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Abstract

Planning in large state spaces inevitably needs to balance depth and breadth of the
search. It has a crucial impact on their performance and most planners manage this
interplay implicitly. We present a novel method Shoot Tree Search (STS), which
makes it possible to control this trade-off more explicitly. Our algorithm can be
understood as an interpolation between two celebrated search mechanisms: MCTS
and random shooting. It also lets the user control the bias-variance trade-off, akin
to T'D(n), but in the tree search context.

In experiments on challenging domains, we show that STS can get the best of both
worlds consistently achieving higher scores.

1 Introduction

Classically, reinforcement learning is split into model-free and model-based methods. Each of these
approaches has its strengths and weaknesses: the former often achieves state-of-the-art performance,
while the latter holds the promise of better sample efficiency and adaptability to new situations.
Interestingly, in both paradigms, there exists a non-trivial interplay between structure and randomness.
In the model-free approach, Temporal Difference (TD) prediction leverages the structure of function
approximators, while Monte Carlo (MC) prediction relies on random rollouts.

Model-based methods often employ planning, which counterfactually evaluates future scenarios.
The design of a planner can lean either towards randomness, with random rollouts used for state
evaluation (e.g. random shooting), or towards structure, where a data-structure, typically a tree or
a graph, forms a backbone of the search (e.g. Monte Carlo Tree Search). Planning is a powerful
concept and an important policy improvement mechanism. However, in many interesting problems,
the search space is prohibitively large and cannot be exhaustively explored. Consequently, it is critical
to balance the depth and breadth of the search in order to stay within a feasible computational budget.
This dilemma is ubiquitous, though often not explicit.

The aim of our work is twofold. First, we present a novel method: Shoot Tree Search (STS). The
development of the algorithm was motivated by the aforementioned observations concerning structure,
randomness, and dilemma between breadth and depth of the search. It lets the user control the depth
and breadth of the search more explicitly and can be viewed as a bias-variance control method.
STS itself can be understood as an interpolation between MCTS and random shooting. We show
experimentally that, on a diverse set of environments, STS can get the best of both worlds. We also
provide some toy environments, to get an insight into why STS can be expected to perform well. The
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critical element of STS, multi-step expansion, can be easily implemented on top of many algorithms
from the MCTS family. As such, it can be viewed as one of the extensions in the MCTS toolbox.

The second aim of the paper is to analyze various improvements to planning algorithms and test
them experimentally. This, we believe, is of interest in its own right. The testing was performed on
the Sokoban and Google Research Football environments. Sokoban is a challenging combinatorial
puzzle proposed to be a testbed for planning methods by Racaniere et al. [26]. Google Research
Football is, an advanced, physics-based simulator of football, introduced recently in Kurach et al.
[L9]. It has been designed to offer a diverse set of challenges for testing RL algorithms.

The rest of the paper is organized as follows. In the next section, we discuss the background and
related works. Further, we present details of our method. Sectionfd]is devoted to experimental results.

2 Background and related work

The introduction to reinforcement learning can be found in Sutton and Barto [33]]. In contemporary
research, the line between model-free and model-based methods is often blurred. An early example
is Guo et al. [15]], where MCTS plays the role of an ‘expert’ in DAgger (Ross and Bagnell [27]), a
policy learning algorithm. In the series of papers Silver et al. [31}132], culminating in AlphaZero, the
authors developed a system combining elements of model-based and model-free methods that master
the game of Go (and others). Similar ideas were also studied in Anthony et al. [3]. In Mitos et al.
[21], planning and model-free learning were brought together to solve combinatorial environments.
Schrittwieser [29] successfully integrated model learning with planning in the latent space. A recent
paper, Hamrick et al. [16]], suggests further integration model-free and model-based methods via
utilizing internal planner information to calculate more accurate estimates of the ()-function.

Searching and planning algorithms are deeply rooted in classical computer science and classical
Al see e.g. Cormen et al. [7] and Russell and Norvig [28]. Traditional heuristic algorithms such
as A* (Hart et al. [17]]) or GBFS (Doran and Michie [10]) are widely used. The Monte Carlo Tree
Search algorithm, which combines heuristic search with learning, led to breakthroughs in the field,
see Browne et al. [4] for an extensive survey. Similarly, Orseau et al. [24] bases on the classical BFS
to build a heuristic search mechanism with theoretical guarantees. In Agostinelli et al. [2] the authors
utilise the value-function to improve upon the A* algorithm and solve Rubik’s cube.

Monte Carlo rollouts are known to be a useful way of approximating the value of a state-action
pair [1]. Approaches in which the actions of a rollout are uniformly sampled are often called flat
Monte Carlo. Impressively, Flat Monte Carlo achieved the world champion level in Bridge [[12] and
Scrabble [30].

Moreover, Monte Carlo rollouts are often used as a part of model predictive control, see Camacho
and Alba [5]. As suggested by Chua et al. [6], Nagabandi et al. [22], they offer several advantages,
including simplicity, ease of parallelization. At the same time, they reach competitive results to other
(more complicated) methods on many important tasks.

Some works aim to compose a planning module into neural network architectures, see e.g., Oh
et al. [23]], Farquhar et al. [[11]]. Kaiser et al. [18]], recent work on model-based Atari, has shown the
possibility of sample efficient reinforcement learning with an explicit visual model. Gu et al. [13]
uses model-based methods at the initial phase of training and model-free methods during ‘fine-tuning’.
Furthermore, there is a body of work that attempts to learn a planning module, see Pascanu et al.
[25]], Racaniere et al. [26], Guez et al. [14]].

3 Methods

A Generic Planner, presented in Algorithm [I] gives a unified view on all methods analyzed in the
paper: Random Shooting, MCTS and, our novel approach, STS. By a suitable choice of functions
SELECT, EXPAND, UPDATE and CHOOSE_ACTION, we can recover each of these methods (see
description below).

Typically, a planner is a part of a training process, see Algorithm 2] In a positive feedback loop,
the planner improves the quality of data used for training of the value function Vj and a policy 7.



Conversely, the policy and value function might further improve planning. Implementation details of
Algorithm 2] are provided in Appendix

Below we give a detailed description of the planning methods considered in the papers.

Algorithm 1 Generic Planner, defines required Algorithm 2 Training loop, additionally requires

constants, variables and objects used in further environment env
algorithms # Initialize parameters of Vjy,my
Require: C planning passes # Initialize replay_buf fer
H planning horizon repeat
y discount factor episode <— COLLECT_EPISODE
Use: N(s,a) visit count replay_buf fer.ADD(episode)
W (s,a) total action-value B < replay_buf fer.BATCH

Q(s,a) mean action-value
Vy value function
T policy

model  environment simulator

# Initialize N,W,Q to zero
function PLANNER(state)
for1...C'do
path, leaf < SELECT(state)

rollout, leaf < EXPAND(leaf)

UPDATE(path, rollout, leaf)
return CHOOSE_ACTION(state)

Update Vg, my using B and SGD

until convergence
function COLLECT_EPISODE

§ ¢ env.RESET
episode + ]
repeat
a < PLANNER(s)
s',r < env.STEP(a)
episode.APPEND((s,a,r,s’))
s+ ¢
until episode is done
return CALCULATE_TARGET(episode)

Random Shooting In this section we present two instantiations of Algorithm [T} which use Monte
Carlo rollouts to evaluate state-actions pairs: Random Shooting and Bandit Shooting, see Algorithm

[3land Algorithm 4} respectively.

Algorithm 3 Random Shooting Planner

function SELECT(state)
S < state
an~ 7T¢(87 )
s', 7 < model .STEP(s, a)
return (s, a,r), s’

function EXPAND(leaf)
Sg ¢ leaf
rollout <+ (s, ak,rk+1)kH:7()1
where Sky1, 7k+1 < model .STEP(sg, ax)
and a ~ 7 (Sk, )
return rollout, sy

function UPDATE(path, rollout, leaf)

G S A+ 4 Vg (Leat)
where 7, € rollout

s,a,r < path

quality <— 7+ % G

W (s,a) < W(s,a) + quality
N(s,a) + N(s,a)+1

Wi(s,a)
Q(s,a) < F(oay

function CHOOSE_ACTION(S)

return argmax, Q(s, a)

The simplest version of Algorithm 3] the so-called flat Monte Carlo [12,30]], does not use a policy
7 (instead rollouts are uniformly sampled) nor a value function Vg (just truncated sum of rewards
G= ZkHzl +*~1r4). Bandit Shooting, presented in Algorithm@ is a Multi-armed Bandits variant of
Random Shooting and uses PUCT [32] rule to improve exploration and thus achieve more reliable
evaluations of actions.

Algorithm 4 Bandit Shooting Planner, additionally requires exploration weight ¢,y

function SELECT(state)
S < state

U(s,a) < /> N(s,a’)/(1+ N(s,a))

a < argmax,(Q(s, a) + cpuctms (s, a)U(s, a))

s', 7 < model .STEP(s, a)
return (s, a,r), s’

function EXPAND(leaf)
The same as in Algorithm [3].

function UPDATE(path, rollout)
The same as in Algorithm [3].
function CHOOSE_ACTION(s)
return argmax, N (s, a)




MCTS Monte Carlo Tree Search (MCTYS) is a family of methods, that iteratively and explicitly
build a search tree, see Browne et al. [4]]. It follows the schema of Algorithm SELECT traverses
down the tree, according to an in-tree policy, until a leaf is encountered. EXPAND grows the tree by
adding the leaf’s children. The values of these new nodes are estimated, usually with the help of a
rollout policy in a similar vein as Random Shooting Planner, or via the value network Vy (see Silver
et al. [31]]). Finally, UPDATE backpropagates these values from the leaf up the tree. A basic variant of
MCTS is presented in Algorithm[5] More details are provided in Appendix [A.5]

Algorithm 5 MCTS, additionally uses tree structure tree.

function SELECT(state)

s < state

path « ||

while s belongs to tree do
a < CHOOSE_ACTION(S)
s’ 1« tree[s][a]
path.APPEND((s,a,r))
s s

return path, s

function EXPAND(leaf)

fora € Ado
s', 7 < model .STEP(Leaf, a)
tree[leaf][a] < (s',7)
W (leaf,a) <7+ v* Vg(s')
N(leaf,a) « 1
Q(leaf,a) + W(leaf,a)

return [|, leaf

function UPDATE(path, rollout, leaf)
quality < Vy(leaf)
for s,a,r < reversed(path) do
quality < 7 + 7y * quality
W (s,a) + W(s,a) + quality
N(s,a) + N(s,a)+1

W(s,a)
Q(S: a) <~ N(s,a)

function CHOOSE_ACTION(S)
return argmax, Q(s, a)

Shoot Tree Search Shoot Tree Search (STS) extends MCTS in a novel way, by redesigning the
expansion phase, see Algorithm[6] Given a leaf and a planning horizon, H, the method expands H
consecutive vertices starting from the leaf. Each new node is chosen according to the in-tree policy

and is added to the search tree.

Algorithm 6 Shoot Tree Search

function EXPAND(1leaf)

s < leaf

rollout < []

for1...H do
MCTS.EXPAND(S)
a < CHOOSE_ACTION(s)
s’ r « tree[s][a]
rollout.APPEND((s, a,T))
s+ s

return rollout, s

function SELECT(state)

The same as in Algorithm [5].

function CHOOSE_ACTION(S)

The same as in Algorithm [5].

function UPDATE(path, rollout, leaf)
s’ ¢« leaf
c+1
quality < 0
for s,a,r < reversed(path + rollout) do
if s’ € path then
v+ 0
else
v+ Vy(s)
c—c+1
quality < c* 7+ v * (quality + v)
W(s,a) < W(s,a) + quality
N(s,a) + N(s,a)+c
Q(s,a) « J=m
s« s

STS can be viewed as a sophisticated version of Random Shooting applied to MCTS. In this
interpretation, STS interpolates between the two methods. We demonstrate empirically that the
change introduced by STS is essential to solving challenging RL domains; see Section[d] We note
that H = 1 corresponds to MCTS.

Interestingly, in some of our experiments, we identified that the tree traversal performed during
SELECT was the computational bottleneck. The cost of building the search tree is quadratic with
respect to its depth. STS allows to significantly reduce this cost since a single tree traversal adds



not one but H new nodes. To get this computational benefit we tweak UPDATE to backpropagate
all values from leaf and rollout in one pass. A more formal analysis of computational gains is
presented in Lemma[A6.1]

4 [Experiments

We tested the spectrum of algorithms presented in Section [3]on the Sokoban and Google Research
Football domains. Those tasks present numerous challenges, which evaluate various properties of
planning algorithms. In this work, we assume access to a model (which is used by the planning
algorithm). Using learned models is an exciting research topic left for further work. The training
details, a list of hyper-parameters and network architectures are presented in appendices [A.] [A.2]and

[A3|respectively.

We present two thought experiments, where we argue that STS can better handle certain errors in
value functions by using the multi-step expansion (parametrized by H; recall that H = 1 corresponds
to MCTS). The errors are inevitable during training and when using function approximators.

First, consider an MDP presented at the top of
Figure[I] It showcases the situation when the
errors are systematic: in the vicinity of the start-
ing state sq, the estimates of the value function
are biased (for simplicity set to 0 and shown as
white vertices), while the values in the area sur-
rounding terminal states are accurate (shown as
color vertices). This example is an exaggeration.
However, something similar can happen in prac-
tice, when information is propagated with 7' D-
like methods or the environment has an “easy”
region, which is hard to find. Under these cir-
cumstances, STS, given large enough H, will
be able to reach accurate values (color vertices)
within a few passes. On the contrary, MCTS

. . *—=o
would explore the whole uncertain area (white
. . . —
vertices) in a breadth-first fashion. Lo8—0
Second, consider an MDP shown in at the bot- SU. . “» e‘n. 6'. 62. s e
tom of Figurem It illustrates the case when the " ey
errors are “pseudo-random”. In this MDP all re- _;c;r *—
wards are 0 except the marked edges, where they

are —a, a > 0. The optimal path is highlighted
in green and the “decoy” paths are shown in red.
The perfect value function is 0 in every state,
however we assume that the current noisy value
estimates equal to €; on the “tail” part of the
diagram. Let py be the probability of entering
into the decoy branches. In Lemma[A.9.1] we show that p; > py for H > 2, and in fact py — 0
when H — o0 (under mild assumptions). The ratio p1 /pg, depends on the ratio of a to the noise
€. In Appendix we show that p1 /py can be as high as 3 for H = 16 and quite natural choice of
a and ¢;; we also present there the formal proof the lemma.

Figure 1: Toy environments. Full size in Appendix

Scenario C H |Srate N, N N,

4.1 Sokoban 256 1 | 952% 1224 1224 716

64 4 |965% 299 1194 830
16 16 | 95.7% 114 1822 1333
4 64 89% 62 3960 1491

Sokoban is a well-known combina- av. loops
torial puzzle, where the agent’s goal
is to push all boxes (marked as yel-

low, crossed squares) to the designed 256 1 84.5% 1497 1497 376
spots (marked as squares withared  noav.loops 32 8 | 88.4% 185 1483 409
dot in the middle), see Figure[2] Addi- 2 128 | 65.3% 36 4580 967

tionally, to the navigational challenge,

Sokoban’s difficulty is attributed to  apje 1. Comparison on evaluation of MCTS and STS. C, H are
parameters in Algorithm[T] S. rate is the ratio of solved boards,
Np, N¢t(=_Np - H), N, are the average number of passes, tree
nodes and-game states observed until the solution is found. Full
table is available in Table ]



the irreversibility of certain actions.

A typical example is pushing a box

into a corner, though there are multi-

ple less apparent cases. The environ-

ment’s complexity is formalized by the fact that, deciding whether a level of Sokoban is solvable or
not, is NP-hard, see e.g. Dor and Zwick [9]]. Due to these challenges, the game is often used to test
reinforcement learning and planning methods.

We use procedurally generated Sokoban levels, as proposed by
Racaniere et al. [26]. The agent is rewarded with 1 by putting a
box into a designated spot and additonally with 10 when all the
boxes are in place. We use Sokoban with the board of size (10, 10),
4 boxes, and the limit of 200 steps. We use an MCTS implementa-
tion with transposition tables and a loop avoidance mechanism, see
Mitos et al. [21]] and Appendix [A3]

In the first experiment, we evaluated the planning capabilities of
STS in isolation from training. To this end, we used a pre-trained
value function and varied the number of passes C' and the depth
of multi-step expansion H, such that H - C remains constant. In
Table|I|we present quantities (N}, V¢, INg), which measure planning
costs. In two presented scenarios, there is a sweet spot for the choice
of H. For this choice, the number of tree nodes, N;, which is the
most important metric, is the smallest. Interestingly, we observe an g . (yellow) are to be pushed
increase in the solved rate. This may possibly be explained by the 1, oenf (ereen) to designed spots
fact that the number of distinct visited game states, Ng, grows. This (red). The optimal solution in this
suggests that STS explores more aggressively and efficiently. level has 37 steps.

Figure 2: Example (10,10)
Sokoban board with 4 boxes.

In the second line of experiments, we analyzed the training perfor-

mance (see Algorithm [2). For MCTS we used C' = 50 passes per step, while for STS we considered
C = 10 passes with multi-step expansion H = 5. The learning curve for STS dominates the learning
curve for MCTS, which persists throughout training, see Figure[3] Since the difficulty of Sokoban
levels increases progressively, the achieved improvement is substantial, even though in absolute terms,
it may seem small.

Shooting methods perform poorly for Sokoban: we evaluated Bandit Shooting (Algorithm @), which
struggled to exceed 5% solved rate. Only when the difficulty of boards was significantly reduced,
to the board size of (6,6) with 2 boxes, this method achieved results above 90%. Our shooting
setup included applying loop avoidance improvements. This feature is highly effective in the case of
MCTS (and STS) but did not bring much improvement for shooting methods. Details are provided in

Appendix

We conclude with a conjecture that for domains with combinatorial complexity, tree methods (MCTS
or STS) significantly outperform shooting methods, and STS offers some benefits over MCTS.

e vea
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Figure 3: Learning curve for Sokoban domain. Left figure shows full results, right one inspects the same data

for limited interval of values on the y axis. The results are averaged over 10 runs, shaded areas shows 95%
confidence intervals. The x axis is the number of collected samples.



4.2 Google Research Football

Google Research Football (GRF) is an environment recently introduced in Kurach et al. [19]. It is an
advanced, physics-based simulator of the game of football. It is designed to offer a set of challenges
for testing RL algorithms. At the same time, it is highly-optimized and open-sourced. GREF is
modeled after popular football (a.k.a. soccer) video games, fun and engaging for humans. As such, it
requires both tactical and strategical decision-making. This makes it an interesting benchmark for
planning algorithms. A part of GRF is the Football Academy consisting of 11 scenarios highlighting
various tactical difficulties, see Kurach et al. [19] Table 10] for description. Due to its diversity, the
GRF Academy is an excellent testing ground of planning methods listed in Section 3] including STS.
GRF provides several state representations, including internal game representation as well as visual
observation. We tested both of them: the former was processed with an MLP architecture, while the
latter with a convolutional neural network. Details are provided in Appendix [AT]

One feature which makes GRF hard (and thus in- g [y P
teresting) for planning is its action space, which :
is relatively large (19 actions). From the per-
spective of the design of a low budget planner,
this can be viewed as a challenge.

A GRF Academy episode is considered finished
after 100 steps or when the goal is scored by
the agent. The game is stochastic, hence we
report the solved rates. In Table 2] we compare
various methods including STS and the base-
line PPO policy provided by [19] for a selected
four academy environments (one easy and three
hard). We report the median of the solved rates  Figure 4: Example from the Google Football League
in at least three runs with different seeds. Table

[5] contains results for all GRF Academy environments.

Random shooting For each of the
Random Shooting and Bandit Shoot-

— =
ing planners (Algorithm [3]and Algo- - g E é g
rithm [ respectively), we performed Method g § k= ;‘f f.; 3
two batches of experiments: with and S = e S =
without training. The former used two é 5 E z
different state representation and, asa PPO 9] | 0.10 | 0.65 | 0.90 | 0.65
consequence, two different architec-
50 flat | 0.00 | 0.10 | 0.00 | 0.05

tures (MLP and Conv.). The latter g 2

. ) o= PPO | 0.10 | 0.30 | 1.00 | 0.25
used a uniform policy (flat) or a pre- = S MLP | 074 0.81
trained policy (PPO). For all the vari- gE : ) ) :
ants, we set C' = 30 passes and a plan-
ning horizon H = 10. More details = %0 ng 8(1)(5) 828 (1)88 8(5)?
can be found in Appendix [AZT] § é MLP | 060 | - = 1090
The flat version cannot solve GRF va Conv. | 0.41 | 0.44 | 0.97 | 0.94
Academy tasks. This is rather unsur- MCTS Conv. | 0.13 | 0.56 | 1.00 -
prising and confirms that it is a chal- »v»  MLP | 0.78 | 0.97 | 1.00 | 0.94
lenging test suite. The Bandit Shoot- & Conv. | 0.81 | 1.00 | 1.00 | 1.00

ing algorithm generally offers a better
performance both when using the pre- Table 2: Summary of selected algorithms’ performance on GRF.
trained policy or training from scratch. Entries correspond to a solved rate. Results for the whole GRF
This indicates that bandit-based ex- Academy are presented in Table 5]

ploration results in more reliable esti-

mates of action values. Bandit Shoot-

ing Conv. experiments are better than the baseline in 6 cases and worse in 4. This shows that, at
least in some environments, planning can improve performance. We also tested whether mixing the
policy with Dirichlet noise (see [32]]) and sampling an action to take in an environment can impact
exploration and training performance. Nevertheless, the results were inconclusive (see Appendix [A-4]
for details). It can be seen that the corner scenario is particularly challenging: the baseline scores


https://research-football.dev/

on the lower end of the spectrum, the shooting algorithms rather underperformed and the training
was quite unstable. The results improved significantly under the STS algorithm. In the Shooting
experiments, we used approx. 1.5M training samples (median).

STS and MCTS STS achieves state-of-the-art results on the GRF Academy and significantly
outperforms other methods. For STS we used C' = 30 passes with H = 10 and for MCTS we set
corresponding C' = 300.

STS Conv. completely solves 8 out of 11 academy environments, see full results in Table[5] and is the
best on the remaining 3, except for run to score with keeper (where STS achieves 97% and is beaten
only by PPO), see Table[2]and Table[5] STS MLP achieves a close second place, except for run pass
and shoot with keeper (it achieves 97% and other than STS Conv. is only beaten by Bandit Shooting
with PPO) and run to score with keeper (94%). These results provide further evidence that STS
gives a boost in environments requiring long-horizon planning. This stands in sharp contrast with
MCTS, which was not able to achieve impressive results in the considered time budget. We found
that exploration was a challenge in GRF Academy environments. Namely, training often got stuck in
disadvantageous regions of the state space, which was caused by unfavorable random initialization of
the value function. To deal with it, the last layer of the value function neural network was initialized
to 0. We suspect this zero-initialization method might be useful in other domains as well. In the STS
experiments we used approx. 0.8M training samples (median).

More details can be found in Appendix [A.8] including ablations. They indicate that multi-step
expansion of STS blends well with various elements of the MCTS toolbox as well as demonstrate the
impact of the aforementioned zero-initialization.

5 Conclusions and further work

In this paper, we introduced a new algorithm, Shoot Tree Search. STS aims to explicitly address
the dilemma between depth and breadth search in large state spaces. That touches upon interesting
issues of using randomness and structure in search algorithms. The core improvement is multi-step
expansion, which may be used to control the depth of search and inject into planning more randomness
via random multi-step expansions. Having empirically verified the efficiency of this extension in
many challenging scenarios, we argue that it could be included in a standard MCTS toolbox.

In future work, we want to address dynamical (online) change of planner parameters. In some
initial experiments, we observed that varying the temperature of the shooting policy, during Random
Shooting planning rollout, may improve overall exploration and result in better coverage of the state
space.

There are many interesting follow-up research directions involving STS. One of them concerns
the automatic choice of the multi-step expansion depth, H, during training. This could not only
improve the performance of the method, but also alleviate the necessity for fine-tuning this additional
hyper-parameter. Another, quite natural extension of this work is to use learned models. As a research
question, this typically splits into two sub-problems: learn an accurate model, or adjust the planner to
accommodate for the model’s deficiencies. An exciting research avenue, is related to a multi-agent
version of GRF. This constitutes an open challenge both for planning and learning models.

It is interesting to study STS itself. Historically, the fusion of different multi-step estimates (such as
TD(A) or GAE) lead to significant improvements, and it is only natural to ask if a similar advancement
can be reached here. Moreover, STS could be combined with different statistical tree search methods,
where statistics other than the expected value (e.g. max) are stored and updated (see e.g. Agostinelli
et al. [2]). The method could also be augmented with uncertainty estimation (e.g. in the spirit of
Mitos et al. [21]]) to strengthen the exploration, and consequently the algorithm.

Another tempting option would be to combine ideas of this work with other search methods. We
conjecture that similar benefits would be observed for the A* algorithm with learned heuristics (akin
to Agostinelli et al. [2]) or LevineTS (see Orseau et al. [24]).

Broader Impact

Evaluation of broader impact is not applicable to our work.



In more detail, our research aims to develop efficient planning algorithms. Such algorithms may have
huge impact in the future for creating truly intelligent systems. However, at the moment our studies
involve fundamental algorithmic properties without immediate real-world applications. Our finding
are mostly useful for other reinforcement learning researchers.
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A.1 Training details

We provide the code of our methods and hyper-parameters configuration files in https://github!
com/shoot-tree-search/sts.

The training loop follows the logic of Algorithm[2] We use a distributed setup with 30 workers and a
replay buffer of size 30000. We perform 1000 optimizer updates on batches of transitions whenever
all workers collect and store one full episode. During batch sampling, we ensured an equal amount of
examples from solved and unsolved episodes. In GRF and Sokoban experiments, each episode was
limited to 100 and 200 time steps, respectively.

A value function approximator, Vy, is trained via the MSE loss and "reward-to-go" targets
ZT 41 ~=t=1r;, where T is the terminal time-step in an episode. Q-function appr0x1mator used
by MCTS and STS in GRF experiments (see Sectlon@for details), is trained via the MSE loss and
tree action-values targets, similar to the one used in Hamrick et al. [[16], Mitos et al. [21].

Policy, 7y, is trained using the cross-entropy loss. As targets, we use one-hot encoded actions chosen
in the environment for Random Shooting and the empirical distribution of actions chosen in the root
during the planning for Bandit Shooting, MCTS, and STS.

The total loss is a weighted sum of the value function (or the @)-function) loss, the policy loss
(weighted by 1e—2 in Random Shooting and Bandit Shooting, and 1e—3 in MCTS and STS), and a
regularizing, [5 term (weighted by 1le—6).

A pre-trained PPO policy in Shooting methods was obtained using a script included in the Google
Research Football repository (see Kurach et al. [20]) and the OpenAl Baselines (Dhariwal et al. [8]])
PPO2 implementation.

A.2 Hyper-parameters

Table [3| presents hyper-parameters used in our experiments. These were based on hyper-parameters
previously proposed in the literature, e.g., Mito$ et al. [21], and a certain amount of tuning.

Sokoban Google Research Football
Parameter Shooting  MCTS STS Shooting  MCTS STS
Number of passes C 48 50 10 30 300 30
Planning horizon H 5 1 ) 10 1 10
Discounting y 0.99 0.99 0.99 | 0.95/0.99! 0.99 0.99
Exploration weight ¢y 10.0? - - 1.0/2.5° 1.0 1.0
Policy 7, temperature* 2.0 - - 2.0 1.0 1.0
Action sampling temp. 7 - - - 0.3 0.3 0.3
Dirichlet parameter « - - - 0.03° 0.3 0.3
Noise weight C0ise - - - 0.1° 0.1 0.1/0.3°
Depth limit depth 1imit’ - - - - 30 30
VF zero-initialization® no no no no yes yes
Optimizer RMS RMS RMS RMS Adam Adam
Learning rate 2.5e—4 2.5e—4 2.5e—4 1.0e—4 1.0e—3 1.0e—3
Batch size 32 32 32 64 64 64

' All v = 0.99 except for Shooting experiments with a uniform and a pre-trained PPO policy, where v = 0.95.
2 Applies only to Bandit Shooting.
3 ¢puct = 1.0 for Bandit Shooting with a uniform and a pre-trained PPO policy and cpuc: = 2.5 for Bandit

Shooting with a trained policy.
* MCTS and STS in Sokoban does not use policy, see Section for details.
> Applies only to Bandit Shooting with additional exploration mechanisms, see Section
6 Choise = 1.0 for STS Conv. and cpoise = 0.3 for STS MLP.

7 The maximum number of nodes visited in a single planning pass, see Section

8 If the last layer of a value function neural network was initialized to 0, see Section

Table 3: Default values of hyper-parameters used in our experiments.
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A.3 Network architectures

In GRF experiments we use two different state representations: ’simplel15’ and ’extended’ (see
Section[A.8). In the former case, we use an MLP architecture with two hidden layers of 64 neurons,
while in the latter case, we use 4 convolutional layers with 16, 3x3, filters, zero-padding and stride 2,
followed by a dense layer of 64 neurons. In both cases, two heads, corresponding to a value function
(or @-function for MCTS and STS) and policy, follow.

In Sokoban experiments, we use 5 convolutional layers of 64, 3x3, filters with zero-padding and
stride 1, followed by a dense layer of 128 neurons and heads corresponding to a value function and
policy (policy is used only for Shooting methods).

In all the cases, we use the ReLU non-linearity. We use the standard Keras initialization schemes,
except for MCTS and STS in GRF experiments, see Section[A.8.2]

A.4 Bandit Shooting

Algorithm 7 Bandit Shooting Planner with additional exploration mechanisms, requires exploration
weight ¢4, action sampling temperature 7, noise weight ¢, .ise and Dirichlet distribution parameter
Qo

function SELECT(state) function EXPAND(leaf)
S < state The same as in Algorithm [3].
P(s,a) < (1 = cnoise) Ty (s, @) + Cnoise D function UPDATE(path, rollout)
U(s,a) < /> N(s,a’)/(1+ N(s,a)) The same as in Algorithm [3].
a < argmax, (Q(s, a) + cpuct P(s,a)U (s, a)) function CHOOSE_ACTION(S)
s',r <= model .STEP(s, a) a ~ softmax (£ log N (s, -))
return (s,a,r), s’ return a T

Algorithm[7]describes Bandit Shooting with additional exploration mechanisms: mixing the policy
with Dirichlet noise (as in [32]) and action sampling with temperature 7 in CHOOSE_ACTION(S).
The noise variable D is sampled from the Dirchlet distribution Dir(«) each time when PLANNER is
called (see also Algorithm [2).

A5 MCTS

In our experiments, we used various implementations of MCTS. The reasons were two-fold. First,
some implementation details fit better Sokoban and some GRF. Second, we wanted to check in
various cases that the multi-step expansion is beneficial, see Section[A.6]

In Sokoban experiments, we used the MCTS implementation similar to the one in MitoS et al. [21]],
containing a loop avoidance mechanism and transposition tables. The loop avoidance mechanism
alters SELECT and CHOOSE_ACTION (see Algorithm [3)) so that the selected path does not contain
repetitions of states. The transposition tables are a rather standard technique, which proposes to
accumulate search statistics (i.e., W, N, Q) for states of the environment (rather than for the nodes of
the search tree, as it happens in the standard case).

In GRF, we used our custom implementation of MCTS based on the one in Silver et al. [31]]. It uses
leaf evaluation with @)-function and policy networks. The Q-function is used to evaluate all children
of a given node at once (instead of separately invoking value function Vy in UPDATE). The policy
network is considered to be ’prior’ for choosing actions, similarly as in SELECT in Algorithm
Dirichlet noise, parameterized by «v and ¢y, s¢, is mixed with the prior in the root and action sampling
with temperature 7 is used to choose action on the real environment, similarly as in Bandit Shooting
with additional exploration mechanisms in Section[A.4] Additionally, we put a limit, depth limit,
on the maximum number of nodes visited in a single STS pass.
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A.6 STS

We tested STS with two MCTS setups described in Section In both the cases we observed
substantial experimental improvements as reported in Section|[A.7|and Section[A.8] This alone, in our
view, provides enough evidence that the multi-step expansion is a useful method.

Apart from this, STS offers practical computational benefits, which are analyzed below.

A.6.1 Computational benefits of STS

We distinguish three types of computational costs in MCTS (see Algorithm [5):

1. Traversing down the search tree (performed in SELECT and EXPAND).
2. Backpropagation of values and counts update (handled by UPDATE).
3. Evaluation of heuristics (value network Vg, or Q-function and policy as described in Section

[A.3)

In large GRF experiments, we found that it was the first cost that dominated the remaining two.
The reason is that the cost of building a search tree is quadratic to its depth. The use of multi-step
expansion significantly reduces this cost as several nodes are added during single tree traversal. In
our case, these benefits allowed for much smoother experimenting with GRF and are, arguably, a
step towards developing more efficient planners. We expect this might be practically useful (i.e.,
costs 1 and 2 are dominant) when the search size is large, or the heuristic evaluation is relatively
cheap compared to the environment step. This is the case in some of our GRF experiments. The GRF
simulator is rather complex and slower than small MLP networks.

The following simple lemma offers some theoretical analysis.

Lemma A.6.1. Assume that STS and MCTS build the same tree T, starting from the root state s.
Denote the number of nodes in T as C and the number of nodes to be added at a single multi-step
expansion of STS as H. Then the number of steps in T performed by STS will be lower compared to
MCTS by a factor in ["51, h].

Proof. Lets consider h consecutive nodes sy, . . ., sy in the search tree added in a single EXPAND step
during STS search. In STS, the number of steps, Cs7g, in the tree during SELECT and EXPAND is
equal to h+d, where d is distance between sg and s1 in 7. To add the same set of nodes during MCTS
search, one need h separate calls to SELECT and EXPAND. The total number of steps performed is

Cruors = Ypod+k+1=hd + h51. Clearly,

h—1
TCSTS < Cucrs < hCsrs.

Similar calculation hold for the costs of backpropagation. O

A.7 Sokoban experiments

For a description of Sokoban see Section 4.1} In our experiments, we used inputs of dimension
(z,2,7), where (z, x) is the size of the board ((10, 10) in most cases) and 7 is one-hot encoding
of the state of a given cell (enumerated as follows: wall, empty, target, box_target, box, player,
player_target). In most experiments, we used 4 boxes. The agent is rewarded with 1 by putting a box
into a designated spot and additionally with 10 when all the boxes are in placeﬂ The action space
consists of four movement directions (up, down, right, left).

A.7.1 Evaluation experiments

In Table ] we show full details of the evaluation experiment (which complements Table|[T). Recall
that in this experiment, we evaluated the planning capabilities of STS in isolation from training. To
this end, we used a pre-trained value function and varied the number of passes C and the depth

'Our Sokoban code is fully compatible with Racaniére et al. [26].
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Figure 5: Sokoban on simpler boards: training curves for MCTS, STS and Bandit Shooting with
and without loop avoidance. Mean over 5 seeds with shaded regions representing 95% confidence
intervals.

of multi-step expansion H, such that H - C remains constant. In Table 4} we present quantities
(Np, N¢, Ng), which measure planning costs for finding a solution (the average number of passes,
tree nodes and game states observed, respectively, until the solution is found). We run experiments
with and without the loop avoidance mechanism (see Section[A.5). We observe that there is a sweet
spot for the choice of H. It is evident for the "no avoid loop’ case, C' = 32, H = 8. For this choice,
the number of tree nodes, N;, which is the most important metric, is the smallest. Interestingly, we
observe a significant increase in the solved rate. This may be explained by the fact that the number
of distinct visited game states, [N, grows. This suggests that STS explores more aggressively and
efficiently. For bigger H, we observe a further increase of the solved rate until some point, though at
the cost of much bigger V.

In experiments with the avoid loop mechanism, there is a similar effect for C' = 64, H = 4, though
more subtle, probably because results are already quite strong. Moreover, we observe a more
significant drop in performance as H increases (when planning resembles more shooting methods).

The values presented in Table[d]are averages over more than 5000 boards.

A.7.2 MCTS and Shooting on simpler boards

We found the Bandit Shooting method underperforming on Sokoban. As a sanity test, we tested a
simpler setting with smaller boards of size (6, 6) and two boxes. Learning curves are presented in
Figure MCTS and STS experiments quickly learn to solve over 99% of boards. Bandit Shooting
experiment showed stable but much slower progress. We also evaluated the version of Bandit
Shooting, with additional loop avoidance, see Section[A.5] This mechanism was beneficial for MCTS
and STS but failed to bring improvements for the shooting algorithms.

A.8 Google Research Football experiments

For a description of Google Research Football see Section[d.2] A Google Research Football academy
environment is considered solved when an agent scores a goal. Reported results correspond to solved
rates over 20 episodes in case of Shooting methods with an uniform and a pre-trained policy and
around 30 episodes in case of all other methods. Results for MCTS, STS, and Shooting methods
with the trained policy are medians of at least three training runs. During evaluations we disabled
Dirichlet noise and action sampling (in Bandit Shooting Expl., MCTS and STS).
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Scenario C H | S.rate N, N, Ny

256 1 | 952% 1224 1224 716

128 2 | 959% 569 1137 728

64 4 |1965% 299 1194 830

avoid loops 32 8 1959% 173 1385 1040
16 16 | 95.7% 114 1822 1333

8 32 1 934% 79 2527 1528

4 64 89% 62 3960 1491

2 128 | 80% 527 6754 1207

256 1 84.5% 1497 1497 376

128 2 | 863% 724 1448 332

64 4 | 87.8% 385 1541 370

no avoid loops 32 8 | 88.4% 185 1483 409
16 16 | 89.5% 110 1754 539

8 32 | 899% 84 2690 882

4 64 | 852% 68 4463 1300

2 128 | 653% 36 4589 967

Table 4: Evaluation of various STS settings on Sokoban

Google Research Football offers two major mode of observations: ’simplel15’ and ’extracted’ (also
called the super mini-map).

The simple115 state representation is consists of coordinates of players, players’ movement directions,
the ball position, a ball movement direction, a one-hot encoding of ball ownership, a one-hot encoding
of which player is active. This totals in a vector of length 115.

The extracted state representation consists 4 stacked layers of size (72, 96). Layers contain one-hot
encoding of spatial positions of game entities. These are (on the subsequent layers): players on the
left team, players on the right team, the ball, and the active player.

We note that even though the extracted representation contains ’less information’ than simplel15, it
has been reported in [19] to generate better results.

In our experiments, we use the so-called checkpoint rewards, which provide an additional signal for
approaching the goal area. Details can be found in [19], where they were introduced and used in
large-scale experiments.

The action space in GRF consists of 19 actions representing high-level football behaviors (e.g. "Short
Pass"), see [19, Table 1].

Figure[6]shows selected training curves on Google Research Football, the best from each family of our
methods: Shooting, MCTS and STS. Figure[7]shows all training curves for our methods on Google
Research Football. On the y-axis is the solved rate calculated as described above in Section [A.§]
On the x-axis is the number of real steps in the environment (planning steps in the simulator are not
added). Curves are mean over 3 training runs with different seeds and shaded regions represent 95%
confidence intervals (exceptionally for Bandit Shooting we report just one run). Moreover, to smooth
the curves, data points are averaged in the windows of 10000 steps.

A.8.1 Shooting methods

Table 5] presents our methods performance in all Google Research Football academies.

Tuning ¢, turned out to be the most important one to make Bandit Shooting work, see Algorithm
M] In a nutshell, it needs to be adjusted to scale of rewards (value function) in a given environment. In
our experiments we found ¢, = 2.5 to work best.

Using additional Dirichlet noise, c,oise > 0, and action sampling on the real environment, 7 > 0
(see Algorithm [7) resulted in inferior results with an exception of the "Counterattack hard" scenario.
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% § MLP | 0.93 | 0.60 - - - - 0.90 | 0.90 1.00 - -
aa} 5 Conv. | 0.97 | 0.41 | 0.81 | 0.44 | 0.97 | 1.00 | 0.94 | 0.69 1.00 | 0.91 | 0.00
Expl. | 1.00 | 0.53 | 0.50 | 0.66 | 1.00 | 0.00 | 0.81 | 0.34 | 0.00 | 0.00 | 0.09
MCTS Conv. 0.13 0.56 | 1.00

g MLP | 1.00 | 0.78 | ' 1.00 | 0.97 | 1.00 | 1.00 | 0.94 | 0.97 | 1.00 | 0.94 | 0.94
v» Conv. | 1.00 | 0.81 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 0.97

Table 5: Summary of methods performance on GRF. Entries correspond to rounded solved rates over
at least 20 episodes per environment. Results for Shooting methods with the trained policy, MCTS
and STS are reported as median of at lest three training runs.

A.8.2 MCTS and STS experiments

Apart from multi-step expansion we introduced another simple novel method, which might be of
interest to the general public. Namely, before starting training, we set the weights of the last layer
of the Q-value neural network to 0 (see Section[A.3|for a detailed description of architectures). We
observed that this significantly improved the training stability due to better exploration (and avoiding
suboptimal strategies at the early stages of training). See ’No zero initialization” on Figure|[§]

A.8.3 Ablations

The ablations were performed on three environments from GRF Academy: corner, counterattack
hard and empty goal, see Figure |8l The first two environments are difficult, while the last one is
easy. The following parameters or settings were subject to analysis (they correspond to the labels in

Figure|[3):
e prior noise weight: a weight in the mixture of Dirichlet noise and the prior.
e depth limit: the maximum number of nodes visited in a single STS pass.
e sampling temperature: temperature for sampling the actions on the real environment.

e MCTS n_passes 300: this corresponds the standard MCTS setting with H = 1 (MCTS)
and C' = 300

e Value network n_passes: value network is used instead of )-function. Note that
n_passes = 2 matches roughly the @-function version in terms of visited states (re-
call, see Section E], that (Q-function evaluates all children at once and that number of actions
in GRF is 19).

e No policy: instead of a learned policy network, a uniform policy is used.

e No zero initialization: the last layer of the value function neural network was not
initialized to O (see description at the beginning of Section[A.8.72).

The default setup (denoted as Prior noise weight 0.1) is always positioned at the top in Figure[§]
It uses parameters described in Table|3|in the Google Research Football STS column.
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Prior noise weight 0.1
Depth limit 100

Mo policy

Value network, n_passes 30
Sampling temperature 0.0
Prior noise weight 0.0
Sampling temperature 1.0
Mo zero initialization

Walue network, n_passes 2
MCTS n_passes 300
Depth limit 10

Prior noise weight 0.1

Depth limit 100

Value network, n_passes 30
Mo policy

Prior noise weight 0.0
Sampling temperature 0.0
MCTS n_passes 300

Value network, n_passes 2
Sampling temperature 1.0
Depth limit 10

Mo zero initialization

Prior noise weight 0.1
Prior noise weight 0.0
Depth limit 100

Sampling temperature 0.0
Sampling temperatura 1.0
MCTS n_passes 300
Value network, n_passes 30
No policy

Mo zero initialization

Walue network, n_passes 2
Depth limit 10

Figure 8: Ablations performed GRF Academy environments: corner, counterattack hard and empty

goal.
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A.9 Analysis, toy envs

See Figure 9] for bigger versions of the toy environments introduced in Sectionfd] Recall the one at
the bottom of the figure. It has been crafted to highlight the ability of STS to handle “pseudo-random”
errors in an approximated value function. Starting from s, the agent can move only to the right. The
rewards for all transitions are 0 except for marked edges, where they are —a,a > 0. Clearly, the
optimal value function is 0 in each state. Nevertheless, we assume that the estimates on the tail is not
yet perfect and are e. In this example, we assume that the errors arise in interactions of many factors,
thus can be modeled as i.i.d. centered random variables €; such that E|e;| < 4o0.

The optimal path is, going over the green edge and later over the tail, is accompanied by several
"decoy’ paths (marked in orange). They will not be entered unless errors on the tail have accumulated
below —a. We denote the probability of such an event by pgr, where H is the number of steps in the
multi-step expansion (H = 1 corresponds to MCTS). Under the assumptions above we haves
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Figure 9: Full size visualization of the toy environments.

Lemma A.9.1. Under the above assumptions p1 > py and pg — 0.

Proof. Assume that for the first £ > 2 steps of the search tree was unfolded via the middle (green)
edge and further via the tail. The state-action value estimated by the MCTS/STS is thus ¢, =
(o + ...+ €r—2)/L. Consequently,

pr = P(3pengrn < —a).
The claims follow from the fact ¢, — 0 a.s., which itself is the consequence of the strong law of large

numbers. O

As the lemma serves mainly the illustrative purpose we used the i.i.d. assumption, which can
be easily weakened. As a test we simulate the case ¢; ~ N (0,1) and @ = 0.3. In this case
p1 = 0.56,p2 = 0.46,p4 = 0.35,ps = 0.41, p15 = 0.21.

A.10 Infrastructure used

We ran our experiments on clusters with servers typically equipped with 24 or 28 CPU cores and
64GB of memory. A typical experiment was 72 hours long (the timeout set on the clusters), which
was enough for most experiments. Experiments that did not converge during this time were resumed.

During the project, we run more than 10k experiments.
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