
University of Warsaw

Faculty of Mathematics, Informatics and Mechanics

Albert Cie±lak

Student no. 370756

Michaª Filipiuk

Student no. 385423

Frederic Grabowski

Student no. 382434

Radosªaw Rowicki

Student no. 386088

Variational Autoencoder for

Collaborative Filtering �

Implementation and Performance

Optimization

Bachelor's thesis

in COMPUTER SCIENCE

Supervisor:

Grzegorz Grudzi«ski
Faculty of Mathematics, Informatics, and Mechanics

June 2019



Supervisor's statement

Hereby I con�rm that the presented thesis was prepared under my supervision and

that it ful�ls the requirements for the degree of Bachelor of Computer Science.

Date Supervisor's signature

Authors' statements

Hereby I declare that the presented thesis was prepared by me and none of its contents

was obtained by means that are against the law.

The thesis has never before been a subject of any procedure of obtaining an academic

degree.

Moreover, I declare that the present version of the thesis is identical to the attached

electronic version.

Date Authors' signatures



Abstract

Deep neural networks have signi�cantly pushed state-of-the-art solutions' abilities in a wide
variety of applications. Typically, deeper architectures are able to achieve better results, in-
creasing model complexity and consequently computational resources needed for training. A
number of technologies, e.g. mixed precision or multi-GPU training, have been proposed to
combat this issue in �elds like computer vision or natural language processing. In this paper,
in collaboration with NVIDIA, we investigate practical performance gains achieved on the ex-
ample of variational autoencoders in collaborative �ltering [Dawen Liang, Rahul G. Krishnan,
Matthew D. Ho�man and Tony Jebara. Variational Autoencoders for Collaborative Filtering.
WWW'18]. This network di�ers vastly from most of currently analyzed architectures as they
were much more computationally expensive and, in result, less prone to being bottlenecked
by CPU operations or data transfers. Those obstructions could easily diminish e�ects of cal-
culational improvements. To address these issues, we take advantage of fact that data fed to
our model represents sparse user-item interactions � usage of sparse instead of dense matrices
allows us to reduce the existing data transfer bottleneck and achieve a 12x speed-up in com-
parison with implementation presented in paper. Furthermore, we introduce mixed precision
and multi-GPU training to our model, which combined with all other improvements obtain
over 40x speed-up when trained on one GPU and almost 150x speed-up on four GPUs.
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Chapter 1

Introduction

Nowadays, people are overwhelmed by the amount of data available on the Internet. Every
minute about 400 hours of video is uploaded to YouTube [23]. Every day 500 million tweets
are posted on Twitter [20]. Times when you could read through everything to �nd something
interesting on the Web are gone. Recommender systems allow us to sift through this digital
mess.

1.1. Recommender systems

A recommender system or a recommendation system is a system whose objective is the predic-
tion of user rating or preference about a certain product. They can be used to solve various
problems: generating custom playlists in streaming services, suggesting the next movie to
watch or �nding a suitable product for us. Throughout the years recommendation systems
became crucial in many di�erent services, like Net�ix, Amazon, Facebook, YouTube [21],
sometimes becoming the most important part of the company. They help to keep customer
attention or increase pro�ts by accurately o�ering services or products. Even a small im-
provement of recommendation accuracy can yield high pro�t for a company. More accurate
recommendations result in better user experience. They encourage users to spend more time
watching �lms and listening to music, making the experience more addicting. In the case of
shopping services, better recommendations increase sales. In recent years, the problem has
been studied extensively, pushing boundaries of state-of-the-art solutions. Major scienti�c
attention was reignited after the �Net�ix Prize� competition. In 2006 Net�ix started a contest
in which participating teams were to improve upon the quality of Net�ix's current prediction
algorithms by at least 10%. This event begun a recommendation systems gold rush, the main
prize being 1'000'000$ for the �rst team to beat the score. It took about three years until
the winning solution appeared. The achievement was claimed by BellKor's Pragmatic Chaos
team, and their system outperformed the initial algorithm by 10.6% [1, 13, 18, 24].

The general problem of recommender systems can be stated as follows: a set of users and
a set of items are given. We will use the general term "items" - in practice they could be
movies, songs, books, ads, shopping goods or even friends on social media sites. The goal is
to build a model that predicts user preferences. Data used to train a model can vary between
di�erent approaches, which we can split into two distinct categories: content-based �ltering
and collaborative �ltering. The former uses additional information about users and items to
make predictions, while the latter is based solely on interactions between users and items.
Those interactions can be divided into two subcategories, based on their type: explicit and
implicit feedback.
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1.1.1. Explicit feedback

As explicit feedback we classify all data that is given directly by the user, e.g. item ratings
or written reviews. This type of feedback is priceless for services and companies. However,
often only a small percent of users is interested in rating items and processing reviews requires
additional approaches like sentiment analysis which increase a complexity of the recommender
system.

1.1.2. Implicit feedback

Implicit feedback is collected without any interference with user interactions. Data gathered
this way may still re�ect user preferences; examples of such actions are watching videos,
purchasing products or clicking ads. Unfortunately, it can be di�cult to reconstruct user
motives based on these actions.

1.1.3. Content-based �ltering

Content-based �ltering recommends items based on a comparison between the content of
items and a user pro�le. For each item, we have to collect features like keywords in the title
and description, tags, genre, director, etc. We also collect features of users like age, sex,
preferences, previously bought products etc. Based on that, we de�ne a similarity between
users and items to recommend. This approach performs better than Collaborative �ltering
when we consider new users or items.

1.1.4. Collaborative �ltering

In this case instead of assigning features to items and users, we only use a matrix containing
information about interactions between users and items. This kind of data is much easier to
gather: for explicit feedback we use user scores, for implicit feedback we assume all interactions
are positive. The main issue with this approach is the lack of knowledge about new items.
Every time we want to include a new item, we need to retrain the whole model. Similarly,
items without interactions will typically be ignored by the system.

1.1.5. Collaborative �ltering approaches

Matrix factorisation

The simplest approach is called matrix factorisation. Matrix factorisation algorithms work by
approximating the user-item interaction matrix R with a product of two matrices, H and W .
Each cell Rij represents a value of user-item interaction when working on explicit feedback
data or 1 when working on implicit feedback data. In case when we don't have information
about interaction, we leave it empty - it doesn't take part in building the model. H contains
latent factors of users, and W latent factors of items. We de�ne the loss function as the
di�erence between H ∗W and R plus regularization [A]. We use gradient descent to optimize
the loss function. Regularization and small latent sizes of H and W prevent the model from
over�tting [A] . We pick items with best scores in H ∗W to recommend.

Neural Collaborative Filtering

Introduced by X. He et al. [11], in this approach we use a neural network to predict scores,
but the overall architecture is similar to a matrix factorisation model. In the latter, after
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obtaining latent representations for a user and an item, we use their scalar product as the
overall score. In NCF we use a nonlinear function, modeled by a neural network. This allows
the system to learn complex interactions, and leads to increased performance.

Variational Autoencoders

Variational autoencoders for collaborative �ltering were �rst introduced by D. Liang et al.
[14] in 2018 as a state-of-the-art solution. We use their paper and accompanying code as a
basis for our implementation, and provide a detailed description of this model in the next
section. Currently, slight improvements have been proposed [25]. However, as our goal is to
investigate computational improvements, we decided to use the original model.

1.1.6. Hybrid recommender systems

For completeness, we mention hybrid recommender systems that combine both content-based
and collaborative �ltering. This allows them to overcome di�culties related to both ap-
proaches. For example, a hybrid system could rely on content-based recommendations for
new items, mitigating the cold start problem [A] in CF.
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Chapter 2

Client requirements

A task presented by our client can be summarised into a few points:
1. Implementing neural network model according to the paper [14]. The neural network

must have the same accuracy. This property can be validated by looking at metric
results. They should be equal to those in paper. So our goal is to achieve the following
values on MovieLens dataset:

Metric Expected result

Recall@20 0.395

Recall@50 0.537

NDCG@100 0.426

2. Implementing downloading and parsing of 4 datasets: MovieLens [10], Net�ix, Pinterest
and Lastfm. It should convert the data into the format that can be fed to the model.

3. Creating training script. Script should iterate over previously parsed data, feed it to the
neural network, calculate loss and improve wages. Also, it should support performance
measurement and validating training progress.

4. Analyzing a possibility of optimizing training using Multi-GPU and Mixed Precision
Training.
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Chapter 3

Model

3.1. Theory

3.1.1. Variational autoencoder

An autoencoder [12] is a type of neural network designed to learn low-dimensional represen-
tations in an unsupervised manner [A]. Autoencoders consist of two parts: an encoder and a
decoder. In our case, the encoder takes user interactions as an input and returns a latent rep-
resentation, which contains �xed number of features. This representation is then forwarded
to the decoder, which computes an enriched user interactions vector. 'Variational' means that
an encoder returns two vectors:
• vector of means
• vector of variances
These are used to sample a randomized latent representation from a Gaussian distribution.

This forces the network to store similar interaction representations nearby in the latent space,
e�ectively smoothing it out. In the case of CF, this leads to improved performance.

The loss function used for training is a sum of three terms:
• negative log-likelihood
• KL divergence
• L2 regularization

Negative log-likelihood is equal to −log(p), where p is the probability that picking randomly,
from a multinomial distribution with probabilities proposed by the decoder, we get the users
interaction history. We scale KL divergence loss by a parameter called annealing, which is
increased during training, until it reaches a predetermined cap.
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Figure 3.1: Autoencoder. Vector of user interactions contains zeros and ones, meaning inter-
action and no interaction respectively.

3.1.2. Metrics

To verify the accuracy of model's prediction, we adapt currently popular metrics used for
evaluating recommendation systems, Recall and Normalized Discounted Cumulative Gain
(NDCG). In general, for some new users, we feed the network with 80% of interactions and
assess how well it recommended the remaining 20%.

Recall@K takes K best predictions, and measures the number of correctly predicted items
(from the held-out 20% of interactions) divided by maximum number of possible hits.

Recall@K =
|Relevant_items_to_recommend|

min(|Relevant_items_to_recommend|,K)

NDCG@K is a bit more sophisticated in comparison to recall. Recall ignores the order
of predictions � the prediction with highest score has the same contribution as the item that
barely got into the predicted set. Of course we would prefer the �rst prediction to be a hit,
rather than the last. NDCG takes this into account by decreasing scores by:

DCG@K(u, ω) := ΣK
r=1

I[ω(r) ∈ Iu]

log(r + 1)

where ω is a sorted vector of K recommendations, u represents a user, Iu is a set of relevant
items and function I[ω(r) ∈ Iu] returns 1 if r-th recommended item is relevant.

IDCG@K(u, ω) := Σ
min(K,|Iu|)
r=1

1

log(r + 1)

IDCG@K - Ideal Discounted Cumulative Gain@K yields a maximal possible value of DCG@K.

NDCG@K :=
DCG@K

IDCG@K
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3.2. Implementation

In this section we describe optimization methods used to increase performance of our model.
The aim of all modi�cations was to decrease training time while preserving scores on the
following metrics achieved in the original paper: NDCG@100, Recall@20 and Recall@50.
To implement the model, we have chosen the latest version of TensorFlow framework [7] -
TensorFlow 1.13. TensorFlow is a leading open source platform for developing and deploying
machine learning models. Although the core is written in C++, APIs for many popular
languages exist. In our work, we use Python as it's most popular programming language in
machine learning community.

3.2.1. Sparse matrices

The most e�ective and important optimization was the use of sparse matrices as an input
to our neural network. Since it is very unlikely that any user would have interactions with
most items, the input data is very sparse. For instance in the ML-20M dataset non-zero cells
accounted only for about 0.5% of the whole matrix. Passing all these zeros explicitly to GPUs
combined with short computation times leads to enormous bottlenecks. The use of sparse
matrices dropped this derivable information and greatly increased e�ciency of communication.
However, as of TensorFlow 1.13, most operations on sparse matrices lack GPU support. For
example, scalar products between dense and sparse vectors cannot be calculated. Although
this necessitates ugly workarounds, our 12.5x speed-up during training justi�es the means.
Unfortunately, validation metrics have to be computed on CPU.

3.2.2. Data pipelining

To further decrease time spent on processing and loading data, we used TensorFlow Dataset
API [19] for data pipelining. GPUs are able to greatly decrease the time needed to evaluate
a single training batch, but for best e�ciency we require a performant input pipeline that
produces data for the next batch before the current has been processed. This reduces GPU
waiting time to minimum and decreases epoch processing time almost twofold.

Figure 3.2: Before parallelization [2]
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Figure 3.3: After parallelization [2]

3.2.3. Mixed precision training

Another idea to increase model's performance was to use 16 bit �oats instead of 32 bit. This
optimization's algorithm was presented and thoroughly described in Mixed Precision Training

paper [15] written by Micikevicius et al. This approach resulted in great reduction of time of
sending data between CPU and GPU. Taking less memory space input values allowed us to
increase batch sizes which had positive e�ect on our metrics. However, having lesser �oats
results in lesser precision which was usually a problem when gradients' values were going
below minimal non-zero FP16 value.

Figure 3.4: Histogram of gradient values [15]

The training was often diverging because in most cases the a�ected numbers were changed
to zero without control. The solution of the problem is to scale them before gradient computa-
tion by multiplying values by some factor. It shifts them to the right to occupy range of FP16
values. Weight gradients must be unscaled before parameters update. In our implementation
we used TensorFlow Automated Mixed Precision tool [16] by NVIDIA (we further use an
AMP acronym). It is a feature of custom version of TensorFlow which is shipped with one
of o�cial Docker Images. It provides fully self-acting analysis of the graph and performs all
mentioned above optimizations and necessary shifts. To use the AMP, we only have to import
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it and turn it on. It's crucial that the dimensions of matrices are divisible by 8. Otherwise,
tensor cores wouldn't boost the computations.

3.2.4. Multi-GPU

Data compression achieved by use of sparse matrices and mixed precision allowed us to ef-
fectively perform multi-GPU computations, since the communication was no longer an issue.
Encouraged by good benchmarks and recommendation by NVIDIA we decided to introduce
Horovod framework [22] into our implementation. Horovod is a distributed training frame-
work for TensorFlow, but beside that it works with PyTorch [17] and MXNet [8] frameworks
as well. It uses MPI [3] and NCCL [4] protocols in the background to achieve fast and func-
tional concurrent platform. NCCL framework provides multi-node collective communication
primitives that are optimized to achieve high bandwidth over NVLink high-speed interconnect
used in DGX Station.

One of big bene�ts we noticed was ease of implementation of it in our code � the library
provides wrapper for a neural network optimizer that automatically takes care of synchro-
nization and managing connections. The overhead was low enough to get about 3.5 times
speed-up with 4 GPUs.
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Chapter 4

Usage

In this chapter we explain how to use our model.

4.1. Requirements

To run our model you need to meet the following requirements:

• Docker: Our model is distributed using docker image based on NVIDIA TensorFlow
tensor�ow:19.05-py3 image

• GPU with Tensor Cores: Tensor Cores are required to unlock a full potential of mixed
precision training, but it isn't necessary. It could be trained even with CPU.

• Internet connection: Our repository doesn't contain datasets used to training and each
of them has to be downloaded beforehand

There are 2 options of running the training.

4.2. Python script

4.2.1. Running instruction

First option is to run Python script called main.py. It's only possible to run script inside
docker container, because AMP is only available this way. It isn't currently a part of any
framework and isn't available in any package manager.

To build the docker image from Docker�le [A], execute the following line:

docker build . -t nvidia_vae_running

Run the docker container

./scripts/docker/interactive.sh

Then you can run training with default settings and AMP

python main.py --train --use_tf_amp

17



4.2.2. Command line options

Script provides 3 basic run options

• train

• test

• benchmark

You should specify at least one from the above options. But you can use any subset of them.
They are executed subsequently in the given order.

Train the model. The training is run at the beginning and might be omitted by loading
pretrained model from export_dir.

--train

Test the model. The tests are run after the training, and print metric results. If the train
option is not speci�ed then the model is imported from directory export_dir.

--test

Benchmark the training. It prints average epoch training time and average epoch valida-
tion time.

--benchmark

Turn on Automatic Mixed Precision.

--use_tf_amp

Choose the dataset that the model is going to learn from. There are 4 possible datasets.

• ml-20M

• netflix

• lastfm

• pinterest

--dataset

In case of multiple GPUs available, you can specify its number.

--gpu_number

Number of GPUs used during multi-GPU training. If equals zero, VAE will use CPU.

--number_of_gpus

Number of epochs for training. The default value is 200 epochs and it's enough to reach
the maximum accuracy (with default batch size).

18



--number_of_epochs

Batch size of training. The default value is 10000. It represents the number of users that
is fed into the network at each step.

--batch_size_train

Batch size for validation and test. The default value is 10000.

--batch_size_validation

Frequency of validating the model. If it's set to n then validation is run once every n
epochs.

--validation_step

Number of epochs to omit during benchmark. First epochs perform worse in comparing
to next epochs due to framework initialisation. It is used only during benchmark.

--warm_up_epochs

Number of annealing steps

--total_anneal_steps

Annealing cap

--anneal_cap

Lambda λ � L2 regularization parameter[A]

--lam

Learning rate

--lr

4.3. Jupyter Notebook

The second option is to use Jupyter. The advantage is that you can create and view plots
and charts easily.

Build the docker image.

docker build . -t nvidia_vae_running

Run the docker container, passing a port number for Jupyter Web Server.

./scripts/docker/interactive.sh <port_number>

Inside Docker container, run Jupyter Web Server.

19



./scripts/jupyter-run.sh

Open your browser, and paste the following URL.

http://localhost:<port_number>/notebooks/notebooks/VAE.ipynb

Click "Run" to run the training.

20



Chapter 5

Datasets

We wrote scripts that download and transform data from 4 di�erent datasets:

Dataset Description Users Items

MovieLens Explicit user ratings of movies from movielens.org 138493 26744

Net�ix
Explicit user rating of movies from Net�ix.
It was used during Net�ix prize contest

480189 17770

Lastfm Artists played by the user 358868 295041

Pinterest Images pinned to boards. We treat boards as users and pins as items. 46000 2565241

We mainly focused on MovieLens dataset.

5.1. Transforming the data

Before working on dataset, it has to be cleaned. It contains users and items that have very few
interactions with others, so modelling recommendations wouldn't make much sense � the same
approach was in the VAE for CF paper [14]. This procedure is slightly di�erent depending
on the dataset. In general, the algorithm looks as follows:

1. If the feedback is explicit then we will cast it to implicit by treating rating above �xed
threshold as 1 and otherwise 0.

2. Randomly shu�e the dataset
3. We remove items that didn't interact with enough users. Similarly, we remove users

that haven't seen enough items. By default we set both thresholds to 5.
4. We split the data into train, validation and test sets. We had to get the following

matrices:

training set Contains 86 % of users. It is used in training the model.
validation_data_input Contains 7 % of users and randomly chosen 80 % of their interactions.
validation_data_true Contains 7 % of users and the remaining 20% of interactions.
test_data_input Contains 7 % of users and randomly chosen 80 % of their interactions
test_data_true Contains 7 % of users and the remaining 20% of interactions.

During validation and test we feed only 80% of interactions into the model. However we
compare the output with all of them. This way we check if the model can properly predict
the rest of the items.
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Figure 5.1: Divided ml-20m dataset
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Chapter 6

Results

Having all optimizations applied we achieved total 145x performance boost on ml-20m with
minor cost on metrics while preserving the same number of epochs and batch size. The most
unclear result was gained on multi-GPU training because we had to adjust hyperparameters
di�erently to �t the network to new training algorithm. We gained a lot out of tools provided
by NVIDIA � automated mixed precision and CUDA processors did a lot of work and truly
shortened training time.

6.1. Experimental platform

NVIDIA has given us an access to their DGX Station [5]. The DGX Station has following
speci�cation:

• 4 x Tesla V100 32GB

• Intel Xeon CPU E5-2698 v4 @ 2.20GHz

• 256 GB RDIMM DDR4 RAM

All of the experiments and measurements were conducted using this server.

6.2. Optimizations

In this section, we provide details about the results that we achieved after implementing
consecutive optimizations.

6.2.1. Legacy model

We started from the legacy model that was attached to the paper [14]. As it hasn't been
optimized for performance, one epoch took 23.25 s on average. The training batch size was
�xed to 500 users. The plot below represents the time elapsed for every separate computation.
As they are performed concurrently, they don't sum up to total epoch time.
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Figure 6.1: Combined operations time: legacy model

6.2.2. Sparse matrices

Sparse matrices structure requires explicit indexing of every non-zero element. This can be
an issue if the number of them exceeds int32 range - which is apparently used in TensorFlow.
Technically it was a huge limitation for us and blocked us from using full capabilities of our
GPUs since we had 32GB of memory on our cards, but due to this issue, we could use only
17 of them this way. It improved performance signi�cantly from 23.25 s per epoch to 1.86 s
per epoch.
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Figure 6.2: Combined operations time: sparse matrices

6.2.3. Data pipelining

Sparse matrices reduced the amount of data exchanged between CPU and GPU so much
that data transmission takes less time than computations. Because we parallelized those 2
processes, the data transmission is running in the background and we are bottlenecked only
by computations. It improved the overall performance from 1.86 s per epoch to 1.03 s per
epoch on average.
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Figure 6.3: Combined operations time: data pipelining

6.2.4. AMP

Before AMP usage, the most demanding computation was dense matrix multiplication (Mat-
Mul on the plot). After enabling it, overall matrix multiplication time decreased by around
80% which is a really impressive achievement. Furthermore, the data exchanged between GPU
memory and RAM has decreased. One of our disappointments was the fact that AMP doesn't
currently provide speed up to operations on sparse matrices. It just leaves them without any
changes to the graph. Summarizing, AMP improved the model's performance from 1.03 s to
0.56 s.
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Figure 6.4: Combined operations time: AMP

6.2.5. Multi-GPU

Multiple GPUs greatly increased the performance of the model, o�ering about 3.5 times
speed-up with 4 GPUs without a change on the metrics scores.
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Figure 6.5: Epoch performance improvements
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Figure 6.6: Comparison between metrics during training on single GPU in comparison with
training on 4 GPUs using Horovod

6.3. Metrics performance

We have talked a lot about various speed improvements and their aspects. In this paragraph,
I'd like to discuss how metrics results compare between a model presented in a paper with
our optimized model.
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Figure 6.7: Comparison between metrics during training for implementation from paper and
ours

As we clearly see, the optimized model underperforms a little. Why is that happening?
Unfortunately, we can't give a clear, sure answer. We suspect that it can be related to two
aspects:

• weights initialisation,

• usage of sparse matrix.

6.3.1. Weights initialisation

Trying to �nd a solution to the underperforming metrics, we started to simplify our archi-
tecture by removing some of its features like regularisation, sampling between encoder and
decoder, dropout, sparse matrix usage etc. We ended with two models that di�ered only
with computation graph declaration. Our model was implemented using tf.keras.layers

package, while the original one used bare matrix multiplication and matrix addition. In the-
ory, those models should be identical, but ours underperformed a little. However, when we
changed the weights initialisation (Xavier initialization and Truncated Normal Initialization)
[A] to setting all initial matrix values to zeros, the models started to perform identically.
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6.3.2. Usage of sparse matrix

When we tried to observe similar behaviour on a model working on sparse matrices, its
metrics results were once more a bit lower than the original model's metrics. Unfortunately,
we cannot explain this behaviour. It may be related to some numerical issues or problems
with a backpropagation on sparse matrices in TensorFlow, but it would require some further
investigation.

6.3.3. In�uence of mixed precision on metrics results

The last plot clearly shows that on our model, a mixed precision training has no negative
e�ects on the process of training.

Figure 6.8: Comparison between metrics during training for model trained using FP32 and
mixed precision
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Chapter 7

Discussion

One of our most notable dilemmas was the choice between PyTorch and TensorFlow. Af-
ter encouragement from the client side, we decided to develop our model using the latter.
However, after encountering problems with sparse matrices support on GPU we started to
wonder whether it was a good decision. TensorFlow style of model development by building
a static graph of computations seems to be a great idea, but in our case with sparse matrices
it required to build di�erent placeholders for training, validating and querying the model. It
is possible that those limitations are related to the architecture of GPUs, but we believe that
PyTorch dynamic style could be really bene�cial in terms of handling sparse matrices.

Next thing we would like to mention is support for automatic mixed precision training
tools for both of the frameworks: Apex [6] for PyTorch and AMP for TensorFlow. Apex
is a framework that has been released to the public in April 2018, while AMP was re-
leased just a few months ago with a few usage examples at https://github.com/NVIDIA/

DeepLearningExamples/tree/master/TensorFlow.

7.1. EstimatorAPI

EstimatorAPI [9] is a high-level TensorFlow API that greatly simpli�es machine learning
programming. It encapsulates the following actions: training, evaluation, prediction, saving
the model. EstimatorAPI has been released in TensorFlow 1.1 in March 2017. EstimatorAPI
has the following features:
• can be run on CPU, TPU or GPU without changing the model
• provides high level short, intuitive code
• builds graph for you
• provide a safe training loop that controls how and when to:

� build the graph
� initialize variables
� load data using DatasetAPI
� save the model

EstimatorAPI provides pre-made estimators like LinearClassi�er or DNNEstimator, or
enables to create customized ones. We used the latter option by passing our custom model.
Additionally, we had to create proprietary datasets that provide training and validating data.
Even though EstimatorAPI is a new, modern tool, it hasn't �t our needs, unfortunately, so
we had to revert this idea. The problem is the training function is slow and it's not easy to
optimize using our methods. Writing our custom metrics for the model was also extremely
di�cult and problematic.

33

https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow
https://github.com/NVIDIA/DeepLearningExamples/tree/master/TensorFlow


7.2. Calculating metrics on GPU

Validation data contains more than 10 times less users than training data. However, ini-
tially calculating all necessary metrics took 10 times longer than learning through the whole
epoch. It involves moving the output from GPUs to CPU and performing metrics calcula-
tions. Keeping in mind issues with sending data to and from GPU in the �rst implementation
and knowing GPU capabilities to outperform CPU in �oating-point operations, writing met-
rics in TensorFlow on GPU seemed to be a great idea. Unfortunately, TensorFlow has very
scarce support for aggregating data in matrices on GPU, both for sparse and dense matrices.
Information about this is extremely elusive � we found no website, blogpost nor any piece of
documentation that would warn about possible issues. We have spent a lot of time trying to
manoeuvre between those framework restrictions and limitations, but with no positive results.

During our �ghts with sparse matrices on GPU, we considered implementing missing
functions on our own using CUDA. This could eliminate our toughest issues and would open
new ways of optimization, but it would be de�nitely the hardest challenge to do. Finally we
settled that it would require too much time to learn CUDA and get into TensorFlow's code
to get this done. Also distributing our solution with a customized framework would be much
more di�cult than just posting some code on GitHub � we don't expect that people would
be interested in compiling and building a whole TensorFlow from scratch.

7.3. How metrics scores relates to reality

We conducted the following experiment: We marked a few movies from a speci�c �lm series
and fed it to our implemented VAE. We were expecting that the model would return other
movies from the same series. We tried with James Bond and Star Trek series. What was the
outcome? Actually, the model hasn't recommended any movies from those series. Why? The
reason is that the people don't restrain themself to watch only one series. Many of us watch
also di�erent genres or series. The model is as good as the data that was used for training.
This experiment showcases that our expectations for recommendation may be surprisingly
weakly correlated with model's recommendation.
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Chapter 8

Conclusion

Within 10 months of working on the model, our four-person team managed to speed-up the
training almost 150 times with only a little loss of accuracy. To achieve this result, we had
to deal with several bottlenecks and use some hardware-based optimization techniques to our
advantage. Some of them, like AMP or Horovod, may at �rst look like they are almost out-
of-the-box solutions. However, reality can be a bit harsh and painful � the technology that
we were using was very recently released, so it's still not well documented and there are no
online communities using them, who could help or advice. Fortunately, we managed to cope
with those di�culties.

In the beginning, we found out that e�cient data transfer is crucial for the project success
because sending dense matrices and multiplying on the �rst layer takes a signi�cant amount of
training time compared to the rest of computations. It was essential to improve transmission
to be able to count on getting any gains from the use of multiple GPUs. Without this
optimization, other methods wouldn't help much as they could speed-up only computations.
When we started our project, we haven't expected that our task will mainly focus on how to
e�ectively work with data. We spend a lot of energy changing dense matrices into sparse. We
had to deal with limited sparse operations available on GPU and we came across many dead
ends. We believe that TensorFlow should provide more GPU kernels for basic operations on
sparse tensors or at least inform users explicitly in documentations about possible issues.

The last steps were the features that were most important for our client � Automatic
Mixed Precision and multi-GPU using Horovod. Although, they are supposed to be simple
to use tools, their integration took quite long time because of our lack of experience. What
is more important are their e�ects on model's speed-up � our main goal of the project, which
turned out to be quite impressive: halved time using AMP and around 3.5x speed-up using 4
GPU.

In the end, we and our client are quite proud and satis�ed with the outcome of the project.
We proved that mixed precision training and multi-GPU can really reduce training time even
relatively shallow model like variational autoencoder for collaborative �ltering.
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Chapter 9

Team members contribution

9.1. Albert's contribution

• Implementation of:
� Data loading and preprocessing
� TF-AMP usage
� FP16 precision research
� Data pipelining

9.2. Michaª's contribution

• Organising the team's work, coordinating contacts with NVIDIA representative
• Implementation of:

� Metrics
� Scripts for end users

9.3. Frederic's contribution

• Implementation of:
� Neural network architecture
� Multi GPU training
� Metrics

9.4. Radosªaw's contribution

• Working environment setup
• Implementation of:

� Multi GPU training
� TF-AMP usage
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Chapter 10

CD contents

The CD contains the code of our project. The root directory contains the main script and
Docker �les. There are following subdirectories:

• notebooks � Jupyter Notebooks

• vae - data loading, model de�nition and training script

• scripts - bash scripts that runs Docker and Jupyter
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Appendix A

L2 Regularization � A function of neural network parameters, that is added to the loss. It
is equal to the root of the sum of squared parameters.

KL Divergence � A function of 2 probability distributions. It returns how di�erent they
are. In our case we compare our distribution with Gaussian.

Unsupervised learning � Learning without labeled data.

Annealing � During training we increase the importance of KL-Divergence in loss by multi-
plying it by an anneal factor. We stop when an anneal cap is reached.

Over�tting � The situation when a Neural Network is closely �tted to the training set that
it is di�cult to generalize and make predictions for new data.

Regularization � Adding terms to loss, that prevent then Neural Network from over�tting.

Xavier initialization � Initializes the parameters of Neural Network. Tries to preserve the
scale of gradients.

Truncated Normal Initialization � Initializes the parameters according to Truncated Nor-
mal Distribution.

Docker�le � The �le that lets you build a "virtual" operating system.

Cold start problem � In collaborative �ltering we don't know anything about new users,
because they didn't see any items. So, we can't give them any personalized recommenda-
tions.
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