers a, b, in a:b-coloring we assign to every vertex of a graph a b-element sets of colors
among {1, . . . , a} and require that the sets assigned to adjacent vertices are disjoint. Such a
coloring is motivated by some problems in scheduling [7], and is closely related to a well-studied
graph parameter called the fractional chromatic number [13].

A convenient way of looking at the coloring problems is through the lens of graph homo-
morphisms. A homomorphism from a graph G to a graph H is a mapping ϕ : V (G) → V (H),
such that if uv ∈ E(G), then ϕ(u)ϕ(v) ∈ E(H). We often refer to homomorphisms to H as
H-colorings, and to the vertices of H as colors. The reason is that if H is Kk, i.e., the com-
plete graph on k vertices, then homomorphisms to H are precisely proper k-colorings. Similarly,
a:b-colorings are precisely homomorphisms to the Kneser graph K(a, b). The vertex set of this
graph consists of all b-element subsets of {1, . . . , a} and two sets are adjacent if and only if they
are disjoint.

Some famous graphs are Kneser graphs. For exampleKk is preciselyK(k, 1) and the Petersen
graph is K(5, 2). In general, Kneser graphs of the form K(2k + 1, k) are called odd graphs and
they received some attention due to their interesting structure [4,11] and possible applications [3].
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Intuitively, if a graph is sparse, then it admits a proper coloring with few colors. This
observation can be formalized as follows. For a graph G, its maximum average degree mad(G)
is defined as the maximum average degree over all subgraphs of G. It is easy to show that if
mad(G) < k, then G can be properly colored with k colors (this was probably first observed by
Szekeres and Wilf [16]).

Chen and Raspaud [5] studied the analogue of this result in the world of (2k+ 1):k-coloring
(i.e., homomorphisms to odd graphs K(2k + 1, k)). One can observe that here imposing a
bound on the maximum average degree is not sufficient. Indeed, it is known that if G admits a
homomorphism to H, then odd-girth(G) ≥ odd-girth(H) [8], where odd-girth(G) is the length
of a shortest odd cycle in G. (For completeness, we define odd-girth(G) :=∞ if G is bipartite.)
As it is known that odd-girth(K(2k+1, k)) = 2k+1 [12], every graph G with a homomorphism
to K(2k+1, k) must necessarily satisfy odd-girth(G) ≥ 2k+1. Chen and Raspaud conjectured
that adding this assumption is sufficient to obtain a homomorphism to K(2k + 1, k).

Chen-Raspaud Conjecture ( [5]). Let k ≥ 2 and let G be a graph with odd-girth(G) ≥ 2k+1
and mad(G) < 2k+1

k . Then G admits a homomorphism to K(2k + 1, k).

It is known that, if true, this conjecture is best possible. Indeed, for every k ≥ 2 there are
graphs G with odd-girth(G) ≥ 2k+ 1 and mad(G) = 2k+1

k which do not have a homomorphism
to K(2k + 1, k) [9].

Chen and Raspaud [5] proved the conjecture for k = 2 and all other cases remain wide open.
In this paper we confirm the Chen-Raspaud conjecture for k = 3.

Theorem 1. Let G be a graph with odd-girth(G) ≥ 7 and mad(G) < 7
3 . Then G admits a

homomorphism to K(7, 3).

Our proof uses the discharging method. For contradiction, we assume that Theorem 1
does not hold and consider a minimal counterexample G. First, in Section 3.1, we analyze
the structure of G and show that certain substructures cannot appear there, as otherwise we
would find a smaller counterexample. Then, in Section 3.2, we proceed to the discharging phase.
Initially, each vertex of G receives a charge equal to its degree. Then we redistribute charges
over vertices; in this phase the total sum of charges remains the same. Then we analyze the final
charges. We show that since certain structures do not appear in G, every vertex has final charge
at least 7

3 . However, this is a contradiction with the assumption on mad(G). Consequently, a
counterexample to Theorem 1 cannot exist.

Some claims, marked with (3), required tedious case analysis. We wrote a simple Python
program that verifies these claims. The code is available on the third author’s website [10].

2 Notation and preliminaries

All graphs considered in this paper are simple and finite. For a graph G, we use V (G), E(G) to
denote its vertex and edge set, respectively.

A walk in a graph G is a sequence v0, v1, . . . , vk of (not-necessarily distinct) vertices in which
consecutive vertices are adjacent. The length of the walk is k, i.e., the number of vertices minus
1. A u-v-walk is a walk whose first vertex is u and the last vertex is v.

A walk of length at least 2, where (i) all vertices are mutually distinct, with possible exception
that the first and the last vertex are the same, and (ii) all internal vertices are of degree 2 are
the endvertices are of degree other than 2 is called a thread. In particular, an edge joining two
vertices of degree other than 2 is a thread of length 1 (with no internal vertices). A thread in
which the first and the last vertex are the same is called pinched. If u and v and the endvertices
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of a thread, we say that they are relatives (or related). For a vertex v of degree at least 3, by
star(v) we denote the set consisting of v and all internal vertices of the threads containing v.

Let v be a vertex of degree k ≥ 3 that does not belong to any pinched thread. Clearly it
belongs to k threads. If the lengths of these threads are a1 ≤ a2 ≤ . . . ≤ ak, respectively, then
we say that v is an (a1, a2, ..., ak)-vertex. Sometimes we also allow that ai is an integer decorated
with superscript ‘+’, which indicates that the particular thread is of length at least ai.

The average degree ad(G) of a given graph G is defined as ad(G) = 2|E(G)|
|V (G)| . Recall that the

maximum average degree mad(G) of G is max
{

2|E(H)|
|V (H)| | H ⊆ G

}
.

In this paper we are interested in the Kneser graph K(7, 3). We use the convention that
V (K(7, 3)) =

(
[7]
3

)
, i.e., it consists of 3-element subsets of {0, 1, . . . , 6}. These subsets are called

colors and we call a homomorphism to K(7, 3) a K(7, 3)-coloring.
Consider a homomorphism f : G→ K(7, 3) and let v0, v1, . . . , vi be a walk in G. We observe

that f(v0), f(v1), . . . , f(vi) is a walk inK(7, 3). Thus, if for some y ∈
(
[7]
3

)
the graphK(7, 3) does

not have an f(v0)-y walk of length i, certainly we have f(vi) 6= y. This justifies the following
definitions (where A stands for allowed and F stands for forbidden).

Definition 2. For x ∈
(
[7]
3

)
and i ∈ N+ we define sets:

Ai(x) = {y ∈
(
[7]

3

)
| there exists an x-y-walk of length i in K(7, 3)},

Fi(x) =

(
[7]

3

)
\Ai(v).

The following observation is immediate, see Table 1 and recall that K(7, 3) is vertex-
transitive.

Observation 3. For every x ∈
(
[7]
3

)
we have:

|A1(x)| = 4 |F1(x)| = 31

|A2(x)| = 13 |F2(x)| = 22

|A3(x)| = 22 |F3(x)| = 13

|A4(x)| = 31 |F4(x)| = 4

|A5(x)| = 34 |F5(x)| = 1

|Ai(x)| = 35 |Fi(x)| = 0 for every i ≥ 6.

Let us conclude this section with a useful lemma, see Figure 1 for the illustration.

Lemma 4. Let G be a graph and let v be an (a1, a2, a3)-vertex that does not belong to any
pinched thread, denote the relatives of v by v1, v2, v3. Let G′ be obtained from G by removing
star(v), and adding a new thread of length a1 + a2 with endvertices v1 and v2, and a new thread
of length a1 + a3 with endvertices v1 and v3. If mad(G) < 7

3 , then mad(G′) < 7
3 .

Proof. For contradiction, suppose that mad(G′) ≥ 7
3 . Let F ′ be a subgraph of G′ with the

largest average degree, and denote m := |E(F ′)| and n := |V (F ′)|. Thus we have

2m

n
= ad(F ′) = mad(G′) ≥ 7

3
.

Let us start with a technical claim.

Claim 4.1. Let q ≥ 1 and F be a graph with n−q vertices and m−q edges. Then ad(F ) > ad(F ′).
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i Ai({0, 1, 2})
1 {3, 4, 5}, {3, 4, 6}, {3, 5, 6}, {4, 5, 6}
2 {0, 1, 4}, {0, 2, 4}, {1, 2, 6}, {0, 1, 3}, {1, 2, 3}, {0, 2, 3}, {0, 1, 6}, {0, 2, 6},

{0, 1, 5}, {1, 2, 5}, {0, 2, 5}, {0, 1, 2}, {1, 2, 4}
3 {3, 5, 6}, {0, 3, 6}, {4, 5, 6}, {1, 3, 6}, {1, 4, 5}, {2, 4, 5}, {2, 3, 6}, {0, 5, 6},

{1, 5, 6}, {0, 3, 5}, {2, 5, 6}, {3, 4, 6}, {1, 3, 5}, {2, 3, 5}, {0, 4, 6}, {0, 3, 4},
{1, 4, 6}, {1, 3, 4}, {3, 4, 5}, {2, 3, 4}, {2, 4, 6}, {0, 4, 5}

4 {0, 1, 3}, {0, 1, 6}, {0, 3, 6}, {1, 2, 5}, {1, 3, 6}, {1, 4, 5}, {2, 4, 5}, {0, 2, 4},
{2, 3, 6}, {0, 5, 6}, {1, 5, 6}, {0, 1, 5}, {0, 1, 2}, {0, 3, 5}, {1, 2, 4}, {2, 5, 6},
{1, 3, 5}, {0, 2, 3}, {2, 3, 5}, {0, 2, 6}, {0, 4, 6}, {0, 1, 4}, {0, 3, 4}, {1, 2, 6},
{1, 2, 3}, {1, 4, 6}, {1, 3, 4}, {2, 3, 4}, {0, 2, 5}, {2, 4, 6}, {0, 4, 5}

5 {3, 5, 6}, {0, 1, 3}, {0, 1, 6}, {0, 3, 6}, {4, 5, 6}, {1, 2, 5}, {1, 3, 6}, {1, 4, 5},
{2, 4, 5}, {0, 2, 4}, {2, 3, 6}, {0, 5, 6}, {1, 5, 6}, {0, 1, 5}, {0, 3, 5}, {1, 2, 4},
{2, 5, 6}, {3, 4, 6}, {1, 3, 5}, {0, 2, 3}, {2, 3, 5}, {0, 2, 6}, {0, 4, 6}, {0, 1, 4},
{0, 3, 4}, {1, 2, 6}, {1, 2, 3}, {1, 4, 6}, {1, 3, 4}, {3, 4, 5}, {2, 3, 4}, {0, 2, 5},
{2, 4, 6}, {0, 4, 5}

i ≥ 6 {3, 5, 6}, {0, 1, 3}, {0, 1, 6}, {0, 3, 6}, {4, 5, 6}, {1, 2, 5}, {1, 3, 6}, {1, 4, 5},
{2, 4, 5}, {0, 2, 4}, {2, 3, 6}, {0, 5, 6}, {1, 5, 6}, {0, 1, 5}, {0, 1, 2}, {0, 3, 5},
{1, 2, 4}, {2, 5, 6}, {3, 4, 6}, {1, 3, 5}, {0, 2, 3}, {2, 3, 5}, {0, 2, 6}, {0, 4, 6},
{0, 1, 4}, {0, 3, 4}, {1, 2, 6}, {1, 2, 3}, {1, 4, 6}, {1, 3, 4}, {3, 4, 5}, {2, 3, 4},
{0, 2, 5}, {2, 4, 6}, {0, 4, 5}

Table 1: The sets Ai({0, 1, 2}).

Proof of Claim. For contradiction, suppose the opposite.

ad(F ′) ≥ ad(F )

2m

n
≥ 2(m− q)

n− q
n ≥ m.

Consequetly, we obtain

2 ≥ 2m

n
= ad(F ′) ≥ 7

3
,

a contradiction. y

Claim 4.1 immediately implies the following.

Claim 4.2. F ′ has no vertices of degree 1.

Proof of Claim. Suppose the opposite, and let u be a vertex of degree 1 in F ′. Then the graph
F := F ′−u has n−1 vertices andm−1 edges, so ad(F ) > ad(F ′) by Claim 4.1. This contradicts
the choice of F ′. y

Claim 4.3. F ′ contains at least one internal vertex of each of the two new threads v1.

Proof of Claim. Otherwise F ′ is isomorphic to a subgraph ofG and thereforemad(G) ≥ ad(F ′) ≥
7
3 , a contradiction. y

Given Claim 4.2 and Claim 4.3 we obtain that F ′ contains either exactly one of the two
new threads or both of them. In the former case, G contains a subgraph isomorphic to F ′, a
contradiction. Therefore, F ′ must contain all newly added vertices, along with v1, v2, v3.

Let F be the subgraph of G obtained from F ′ by removing all newly added vertices, and
restoring v along with its three threads (i.e., star(v) with all incident edges). We observe that

|E(F )| = m− a1
|V (F )| = n− a1.
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v1 = v2 = v3

a1 + a2 a1 + a3

Figure 1: The operation in Lemma 4. Vertices v1, v2, v3 do not need to be distinct and they may
have neighbors not depicted in the figure.

By Claim 4.1 we conclude that mad(G) ≥ ad(F ) > ad(F ′) = mad(G′), a contradiction. Conse-
quently, we conclude that mad(G′) < 7

3 .

3 Proof of Theorem 1

For contradiction suppose that Theorem 1 does not hold, i.e., there are graphs with maximum
average degree smaller that 7

3 and odd girth at least 7, which do not admit a homomorphism
to K(7, 3). Among all such counterexamples let G be one with the fewest vertices of degree at
least 3. If there is more than one such graph, we choose an arbitrary one with the minimum
number of edges.

Note that every subgraph G′ of G satisfies mad(G′) ≤ mad(G) < 7
3 and odd-girth(G′) ≥

odd-girth(G) ≥ 7, and thus, by the choice of G, admits a homomorphism to K(7, 3).

3.1 Forbidden configurations

In this section we present a series of technical claims in which we analyze the structure of the
graph G.

Claim 1.4. G has no vertices of degree less than 2.

Proof of Claim. For contradiction, suppose that G contains a vertex v of degree at most 1. As
K1 is trivially K(7, 3)-colorable, we may assume that G \ {v} has at least one vertex. Let u be
the unique neighbor of v (if deg v = 1) or an arbitrary vertex of G \ {v}.

By the minimality of G, there is a homomorphism ϕ from G \ {v} to K(7, 3). We can easily
extend it to a homomorphism from G to K(7, 3) by mapping v to an arbitrary vertex from
A1(ϕ(u)), see Observation 3. This contradicts the choice of G. y

Claim 1.5. G has no threads of length at least 6.
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Proof of Claim. For contradiction, suppose that G has a thread of length ` ≥ 6. Let u and v be
the endvertices of such a thread, and let B denote the set of its internal vertices.

By the minimality of G, there is a homomorphism ϕ from G\B to K(7, 3). By Observation 3
we have ϕ(v) ∈ A`(ϕ(u)) (as (F`(ϕ(u)) = ∅). Consequently, there is a ϕ(u)-ϕ(v)-walk in K(7, 3)
of length `. We can extend ϕ by mapping consecutive vertices of the thread to the consecutive
vertices of this walk, obtaining a homomorphism from G to K(7, 3), a contradiction. y

Claim 1.6. G has no pinched threads.

Proof of Claim. For contradiction, suppose that G has a pinched thread of length ` and let v be
its unique vertex of degree at least 3. Clearly ` ≥ 3. Since odd-girth(G) > 5, we observe that
` /∈ {3, 5}. By Claim 1.5 we conclude that ` < 6.

Thus ` = 4, denote its consecutive vertices by v, u, w, z, v. By the minimality of G there exists
a homomorphism ϕ from G \ {u,w, z} to K(7, 3). Let y be an arbitrary element of A1(ϕ(v)),
it exists as A1(ϕ(v)) 6= ∅. We can extend ϕ by mapping u and z to y, and mapping w to ϕ(v).
This way we obtain a homomorphism from G to K(7, 3), a contradiction. y

In the remainder of this section we analyze possible types of vertices of degree at least 3 that
might appear in G. In particular, we show that certain vertices cannot appear. We group these
forbidden vertices into three groups.

Vertices excluded by the colorings of their relatives. First, we show that in some cases,
for any mapping of the relatives of a vertex v, we can extend this mapping to v and all threads
containing v.

Claim 1.7. Let k ≥ 3 and let a1 ≤ . . . ≤ ak be positive integers, such that for x ∈
(
[7]
3

)
we have∑k

i=1 |Fai(x)| < 35. Then G does not contain any (a1, a2, ..., ak)-vertex.

Proof of Claim. For contradiction suppose that G contains an (a1, a2, ..., ak)-vertex v. Let
v1, v2, . . . , vk be the relatives of v, such that the v-vi-thread has length ai (here we do not
assume that vi’s are pairwise distinct). By the minimality of G, there exists a homomorphism
ϕ from G \ star(v) to K(7, 3).

Since for all x, y ∈
(
[7]
3

)
and all i it holds that |Fi(x)| = |Fi(y)|, we have

∑k
i=1 |Fai(ϕ(vi))| <

35 = |
(
[7]
3

)
|. Consequently,

⋂k
i=1Aai(ϕ(vi)) =

(
[7]
3

)
\
⋃k

i=1 Fai(ϕ(vi)) 6= ∅. Pick some x ∈⋂k
i=1Aai(ϕ(vi)). We can extend ϕ to a homomorphism from G to K(7, 3) by mapping v to x

and the internal vertices of each v-vi-thread to the appropriate vertices of the x-ϕ(vi) walk of
length ai in K(7, 3). This contradicts the choice of G. y

Note that if for all i it holds that ai ≤ a′i, then
∑k

i=1 |Fa′i
(x)| ≤

∑k
i=1 |Fai(x)|. Thus

comparing Claim 1.7 with Observation 3 we immediately obtain the following.

Claim 1.8. The vertices of the following types do not appear in G:

• (1, 5, 5),

• (2, 4+, 4+),

• (3+, 3+, 4+),

• (1, 5, 5, 5),

• (2, 4+, 4+, 4+),

• (3, 3, 4+, 4+),

• (2, 4+, 4+, 5, 5),

• (3+, 3+, 4+, 5, 5),

• (4+, 5, 5, 5, 5, 5).
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Vertices excluded by the colorings of subsets of their relatives. Note that the assump-
tions of Claim 1.7 were too strong for our application. First, we do not use the fact that some
sets Fai(xi) may overlap and thus the sum of their union can be smaller than the sum of sizes.
Second, we do not really need to know that any mapping of relatives of v can be extended to
include star(v), but we only care about mappings that can appear in the homomorphism from
the rest of the graph to K(7, 3). Indeed, for some a1, . . . , ak we are able to show that either
some mapping of the relatives of an (a1, . . . , ak)-vertex v does not have to be considered, or we
have a smaller counterexample, which contradicts the choice of G.

The intuition behind the following claim is that longer threads enforce fewer restrictions on
the colors of their endvertices. Thus possibly after removing the longest thread containing v and
finding a homomorphism from the rest of the graph to K(7, 3), we can extend this mapping to
the mapping of G.

Claim 1.9. Let k ≥ 3 and let a1 ≤ . . . ≤ ak be positive integers, such that the following holds:
for all x1, . . . , xk ∈

(
[7]
3

)
we have

⋂k−1
i=1 Aai(xi) 6= ∅ if and only if

⋂k
i=1Aai(xi) 6= ∅. Then G does

not contain any (a1, . . . , ak)-vertex.

Proof of Claim. For contradiction, suppose that G contains an (a1, . . . , ak)-vertex v. Let
v1, . . . , vk be the relatives of v, such that the v-vi-thread is of length ai.

Let G′ be obtained from G by deleting all internal vertices and edges of the v-vk-thread, i.e.,
the one of length ak. By the minimality of G, there is a homomorphism ϕ′ from G′ to K(7, 3).
In particular, ϕ′(v) ∈

⋂k−1
i=1 Aai(ϕ

′(vi)). Thus, by our assumption, there is x ∈
⋂k

i=1Aai(ϕ
′(vi))

(note that we do not claim that x = ϕ′(v)).
Let us define ϕ : V (G) →

(
[7]
3

)
as follows. For every vertex u ∈ V (G) \ star(v) we define

ϕ(u) = ϕ′(u). Furthermore, we set ϕ(v) = x. Finally, we map the internal vertices of each v-vi-
thread to the appropriate vertices of the x-ϕ(vi) walk of length ai inK(7, 3). It is straightforward
to verify that ϕ is a homomorphism from G to K(7, 3). This contradicts the choice of G. y

Using computer search we verify that some sequences satisfy the assumptions of Claim 1.9.

Claim 1.10 (3). The vertices of the following types do not appear in G:

• (1, 2, 5),

• (1, 3, 5),

• (1, 4, 5),

• (2, 2, 4),

• (2, 2, 5),

• (2, 3, 4),

• (2, 3, 5),

• (3, 3, 3),

• (1, 4, 5, 5),

• (2, 3, 5, 5).

Vertices of types (1, 3, 4), (1, 4, 4), and (2, 3, 3). Finally let us focus on vertices of types
(1, 3, 4), (1, 4, 4), and (2, 3, 3); note that they do not satisfy Claim 1.9. The way we deal with
them is very similar to Claim 1.9: again we show that if such a vertex exists in G, then G is not
a minimal counterexample. However, this time the smaller counterexample we obtain is not a
subgraph of G. In particular, this is the only place where we use the fact that G was assumed
to minimize the number of vertices of degree at least 3.

Claim 1.11. Let a1 ≤ a2 ≤ a3 be positive integers. Suppose that for every x1, x2, x3 ∈
(
[7]
3

)
such

that x1 ∈ Aa1+a2(x2)∩Aa1+a3(x3) it holds that
⋂3

i=1Aai(xi) 6= ∅. Then G does not contain any
(a1, a2, a3)-vertex.

Proof of Claim. For contradiction, suppose that G contains an (a1, a2, a3)-vertex v. Let v1, v2, v3
be the relatives of v, such that the v-vi-thread is of length ai. Note that v1, v2, v3 are not
necessarily distinct.
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Let G′ be obtained from G as in Lemma 4, i.e., by removing star(v), and adding a new
thread of length a1 + a2 with endvertices v1 and v2, and a new thread of length a1 + a3
with endvertices v1 and v3. By Lemma 4 we know that mad(G′) < 7

3 . Furthermore, clearly
odd-girth(G′) ≥ odd-girth(G) > 5. Finally, G′ has fewer vertices of degree at least 3 than G.
Thus, by the minimality of G, there is a homomorphism ϕ′ from G′ to K(7, 3). Note that this
means that ϕ(v1) ∈ Aa1+a2(ϕ(v2))∩Aa1+a3(ϕ(v3)). By the assumption of the claim there exists
x ∈

⋂3
i=1Aai(ϕ(vi)). Thus for every i ∈ {1, 2, 3} there is an x-ϕ(vi)-walk in K(7, 3) of length

ai. Now we can define a homomorphism ϕ from G to K(7, 3) in a way analogous to the proof
of Claim 1.9. This contradicts the choice of G. y

Again, using computer search we verify that sequences (1, 3, 4), (1, 4, 4), and (2, 3, 3) satisfy
the assumptions of Claim 1.11.

Claim 1.12 (3). The vertices of the following types do not appear in G: (1, 3, 4), (1, 4, 4),
(2, 3, 3).

Combining Claim 1.5, Claim 1.8, Claim 1.10, and Claim 1.12, we obtain that the only types
of vertices of degree at least 3 that might possibly appear in G are as listed in Table 2.

3.2 Discharging

Initially, each vertex v receives a charge w(v) equal to its degree deg v. We apply the following
discharging rule: each vertex v of degree 2 receives a charge 1

6 from the endvertices of the unique
thread containing v; recall that these vertices are distinct by Claim 1.6. Note that during this
process the total charge assigned to the graph remains the same. We will show that after the
discharging each vertex has charge w∗(v) ≥ 7

3 , which will lead to a contradiction as follows:

7

3
≤
∑

v∈V (G)w
∗(v)

|V (G)|
=

∑
v∈V (G)w(v)

|V (G)|
=

∑
v∈V (G) deg v

|V (G)|
=

2|E(G)|
|V (G)|

≤ mad(G) <
7

3
. (1)

So the only thing left is to analyze the final charges w∗(·). Let v be an arbitrary vertex of
G. The analysis is split into cases, depending on the degree of v. Recall that by Claim 1.4 we
always have deg v ≥ 2.
Case deg v = 2. In this case v loses no charge and receives total charge 2 · 16 , thus we have

w∗(v) = w(v) + 2 · 1
6
= deg v +

1

3
= 2 +

1

3
=

7

3
.

All other types of vertices only lose charge. From now on, assume that deg v ≥ 3. For
i ∈ {1, . . . , 5}, let di be the number of threads of length i containing v. By Claim 1.5 and

degree possible types of vertices
3 (1, 1, 1+), (1, 2, 2), (1, 2, 3), (1, 2, 4), (1, 3, 3), (2, 2, 2), (2, 2, 3)
4 all except (1, 4+, 5, 5), (2, 3, 5, 5), (2, 4+, 4+, 4+), (3+, 3+, 4+, 4+)
5 all except (2, 4+, 4+, 5, 5), (3+, 3+, 4+, 5, 5)
6 all except (4+, 5, 5, 5, 5, 5)
≥ 7 all

Table 2: Possible types of vertices v in G. We only list vertices whose threads are all of length
at most 5, as by Claim 1.5 there are no threads of length at least 6.

8



Claim 1.6 we have deg v =
∑5

i=1 di and so d5 = deg v −
∑4

i=1 di. The final charge at v is

w∗(v) =w(v)− 1

6
·

5∑
i=1

di(i− 1) = deg v − 1

6
(d2 + 2d3 + 3d4 + 4d5)

=deg v − 1

6
(d2 + 2d3 + 3d4 + 4(deg v − d1 − d2 − d3 − d4))

=
1

3
deg v +

1

6
(4d1 + 3d2 + 2d3 + d4)

(2)

Case deg v = 3. By Claims 1.8, 1.10, and 1.12 the only possible vertices of degree 3 are of types:
(1, 1, a), (1, 2, b), (1, 3, 3), (2, 2, c) for a ∈ {1, 2, 3, 4, 5}, b ∈ {2, 3, 4}, c ∈ {2, 3}; see also Table 2.
A direct check shows that this implies that 4d1 + 3d2 + 2d3 + d4 ≥ 8. By (2) this gives us

w∗(v) =
1

3
deg v +

1

6
(4d1 + 3d2 + 2d3 + d4) ≥

3

3
+

4

3
=

7

3
.

Case deg v = 4. By Claim 1.8 and Claim 1.10 we know that v is neither a (1, 4+, 5, 5)-, a
(2, 3, 5, 5)-, a (2, 4+, 4+, 4+)-, nor a (3+, 3+, 4+, 4+)-vertex. We claim that this implies that

4d1 + 3d2 + 2d3 + d4 ≥ 6. (3)

Consider the cases. First suppose that d1 ≥ 1. Since v is not a (1, 4+, 5, 5)-vertex, one of the
following cases must hold:

d1 ≥ 2, or d1 = 1 and (d2 + d3) ≥ 1, or d1 = 1 and d4 ≥ 2.

We observe that in each of them (3) holds. So from now on we assume that d1 = 0. Now suppose
that d2 ≥ 1. Since v is neither a (2, 3, 5, 5)-vertex nor a (2, 4+, 4+, 4+)-vertex, we observe that
one of the following cases must hold:

d2 ≥ 2, or d2 = 1 and d3 ≥ 2, or d2 = 1 and d3 = 1 and d4 ≥ 1.

Again, in each of them (3) holds. Now we note that if d1 = d2 = 0, then, since v is not a
(3+, 3+, 4+, 4+)-vertex, we must have d3 ≥ 3, which means that (3) holds.

Combining (2) with (3) gives us

w∗(v) =
1

3
deg v +

1

6
(4d1 + 3d2 + 2d3 + d4) ≥

4

3
+

3

3
=

7

3
.

Case deg v = 5. By Claim 1.8 we know that v is neither a (2, 4+, 4+, 5, 5)- nor a (3+, 3+, 4+, 5, 5)-
vertex. A direct check shows that this implies that 4d1 + 3d2 + 2d3 + d4 ≥ 4. By (2) this gives
us

w∗(v) =
1

3
deg v +

1

6
(4d1 + 3d2 + 2d3 + d4) ≥

5

3
+

2

3
=

7

3
.

Case deg v = 6. By Claim 1.8 we know that v is not a (4+, 5, 5, 5, 5, 5)-vertex, i.e., either d5 ≤ 4
or d5 = 5 and d4 = 0. Consequently, we have 4d1 + 3d2 + 2d3 + d4 ≥ 2. By (2) this gives us

w∗(v) =
1

3
deg v +

1

6
(4d1 + 3d2 + 2d3 + d4) ≥

6

3
+

1

3
=

7

3
.

Case deg v ≥ 7. By (2) we have

w∗(v) =
1

3
deg v +

1

6
(4d1 + 3d2 + 2d3 + d4) ≥

1

3
deg v ≥ 7

3
.

Summing up, by (1) we obtain a contradiction. This means that a hypothetical counterex-
ample to Theorem 1 cannot exist. This completes the proof.
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4 Conclusion

Our Theorem 1, combined with the theorem of Chen and Raspaud [5], implies that the Chen-
Raspaud conjecture holds for k ∈ {2, 3}. An obvious direction of further research is to consider
other values of k.

While our approach could be possibly extended (with additional work and many cases to
check) for some small values, it does not seem to be the right way to attack the general problem.
In order to stimulate the research, we propose the following weaker variant of the problem, where
we ask whether the assumptions for the case k + 1 are sufficient to show the statement of the
conjecture for k.

Conjecture. Let k ≥ 4 and let G be a graph with odd-girth(G) ≥ 2k+3 and mad(G) < 2k+3
k+1 .

Then G admits a homomorphism to K(2k + 1, k).
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